extern "C" magma_int_t
magma_sgeev(magma_vec_t jobvl, magma_vec_t jobvr, magma_int_t n,
            float *a, magma_int_t lda,
            float *WR, float *WI,
            float *vl, magma_int_t ldvl,
            float *vr, magma_int_t ldvr,
            float *work, magma_int_t lwork,
            magma_int_t *info, magma_queue_t queue)
{
/*  -- clMAGMA (version 1.0.0) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       September 2012

    Purpose   
    =======   
    SGEEV computes for an N-by-N real nonsymmetric matrix A, the   
    eigenvalues and, optionally, the left and/or right eigenvectors.   

    The right eigenvector v(j) of A satisfies   
                     A * v(j) = lambda(j) * v(j)   
    where lambda(j) is its eigenvalue.   
    The left eigenvector u(j) of A satisfies   
                  u(j)**T * A = lambda(j) * u(j)**T   
    where u(j)**T denotes the transpose of u(j).   

    The computed eigenvectors are normalized to have Euclidean norm   
    equal to 1 and largest component real.   

    Arguments   
    =========   
    JOBVL   (input) CHARACTER*1   
            = 'N': left eigenvectors of A are not computed;   
            = 'V': left eigenvectors of are computed.   

    JOBVR   (input) CHARACTER*1   
            = 'N': right eigenvectors of A are not computed;   
            = 'V': right eigenvectors of A are computed.   

    N       (input) INTEGER   
            The order of the matrix A. N >= 0.   

    A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)   
            On entry, the N-by-N matrix A.   
            On exit, A has been overwritten.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,N).   

    WR      (output) DOUBLE PRECISION array, dimension (N)   
    WI      (output) DOUBLE PRECISION array, dimension (N)   
            WR and WI contain the real and imaginary parts,
            respectively, of the computed eigenvalues.  Complex
            conjugate pairs of eigenvalues appear consecutively
            with the eigenvalue having the positive imaginary part
            first.

    VL      (output) DOUBLE PRECISION array, dimension (LDVL,N)   
            If JOBVL = 'V', the left eigenvectors u(j) are stored one   
            after another in the columns of VL, in the same order   
            as their eigenvalues.   
            If JOBVL = 'N', VL is not referenced.   
            u(j) = VL(:,j), the j-th column of VL.   

    LDVL    (input) INTEGER   
            The leading dimension of the array VL.  LDVL >= 1; if   
            JOBVL = 'V', LDVL >= N.   

    VR      (output) DOUBLE PRECISION array, dimension (LDVR,N)   
            If JOBVR = 'V', the right eigenvectors v(j) are stored one   
            after another in the columns of VR, in the same order   
            as their eigenvalues.   
            If JOBVR = 'N', VR is not referenced.   
            v(j) = VR(:,j), the j-th column of VR.   

    LDVR    (input) INTEGER   
            The leading dimension of the array VR.  LDVR >= 1; if   
            JOBVR = 'V', LDVR >= N.   

    WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK.  LWORK >= (1+nb)*N.   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   
            > 0:  if INFO = i, the QR algorithm failed to compute all the   
                  eigenvalues, and no eigenvectors have been computed;   
                  elements and i+1:N of W contain eigenvalues which have   
                  converged.   
    =====================================================================    */

    magma_int_t c__1 = 1;
    magma_int_t c__0 = 0;
    magma_int_t c_n1 = -1;
    
    magma_int_t a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, 
            i__2, i__3;
    float d__1, d__2;

    magma_int_t i__, k, ihi, ilo;
    float      r__, cs, sn, scl;
    float dum[1], eps;
    magma_int_t ibal;
    float anrm;
    magma_int_t ierr, itau, iwrk, nout;
    magma_int_t scalea;
    float cscale;
    float bignum;
    magma_int_t minwrk;
    magma_int_t wantvl;
    float smlnum;
    magma_int_t lquery, wantvr, select[1];

    magma_int_t nb = 0;
    magmaFloat_ptr dT;
    //magma_timestr_t start, end;

    char side[2] = {0, 0};
    magma_vec_t jobvl_ = jobvl;
    magma_vec_t jobvr_ = jobvr;

    *info = 0;
    lquery = lwork == -1;
    wantvl = lapackf77_lsame(lapack_const(jobvl_), "V");
    wantvr = lapackf77_lsame(lapack_const(jobvr_), "V");
    if (! wantvl && ! lapackf77_lsame(lapack_const(jobvl_), "N")) {
        *info = -1;
    } else if (! wantvr && ! lapackf77_lsame(lapack_const(jobvr_), "N")) {
        *info = -2;
    } else if (n < 0) {
        *info = -3;
    } else if (lda < max(1,n)) {
        *info = -5;
    } else if ( (ldvl < 1) || (wantvl && (ldvl < n))) {
        *info = -9;
    } else if ( (ldvr < 1) || (wantvr && (ldvr < n))) {
        *info = -11;
    }

    /*  Compute workspace   */
    if (*info == 0) {

        nb = magma_get_sgehrd_nb(n);
        minwrk = (2+nb)*n;
        work[0] = (float) minwrk;
        
        if (lwork < minwrk && ! lquery) {
            *info = -13;
        }

    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /* Quick return if possible */
    if (n == 0) {
        return *info;
    }
   
    // if eigenvectors are needed
#if defined(VERSION3)
    if (MAGMA_SUCCESS != magma_malloc( &dT, nb*n*sizeof(float) )) {
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }
#endif

    // subtract row and col for 1-based indexing
    a_dim1   = lda;
    a_offset = 1 + a_dim1;
    a       -= a_offset;
    vl_dim1   = ldvl;
    vl_offset = 1 + vl_dim1;
    vl       -= vl_offset;
    vr_dim1   = ldvr;
    vr_offset = 1 + vr_dim1;
    vr       -= vr_offset;
    --work;

    /* Get machine constants */
    eps    = lapackf77_slamch("P");
    smlnum = lapackf77_slamch("S");
    bignum = 1. / smlnum;
    lapackf77_slabad(&smlnum, &bignum);
    smlnum = magma_ssqrt(smlnum) / eps;
    bignum = 1. / smlnum;

    /* Scale A if max element outside range [SMLNUM,BIGNUM] */
    anrm = lapackf77_slange("M", &n, &n, &a[a_offset], &lda, dum);
    scalea = 0;
    if (anrm > 0. && anrm < smlnum) {
        scalea = 1;
        cscale = smlnum;
    } else if (anrm > bignum) {
        scalea = 1;
        cscale = bignum;
    }
    if (scalea) {
        lapackf77_slascl("G", &c__0, &c__0, &anrm, &cscale, &n, &n, 
                &a[a_offset], &lda, &ierr);
    }

    /* Balance the matrix   
       (Workspace: need N) */
    ibal = 1;
    lapackf77_sgebal("B", &n, &a[a_offset], &lda, &ilo, &ihi, &work[ibal], &ierr);

    /* Reduce to upper Hessenberg form   
       (Workspace: need 3*N, prefer 2*N+N*NB) */
    itau = ibal + n;
    iwrk = itau + n;
    i__1 = lwork - iwrk + 1;

    //start = get_current_time();
#if defined(VERSION1)
    /*
     * Version 1 - LAPACK
     */
    lapackf77_sgehrd(&n, &ilo, &ihi, &a[a_offset], &lda,
                     &work[itau], &work[iwrk], &i__1, &ierr);
#elif defined(VERSION2)
    /*
     *  Version 2 - LAPACK consistent HRD
     */
    magma_sgehrd2(n, ilo, ihi, &a[a_offset], lda,
                  &work[itau], &work[iwrk], &i__1, &ierr);
#elif defined(VERSION3)
    /*  
     * Version 3 - LAPACK consistent MAGMA HRD + matrices T stored, 
     */
    magma_sgehrd(n, ilo, ihi, &a[a_offset], lda,
                 &work[itau], &work[iwrk], i__1, dT, 0, &ierr, queue);
#endif
    //end = get_current_time();
    //printf("    Time for sgehrd = %5.2f sec\n", GetTimerValue(start,end)/1000.);

    if (wantvl) {
      /*        Want left eigenvectors   
                Copy Householder vectors to VL */
        side[0] = 'L';
        lapackf77_slacpy(MagmaLowerStr, &n, &n, 
                         &a[a_offset], &lda, &vl[vl_offset], &ldvl);

        /* 
         * Generate orthogonal matrix in VL 
         *   (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB) 
         */
        i__1 = lwork - iwrk + 1;

        //start = get_current_time();
#if defined(VERSION1) || defined(VERSION2)
        /*
         * Version 1 & 2 - LAPACK
         */
        lapackf77_sorghr(&n, &ilo, &ihi, &vl[vl_offset], &ldvl, 
                         &work[itau], &work[iwrk], &i__1, &ierr);
#elif defined(VERSION3)
        /*
         * Version 3 - LAPACK consistent MAGMA HRD + matrices T stored
         */
        magma_sorghr(n, ilo, ihi, &vl[vl_offset], ldvl, &work[itau], 
                     dT, 0, nb, &ierr, queue);
#endif
        //end = get_current_time();
        //printf("    Time for sorghr = %5.2f sec\n", GetTimerValue(start,end)/1000.);

        /*
         * Perform QR iteration, accumulating Schur vectors in VL
         *   (Workspace: need N+1, prefer N+HSWORK (see comments) )
         */
        iwrk = itau;
        i__1 = lwork - iwrk + 1;
        lapackf77_shseqr("S", "V", &n, &ilo, &ihi, &a[a_offset], &lda, WR, WI, 
                         &vl[vl_offset], &ldvl, &work[iwrk], &i__1, info);

        if (wantvr) {
          /* Want left and right eigenvectors   
             Copy Schur vectors to VR */
            side[0] = 'B';
            lapackf77_slacpy("F", &n, &n, &vl[vl_offset], &ldvl, &vr[vr_offset], &ldvr);
        }

    } else if (wantvr) {
        /*  Want right eigenvectors   
            Copy Householder vectors to VR */
        side[0] = 'R';
        lapackf77_slacpy("L", &n, &n, &a[a_offset], &lda, &vr[vr_offset], &ldvr);

        /*
         * Generate orthogonal matrix in VR
         *   (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB) 
         */
        i__1 = lwork - iwrk + 1;
        //start = get_current_time();
#if defined(VERSION1) || defined(VERSION2)
        /*
         * Version 1 & 2 - LAPACK
         */
        lapackf77_sorghr(&n, &ilo, &ihi, &vr[vr_offset], &ldvr, 
                         &work[itau], &work[iwrk], &i__1, &ierr);
#elif defined(VERSION3)
        /*
         * Version 3 - LAPACK consistent MAGMA HRD + matrices T stored
         */
        magma_sorghr(n, ilo, ihi, &vr[vr_offset], ldvr, 
                     &work[itau], dT, 0, nb, &ierr, queue);
#endif
        //end = get_current_time();
        //printf("    Time for sorghr = %5.2f sec\n", GetTimerValue(start,end)/1000.);

        /* 
         * Perform QR iteration, accumulating Schur vectors in VR   
         *   (Workspace: need N+1, prefer N+HSWORK (see comments) ) 
         */
        iwrk = itau;
        i__1 = lwork - iwrk + 1;
        lapackf77_shseqr("S", "V", &n, &ilo, &ihi, &a[a_offset], &lda, WR, WI,
                &vr[vr_offset], &ldvr, &work[iwrk], &i__1, info);
    } else {
        /*  
         * Compute eigenvalues only   
         *   (Workspace: need N+1, prefer N+HSWORK (see comments) ) 
         */
        iwrk = itau;
        i__1 = lwork - iwrk + 1;
        lapackf77_shseqr("E", "N", &n, &ilo, &ihi, &a[a_offset], &lda, WR, WI,
                &vr[vr_offset], &ldvr, &work[iwrk], &i__1, info);
    }

    /* If INFO > 0 from SHSEQR, then quit */
    if (*info > 0) {
        fprintf(stderr, "SHSEQR returned with info = %d\n", (int) *info);
        goto L50;
    }

    if (wantvl || wantvr) {
        /*  
         * Compute left and/or right eigenvectors   
         *   (Workspace: need 4*N) 
         */
        lapackf77_strevc(side, "B", select, &n, &a[a_offset], &lda, &vl[vl_offset], &ldvl,
                &vr[vr_offset], &ldvr, &n, &nout, &work[iwrk], &ierr);
    }

    if (wantvl) {
        /*  
         * Undo balancing of left eigenvectors   
         *   (Workspace: need N) 
         */
        lapackf77_sgebak("B", "L", &n, &ilo, &ihi, 
                         &work[ibal], &n, &vl[vl_offset], &ldvl, &ierr);

        /* Normalize left eigenvectors and make largest component real */
        for (i__ = 1; i__ <= n; ++i__) {
            if ( WI[i__-1] == 0.) {
                scl = cblas_snrm2(n, &vl[i__ * vl_dim1 + 1], 1);
                scl = 1. / scl;
                cblas_sscal(n, (scl), &vl[i__ * vl_dim1 + 1], 1);
            } else if (WI[i__-1] > 0.) {
                d__1 = cblas_snrm2(n, &vl[ i__      * vl_dim1 + 1], 1);
                d__2 = cblas_snrm2(n, &vl[(i__ + 1) * vl_dim1 + 1], 1);
                scl = lapackf77_slapy2(&d__1, &d__2);
                scl = 1. / scl;
                cblas_sscal(n, (scl), &vl[ i__      * vl_dim1 + 1], 1);
                cblas_sscal(n, (scl), &vl[(i__ + 1) * vl_dim1 + 1], 1);
                i__2 = n;
                for (k = 1; k <= i__2; ++k) {
                    /* Computing 2nd power */
                    d__1 = vl[k + i__ * vl_dim1];
                    /* Computing 2nd power */
                    d__2 = vl[k + (i__ + 1) * vl_dim1];
                    work[iwrk + k - 1] = d__1 * d__1 + d__2 * d__2;
                }
                /* Comment:
                   Fortran BLAS does not have to add 1
                   C       BLAS must add one to cblas_isamax */ 
                k = cblas_isamax(n, &work[iwrk], 1)+1;
                lapackf77_slartg(&vl[k +  i__      * vl_dim1], 
                                 &vl[k + (i__ + 1) * vl_dim1], &cs, &sn, &r__);
                cblas_srot(n, &vl[ i__      * vl_dim1 + 1], 1, 
                           &vl[(i__ + 1) * vl_dim1 + 1], 1, cs, (sn));
                vl[k + (i__ + 1) * vl_dim1] = 0.;
            }
        }
    }

    if (wantvr) {
        /*  
         * Undo balancing of right eigenvectors   
         *   (Workspace: need N) 
         */
        lapackf77_sgebak("B", "R", &n, &ilo, &ihi, &work[ibal], &n, 
                         &vr[vr_offset], &ldvr, &ierr);

        /* Normalize right eigenvectors and make largest component real */
        for (i__ = 1; i__ <= n; ++i__) {
            if (WI[i__-1] == 0.) {
                scl = 1. / cblas_snrm2(n, &vr[i__ * vr_dim1 + 1], 1);
                cblas_sscal(n, (scl), &vr[i__ * vr_dim1 + 1], 1);
            } else if (WI[i__-1] > 0.) {
                d__1 = cblas_snrm2(n, &vr[ i__      * vr_dim1 + 1], 1);
                d__2 = cblas_snrm2(n, &vr[(i__ + 1) * vr_dim1 + 1], 1);
                scl = lapackf77_slapy2(&d__1, &d__2);
                scl = 1. / scl;
                cblas_sscal(n, (scl), &vr[ i__      * vr_dim1 + 1], 1);
                cblas_sscal(n, (scl), &vr[(i__ + 1) * vr_dim1 + 1], 1);
                i__2 = n;
                for (k = 1; k <= i__2; ++k) {
                    /* Computing 2nd power */
                    d__1 = vr[k + i__ * vr_dim1];
                    /* Computing 2nd power */
                    d__2 = vr[k + (i__ + 1) * vr_dim1];
                    work[iwrk + k - 1] = d__1 * d__1 + d__2 * d__2;
                }
                /* Comment:
                   Fortran BLAS does not have to add 1
                   C       BLAS must add one to cblas_isamax */
                k = cblas_isamax(n, &work[iwrk], 1)+1;
                lapackf77_slartg(&vr[k + i__ * vr_dim1], &vr[k + (i__ + 1) * vr_dim1], 
                        &cs, &sn, &r__);
                cblas_srot(n, &vr[ i__      * vr_dim1 + 1], 1, 
                              &vr[(i__ + 1) * vr_dim1 + 1], 1, cs, (sn));
                vr[k + (i__ + 1) * vr_dim1] = 0.;
            }
        }
    }

    /*  Undo scaling if necessary */
L50:
    if (scalea) {
        i__1 = n - *info;
        /* Computing MAX */
        i__3 = n - *info;
        i__2 = max(i__3,1);
        lapackf77_slascl("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, 
                         WR + (*info), &i__2, &ierr);
        i__1 = n - *info;
        /* Computing MAX */
        i__3 = n - *info;
        i__2 = max(i__3,1);
        lapackf77_slascl("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, 
                WI + (*info), &i__2, &ierr);
        if (*info > 0) {
            i__1 = ilo - 1;
            lapackf77_slascl("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, 
                    WR, &n, &ierr);
            i__1 = ilo - 1;
            lapackf77_slascl("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1,
                    WI, &n, &ierr);
        }
    }

#if defined(VERSION3)
    magma_free( dT );
#endif
    return *info;
} /* magma_sgeev */
Example #2
0
/**
    Purpose
    -------
    SGEEV computes for an N-by-N real nonsymmetric matrix A, the
    eigenvalues and, optionally, the left and/or right eigenvectors.

    The right eigenvector v(j) of A satisfies
                     A * v(j) = lambda(j) * v(j)
    where lambda(j) is its eigenvalue.
    The left eigenvector u(j) of A satisfies
                  u(j)**T * A = lambda(j) * u(j)**T
    where u(j)**T denotes the transpose of u(j).

    The computed eigenvectors are normalized to have Euclidean norm
    equal to 1 and largest component real.

    Arguments
    ---------
    @param[in]
    jobvl   magma_vec_t
      -     = MagmaNoVec: left eigenvectors of A are not computed;
      -     = MagmaVec:   left eigenvectors of are computed.

    @param[in]
    jobvr   magma_vec_t
      -     = MagmaNoVec: right eigenvectors of A are not computed;
      -     = MagmaVec:   right eigenvectors of A are computed.

    @param[in]
    n       INTEGER
            The order of the matrix A. N >= 0.

    @param[in,out]
    A       REAL array, dimension (LDA,N)
            On entry, the N-by-N matrix A.
            On exit, A has been overwritten.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    @param[out]
    wr      REAL array, dimension (N)
    @param[out]
    wi      REAL array, dimension (N)
            WR and WI contain the real and imaginary parts,
            respectively, of the computed eigenvalues.  Complex
            conjugate pairs of eigenvalues appear consecutively
            with the eigenvalue having the positive imaginary part
            first.

    @param[out]
    VL      REAL array, dimension (LDVL,N)
            If JOBVL = MagmaVec, the left eigenvectors u(j) are stored one
            after another in the columns of VL, in the same order
            as their eigenvalues.
            If JOBVL = MagmaNoVec, VL is not referenced.
            u(j) = VL(:,j), the j-th column of VL.

    @param[in]
    ldvl    INTEGER
            The leading dimension of the array VL.  LDVL >= 1; if
            JOBVL = MagmaVec, LDVL >= N.

    @param[out]
    VR      REAL array, dimension (LDVR,N)
            If JOBVR = MagmaVec, the right eigenvectors v(j) are stored one
            after another in the columns of VR, in the same order
            as their eigenvalues.
            If JOBVR = MagmaNoVec, VR is not referenced.
            v(j) = VR(:,j), the j-th column of VR.

    @param[in]
    ldvr    INTEGER
            The leading dimension of the array VR.  LDVR >= 1; if
            JOBVR = MagmaVec, LDVR >= N.

    @param[out]
    work    (workspace) REAL array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The dimension of the array WORK.  LWORK >= (2 +   nb + nb*ngpu)*N.
            For optimal performance,          LWORK >= (2 + 2*nb + nb*ngpu)*N.
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal size of the WORK array, returns
            this value as the first entry of the WORK array, and no error
            message related to LWORK is issued by XERBLA.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value.
      -     > 0:  if INFO = i, the QR algorithm failed to compute all the
                  eigenvalues, and no eigenvectors have been computed;
                  elements and i+1:N of W contain eigenvalues which have
                  converged.

    @ingroup magma_sgeev_driver
    ********************************************************************/
extern "C" magma_int_t
magma_sgeev_m(
    magma_vec_t jobvl, magma_vec_t jobvr, magma_int_t n,
    float *A, magma_int_t lda,
    #ifdef COMPLEX
    float *w,
    #else
    float *wr, float *wi,
    #endif
    float *VL, magma_int_t ldvl,
    float *VR, magma_int_t ldvr,
    float *work, magma_int_t lwork,
    #ifdef COMPLEX
    float *rwork,
    #endif
    magma_int_t *info )
{
    #define VL(i,j)  (VL + (i) + (j)*ldvl)
    #define VR(i,j)  (VR + (i) + (j)*ldvr)
    
    const magma_int_t ione  = 1;
    const magma_int_t izero = 0;
    
    float d__1, d__2;
    float r, cs, sn, scl;
    float dum[1], eps;
    float anrm, cscale, bignum, smlnum;
    magma_int_t i, k, ilo, ihi;
    magma_int_t ibal, ierr, itau, iwrk, nout, liwrk, nb;
    magma_int_t scalea, minwrk, optwrk, lquery, wantvl, wantvr, select[1];
    
    magma_side_t side = MagmaRight;
    magma_int_t ngpu = magma_num_gpus();
    
    magma_timer_t time_total=0, time_gehrd=0, time_unghr=0, time_hseqr=0, time_trevc=0, time_sum=0;
    magma_flops_t flop_total=0, flop_gehrd=0, flop_unghr=0, flop_hseqr=0, flop_trevc=0, flop_sum=0;
    timer_start( time_total );
    flops_start( flop_total );
    
    *info = 0;
    lquery = (lwork == -1);
    wantvl = (jobvl == MagmaVec);
    wantvr = (jobvr == MagmaVec);
    if (! wantvl && jobvl != MagmaNoVec) {
        *info = -1;
    } else if (! wantvr && jobvr != MagmaNoVec) {
        *info = -2;
    } else if (n < 0) {
        *info = -3;
    } else if (lda < max(1,n)) {
        *info = -5;
    } else if ( (ldvl < 1) || (wantvl && (ldvl < n))) {
        *info = -9;
    } else if ( (ldvr < 1) || (wantvr && (ldvr < n))) {
        *info = -11;
    }

    /* Compute workspace */
    nb = magma_get_sgehrd_nb( n );
    if (*info == 0) {
        minwrk = (2 +   nb + nb*ngpu)*n;
        optwrk = (2 + 2*nb + nb*ngpu)*n;
        work[0] = magma_smake_lwork( optwrk );
        
        if (lwork < minwrk && ! lquery) {
            *info = -13;
        }
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /* Quick return if possible */
    if (n == 0) {
        return *info;
    }
   
    #if defined(Version3)
    float *dT;
    if (MAGMA_SUCCESS != magma_smalloc( &dT, nb*n )) {
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }
    #endif
    #if defined(Version5)
    float *T;
    if (MAGMA_SUCCESS != magma_smalloc_cpu( &T, nb*n )) {
        *info = MAGMA_ERR_HOST_ALLOC;
        return *info;
    }
    #endif

    /* Get machine constants */
    eps    = lapackf77_slamch( "P" );
    smlnum = lapackf77_slamch( "S" );
    bignum = 1. / smlnum;
    lapackf77_slabad( &smlnum, &bignum );
    smlnum = magma_ssqrt( smlnum ) / eps;
    bignum = 1. / smlnum;

    /* Scale A if max element outside range [SMLNUM,BIGNUM] */
    anrm = lapackf77_slange( "M", &n, &n, A, &lda, dum );
    scalea = 0;
    if (anrm > 0. && anrm < smlnum) {
        scalea = 1;
        cscale = smlnum;
    } else if (anrm > bignum) {
        scalea = 1;
        cscale = bignum;
    }
    if (scalea) {
        lapackf77_slascl( "G", &izero, &izero, &anrm, &cscale, &n, &n, A, &lda, &ierr );
    }

    /* Balance the matrix
     * (Workspace: need N)
     *  - this space is reserved until after gebak */
    ibal = 0;
    lapackf77_sgebal( "B", &n, A, &lda, &ilo, &ihi, &work[ibal], &ierr );

    /* Reduce to upper Hessenberg form
     * (Workspace: need 3*N, prefer 2*N + N*NB + NB*NGPU)
     *  - added NB*NGPU needed for multi-GPU magma_sgehrd_m
     *  - including N reserved for gebal/gebak, unused by sgehrd */
    itau = ibal + n;
    iwrk = itau + n;
    liwrk = lwork - iwrk;

    timer_start( time_gehrd );
    flops_start( flop_gehrd );
    #if defined(Version1)
        // Version 1 - LAPACK
        lapackf77_sgehrd( &n, &ilo, &ihi, A, &lda,
                          &work[itau], &work[iwrk], &liwrk, &ierr );
    #elif defined(Version2)
        // Version 2 - LAPACK consistent HRD
        magma_sgehrd2( n, ilo, ihi, A, lda,
                       &work[itau], &work[iwrk], liwrk, &ierr );
    #elif defined(Version3)
        // Version 3 - LAPACK consistent MAGMA HRD + T matrices stored,
        magma_sgehrd( n, ilo, ihi, A, lda,
                      &work[itau], &work[iwrk], liwrk, dT, &ierr );
    #elif defined(Version5)
        // Version 4 - Multi-GPU, T on host
        magma_sgehrd_m( n, ilo, ihi, A, lda,
                        &work[itau], &work[iwrk], liwrk, T, &ierr );
    #endif
    time_sum += timer_stop( time_gehrd );
    flop_sum += flops_stop( flop_gehrd );

    if (wantvl) {
        /* Want left eigenvectors
         * Copy Householder vectors to VL */
        side = MagmaLeft;
        lapackf77_slacpy( MagmaLowerStr, &n, &n, A, &lda, VL, &ldvl );

        /* Generate orthogonal matrix in VL
         * (Workspace: need 3*N-1, prefer 2*N + (N-1)*NB)
         *  - including N reserved for gebal/gebak, unused by sorghr */
        timer_start( time_unghr );
        flops_start( flop_unghr );
        #if defined(Version1) || defined(Version2)
            // Version 1 & 2 - LAPACK
            lapackf77_sorghr( &n, &ilo, &ihi, VL, &ldvl, &work[itau],
                              &work[iwrk], &liwrk, &ierr );
        #elif defined(Version3)
            // Version 3 - LAPACK consistent MAGMA HRD + T matrices stored
            magma_sorghr( n, ilo, ihi, VL, ldvl, &work[itau], dT, nb, &ierr );
        #elif defined(Version5)
            // Version 5 - Multi-GPU, T on host
            magma_sorghr_m( n, ilo, ihi, VL, ldvl, &work[itau], T, nb, &ierr );
        #endif
        time_sum += timer_stop( time_unghr );
        flop_sum += flops_stop( flop_unghr );

        timer_start( time_hseqr );
        flops_start( flop_hseqr );
        /* Perform QR iteration, accumulating Schur vectors in VL
         * (Workspace: need N+1, prefer N+HSWORK (see comments) )
         *  - including N reserved for gebal/gebak, unused by shseqr */
        iwrk = itau;
        liwrk = lwork - iwrk;
        lapackf77_shseqr( "S", "V", &n, &ilo, &ihi, A, &lda, wr, wi,
                          VL, &ldvl, &work[iwrk], &liwrk, info );
        time_sum += timer_stop( time_hseqr );
        flop_sum += flops_stop( flop_hseqr );

        if (wantvr) {
            /* Want left and right eigenvectors
             * Copy Schur vectors to VR */
            side = MagmaBothSides;
            lapackf77_slacpy( "F", &n, &n, VL, &ldvl, VR, &ldvr );
        }
    }
    else if (wantvr) {
        /* Want right eigenvectors
         * Copy Householder vectors to VR */
        side = MagmaRight;
        lapackf77_slacpy( "L", &n, &n, A, &lda, VR, &ldvr );

        /* Generate orthogonal matrix in VR
         * (Workspace: need 3*N-1, prefer 2*N + (N-1)*NB)
         *  - including N reserved for gebal/gebak, unused by sorghr */
        timer_start( time_unghr );
        flops_start( flop_unghr );
        #if defined(Version1) || defined(Version2)
            // Version 1 & 2 - LAPACK
            lapackf77_sorghr( &n, &ilo, &ihi, VR, &ldvr, &work[itau],
                              &work[iwrk], &liwrk, &ierr );
        #elif defined(Version3)
            // Version 3 - LAPACK consistent MAGMA HRD + T matrices stored
            magma_sorghr( n, ilo, ihi, VR, ldvr, &work[itau], dT, nb, &ierr );
        #elif defined(Version5)
            // Version 5 - Multi-GPU, T on host
            magma_sorghr_m( n, ilo, ihi, VR, ldvr, &work[itau], T, nb, &ierr );
        #endif
        time_sum += timer_stop( time_unghr );
        flop_sum += flops_stop( flop_unghr );

        /* Perform QR iteration, accumulating Schur vectors in VR
         * (Workspace: need N+1, prefer N+HSWORK (see comments) )
         *  - including N reserved for gebal/gebak, unused by shseqr */
        timer_start( time_hseqr );
        flops_start( flop_hseqr );
        iwrk = itau;
        liwrk = lwork - iwrk;
        lapackf77_shseqr( "S", "V", &n, &ilo, &ihi, A, &lda, wr, wi,
                          VR, &ldvr, &work[iwrk], &liwrk, info );
        time_sum += timer_stop( time_hseqr );
        flop_sum += flops_stop( flop_hseqr );
    }
    else {
        /* Compute eigenvalues only
         * (Workspace: need N+1, prefer N+HSWORK (see comments) )
         *  - including N reserved for gebal/gebak, unused by shseqr */
        timer_start( time_hseqr );
        flops_start( flop_hseqr );
        iwrk = itau;
        liwrk = lwork - iwrk;
        lapackf77_shseqr( "E", "N", &n, &ilo, &ihi, A, &lda, wr, wi,
                          VR, &ldvr, &work[iwrk], &liwrk, info );
        time_sum += timer_stop( time_hseqr );
        flop_sum += flops_stop( flop_hseqr );
    }

    /* If INFO > 0 from SHSEQR, then quit */
    if (*info > 0) {
        goto CLEANUP;
    }

    timer_start( time_trevc );
    flops_start( flop_trevc );
    if (wantvl || wantvr) {
        /* Compute left and/or right eigenvectors
         * (Workspace: need 4*N, prefer (2 + 2*nb)*N)
         *  - including N reserved for gebal/gebak, unused by strevc */
        liwrk = lwork - iwrk;
        #if TREVC_VERSION == 1
        lapackf77_strevc( lapack_side_const(side), "B", select, &n, A, &lda, VL, &ldvl,
                          VR, &ldvr, &n, &nout, &work[iwrk], &ierr );
        #elif TREVC_VERSION == 2
        lapackf77_strevc3( lapack_side_const(side), "B", select, &n, A, &lda, VL, &ldvl,
                           VR, &ldvr, &n, &nout, &work[iwrk], &liwrk, &ierr );
        #elif TREVC_VERSION == 3
        magma_strevc3( side, MagmaBacktransVec, select, n, A, lda, VL, ldvl,
                       VR, ldvr, n, &nout, &work[iwrk], liwrk, &ierr );
        #elif TREVC_VERSION == 4
        magma_strevc3_mt( side, MagmaBacktransVec, select, n, A, lda, VL, ldvl,
                          VR, ldvr, n, &nout, &work[iwrk], liwrk, &ierr );
        #elif TREVC_VERSION == 5
        magma_strevc3_mt_gpu( side, MagmaBacktransVec, select, n, A, lda, VL, ldvl,
                              VR, ldvr, n, &nout, &work[iwrk], liwrk, &ierr );
        #else
        #error Unknown TREVC_VERSION
        #endif
    }
    time_sum += timer_stop( time_trevc );
    flop_sum += flops_stop( flop_trevc );

    if (wantvl) {
        /* Undo balancing of left eigenvectors
         * (Workspace: need N) */
        lapackf77_sgebak( "B", "L", &n, &ilo, &ihi, &work[ibal], &n,
                          VL, &ldvl, &ierr );

        /* Normalize left eigenvectors and make largest component real */
        for (i = 0; i < n; ++i) {
            if ( wi[i] == 0. ) {
                scl = 1. / magma_cblas_snrm2( n, VL(0,i), 1 );
                blasf77_sscal( &n, &scl, VL(0,i), &ione );
            }
            else if ( wi[i] > 0. ) {
                d__1 = magma_cblas_snrm2( n, VL(0,i), 1 );
                d__2 = magma_cblas_snrm2( n, VL(0,i+1), 1 );
                scl = 1. / lapackf77_slapy2( &d__1, &d__2 );
                blasf77_sscal( &n, &scl, VL(0,i), &ione );
                blasf77_sscal( &n, &scl, VL(0,i+1), &ione );
                for (k = 0; k < n; ++k) {
                    /* Computing 2nd power */
                    d__1 = *VL(k,i);
                    d__2 = *VL(k,i+1);
                    work[iwrk + k] = d__1*d__1 + d__2*d__2;
                }
                k = blasf77_isamax( &n, &work[iwrk], &ione ) - 1;  // subtract 1; k is 0-based
                lapackf77_slartg( VL(k,i), VL(k,i+1), &cs, &sn, &r );
                blasf77_srot( &n, VL(0,i), &ione, VL(0,i+1), &ione, &cs, &sn );
                *VL(k,i+1) = 0.;
            }
        }
    }

    if (wantvr) {
        /* Undo balancing of right eigenvectors
         * (Workspace: need N) */
        lapackf77_sgebak( "B", "R", &n, &ilo, &ihi, &work[ibal], &n,
                          VR, &ldvr, &ierr );

        /* Normalize right eigenvectors and make largest component real */
        for (i = 0; i < n; ++i) {
            if ( wi[i] == 0. ) {
                scl = 1. / magma_cblas_snrm2( n, VR(0,i), 1 );
                blasf77_sscal( &n, &scl, VR(0,i), &ione );
            }
            else if ( wi[i] > 0. ) {
                d__1 = magma_cblas_snrm2( n, VR(0,i), 1 );
                d__2 = magma_cblas_snrm2( n, VR(0,i+1), 1 );
                scl = 1. / lapackf77_slapy2( &d__1, &d__2 );
                blasf77_sscal( &n, &scl, VR(0,i), &ione );
                blasf77_sscal( &n, &scl, VR(0,i+1), &ione );
                for (k = 0; k < n; ++k) {
                    /* Computing 2nd power */
                    d__1 = *VR(k,i);
                    d__2 = *VR(k,i+1);
                    work[iwrk + k] = d__1*d__1 + d__2*d__2;
                }
                k = blasf77_isamax( &n, &work[iwrk], &ione ) - 1;  // subtract 1; k is 0-based
                lapackf77_slartg( VR(k,i), VR(k,i+1), &cs, &sn, &r );
                blasf77_srot( &n, VR(0,i), &ione, VR(0,i+1), &ione, &cs, &sn );
                *VR(k,i+1) = 0.;
            }
        }
    }

CLEANUP:
    /* Undo scaling if necessary */
    if (scalea) {
        // converged eigenvalues, stored in wr[i+1:n] and wi[i+1:n] for i = INFO
        magma_int_t nval = n - (*info);
        magma_int_t ld = max( nval, 1 );
        lapackf77_slascl( "G", &izero, &izero, &cscale, &anrm, &nval, &ione, wr + (*info), &ld, &ierr );
        lapackf77_slascl( "G", &izero, &izero, &cscale, &anrm, &nval, &ione, wi + (*info), &ld, &ierr );
        if (*info > 0) {
            // first ilo columns were already upper triangular,
            // so the corresponding eigenvalues are also valid.
            nval = ilo - 1;
            lapackf77_slascl( "G", &izero, &izero, &cscale, &anrm, &nval, &ione, wr, &n, &ierr );
            lapackf77_slascl( "G", &izero, &izero, &cscale, &anrm, &nval, &ione, wi, &n, &ierr );
        }
    }

    #if defined(Version3)
    magma_free( dT );
    #endif
    #if defined(Version5)
    magma_free_cpu( T );
    #endif
    
    timer_stop( time_total );
    flops_stop( flop_total );
    timer_printf( "sgeev times n %5d, gehrd %7.3f, unghr %7.3f, hseqr %7.3f, trevc %7.3f, total %7.3f, sum %7.3f\n",
                  (int) n, time_gehrd, time_unghr, time_hseqr, time_trevc, time_total, time_sum );
    timer_printf( "sgeev flops n %5d, gehrd %7lld, unghr %7lld, hseqr %7lld, trevc %7lld, total %7lld, sum %7lld\n",
                  (int) n, flop_gehrd, flop_unghr, flop_hseqr, flop_trevc, flop_total, flop_sum );
    
    work[0] = magma_smake_lwork( optwrk );
    
    return *info;
} /* magma_sgeev */