address AbstractInterpreterGenerator::generate_slow_signature_handler() {
  address entry = __ pc();

  __ andr(esp, esp, -16);
  __ mov(c_rarg3, esp);
  // rmethod
  // rlocals
  // c_rarg3: first stack arg - wordSize

  // adjust sp
  __ sub(sp, c_rarg3, 18 * wordSize);
  __ str(lr, Address(__ pre(sp, -2 * wordSize)));
  __ call_VM(noreg,
             CAST_FROM_FN_PTR(address,
                              InterpreterRuntime::slow_signature_handler),
             rmethod, rlocals, c_rarg3);

  // r0: result handler

  // Stack layout:
  // rsp: return address           <- sp
  //      1 garbage
  //      8 integer args (if static first is unused)
  //      1 float/double identifiers
  //      8 double args
  //        stack args              <- esp
  //        garbage
  //        expression stack bottom
  //        bcp (NULL)
  //        ...

  // Restore LR
  __ ldr(lr, Address(__ post(sp, 2 * wordSize)));

  // Do FP first so we can use c_rarg3 as temp
  __ ldrw(c_rarg3, Address(sp, 9 * wordSize)); // float/double identifiers

  for (int i = 0; i < Argument::n_float_register_parameters_c; i++) {
    const FloatRegister r = as_FloatRegister(i);

    Label d, done;

    __ tbnz(c_rarg3, i, d);
    __ ldrs(r, Address(sp, (10 + i) * wordSize));
    __ b(done);
    __ bind(d);
    __ ldrd(r, Address(sp, (10 + i) * wordSize));
    __ bind(done);
  }

  // c_rarg0 contains the result from the call of
  // InterpreterRuntime::slow_signature_handler so we don't touch it
  // here.  It will be loaded with the JNIEnv* later.
  __ ldr(c_rarg1, Address(sp, 1 * wordSize));
  for (int i = c_rarg2->encoding(); i <= c_rarg7->encoding(); i += 2) {
    Register rm = as_Register(i), rn = as_Register(i+1);
    __ ldp(rm, rn, Address(sp, i * wordSize));
  }

  __ add(sp, sp, 18 * wordSize);
  __ ret(lr);

  return entry;
}
VtableStub* VtableStubs::create_vtable_stub(int vtable_index) {
  const int aarch64_code_length = VtableStub::pd_code_size_limit(true);
  VtableStub* s = new(aarch64_code_length) VtableStub(true, vtable_index);
  ResourceMark rm;
  CodeBuffer cb(s->entry_point(), aarch64_code_length);
  MacroAssembler* masm = new MacroAssembler(&cb);

#ifndef PRODUCT
  if (CountCompiledCalls) {
    __ lea(r19, ExternalAddress((address) SharedRuntime::nof_megamorphic_calls_addr()));
    __ incrementw(Address(r19));
  }
#endif

  // get receiver (need to skip return address on top of stack)
  assert(VtableStub::receiver_location() == j_rarg0->as_VMReg(), "receiver expected in j_rarg0");

  // get receiver klass
  address npe_addr = __ pc();
  __ load_klass(r19, j_rarg0);

#ifndef PRODUCT
  if (DebugVtables) {
    Label L;
    // check offset vs vtable length
    __ ldrw(rscratch1, Address(r19, Klass::vtable_length_offset()));
    __ cmpw(rscratch1, vtable_index * vtableEntry::size());
    __ br(Assembler::GT, L);
    __ enter();
    __ mov(r2, vtable_index);
    __ call_VM(noreg,
               CAST_FROM_FN_PTR(address, bad_compiled_vtable_index), j_rarg0, r2);
    __ leave();
    __ bind(L);
  }
#endif // PRODUCT

  __ lookup_virtual_method(r19, vtable_index, rmethod);

  if (DebugVtables) {
    Label L;
    __ cbz(rmethod, L);
    __ ldr(rscratch1, Address(rmethod, Method::from_compiled_offset()));
    __ cbnz(rscratch1, L);
    __ stop("Vtable entry is NULL");
    __ bind(L);
  }
  // r0: receiver klass
  // rmethod: Method*
  // r2: receiver
  address ame_addr = __ pc();
  __ ldr(rscratch1, Address(rmethod, Method::from_compiled_offset()));
  __ br(rscratch1);

  __ flush();

  if (PrintMiscellaneous && (WizardMode || Verbose)) {
    tty->print_cr("vtable #%d at " PTR_FORMAT "[%d] left over: %d",
                  vtable_index, p2i(s->entry_point()),
                  (int)(s->code_end() - s->entry_point()),
                  (int)(s->code_end() - __ pc()));
  }
  guarantee(__ pc() <= s->code_end(), "overflowed buffer");

  s->set_exception_points(npe_addr, ame_addr);
  return s;
}
address JNI_FastGetField::generate_fast_get_int_field0(BasicType type) {
  const char *name;
  switch (type) {
    case T_BOOLEAN: name = "jni_fast_GetBooleanField"; break;
    case T_BYTE:    name = "jni_fast_GetByteField";    break;
    case T_CHAR:    name = "jni_fast_GetCharField";    break;
    case T_SHORT:   name = "jni_fast_GetShortField";   break;
    case T_INT:     name = "jni_fast_GetIntField";     break;
    case T_LONG:    name = "jni_fast_GetLongField";    break;
    case T_FLOAT:   name = "jni_fast_GetFloatField";   break;
    case T_DOUBLE:  name = "jni_fast_GetDoubleField";  break;
    default:        ShouldNotReachHere();
  }
  ResourceMark rm;
  BufferBlob* blob = BufferBlob::create(name, BUFFER_SIZE);
  CodeBuffer cbuf(blob);
  MacroAssembler* masm = new MacroAssembler(&cbuf);
  address fast_entry = __ pc();

  Label slow;

  unsigned long offset;
  __ adrp(rcounter_addr,
	  SafepointSynchronize::safepoint_counter_addr(), offset);
  Address safepoint_counter_addr(rcounter_addr, offset);
  __ ldrw(rcounter, safepoint_counter_addr);
  __ andw(rscratch1, rcounter, 1);
  __ cbnzw(rscratch1, slow);
  __ eor(robj, c_rarg1, rcounter);
  __ eor(robj, robj, rcounter);               // obj, since
                                              // robj ^ rcounter ^ rcounter == robj
                                              // robj is address dependent on rcounter.
  __ ldr(robj, Address(robj, 0));             // *obj
  __ lsr(roffset, c_rarg2, 2);                // offset

  assert(count < LIST_CAPACITY, "LIST_CAPACITY too small");
  speculative_load_pclist[count] = __ pc();   // Used by the segfault handler
  switch (type) {
    case T_BOOLEAN: __ ldrb    (result, Address(robj, roffset)); break;
    case T_BYTE:    __ ldrsb   (result, Address(robj, roffset)); break;
    case T_CHAR:    __ ldrh    (result, Address(robj, roffset)); break;
    case T_SHORT:   __ ldrsh   (result, Address(robj, roffset)); break;
    case T_FLOAT:   __ ldrw    (result, Address(robj, roffset)); break;
    case T_INT:     __ ldrsw   (result, Address(robj, roffset)); break;
    case T_DOUBLE:
    case T_LONG:    __ ldr     (result, Address(robj, roffset)); break;
    default:        ShouldNotReachHere();
  }

  // counter_addr is address dependent on result.
  __ eor(rcounter_addr, rcounter_addr, result);
  __ eor(rcounter_addr, rcounter_addr, result);
  __ ldrw(rscratch1, safepoint_counter_addr);
  __ cmpw(rcounter, rscratch1);
  __ br (Assembler::NE, slow);

  switch (type) {
    case T_FLOAT:   __ fmovs(v0, result); break;
    case T_DOUBLE:  __ fmovd(v0, result); break;
    default:        __ mov(r0, result);   break;
  }
  __ ret(lr);

  slowcase_entry_pclist[count++] = __ pc();
  __ bind(slow);
  address slow_case_addr;
  switch (type) {
    case T_BOOLEAN: slow_case_addr = jni_GetBooleanField_addr(); break;
    case T_BYTE:    slow_case_addr = jni_GetByteField_addr();    break;
    case T_CHAR:    slow_case_addr = jni_GetCharField_addr();    break;
    case T_SHORT:   slow_case_addr = jni_GetShortField_addr();   break;
    case T_INT:     slow_case_addr = jni_GetIntField_addr();     break;
    case T_LONG:    slow_case_addr = jni_GetLongField_addr();    break;
    case T_FLOAT:   slow_case_addr = jni_GetFloatField_addr();   break;
    case T_DOUBLE:  slow_case_addr = jni_GetDoubleField_addr();  break;
    default:        ShouldNotReachHere();
  }

  {
    __ enter();
    __ lea(rscratch1, ExternalAddress(slow_case_addr));
    __ blr(rscratch1);
    __ maybe_isb();
    __ leave();
    __ ret(lr);
  }
  __ flush ();

  return fast_entry;
}
Example #4
0
static void SubstrateHookFunctionThumb(SubstrateProcessRef process, void *symbol, void *replace, void **result) {
    if (symbol == NULL)
        return;

    uint16_t *area(reinterpret_cast<uint16_t *>(symbol));

    unsigned align((reinterpret_cast<uintptr_t>(area) & 0x2) == 0 ? 0 : 1);
    uint16_t *thumb(area + align);

    uint32_t *arm(reinterpret_cast<uint32_t *>(thumb + 2));
    uint16_t *trail(reinterpret_cast<uint16_t *>(arm + 2));

    if (
        (align == 0 || area[0] == T$nop) &&
        thumb[0] == T$bx(A$pc) &&
        thumb[1] == T$nop &&
        arm[0] == A$ldr_rd_$rn_im$(A$pc, A$pc, 4 - 8)
    ) {
        if (result != NULL)
            *result = reinterpret_cast<void *>(arm[1]);

        SubstrateHookMemory code(process, arm + 1, sizeof(uint32_t) * 1);

        arm[1] = reinterpret_cast<uint32_t>(replace);

        return;
    }

    size_t required((trail - area) * sizeof(uint16_t));

    size_t used(0);
    while (used < required)
        used += MSGetInstructionWidthThumb(reinterpret_cast<uint8_t *>(area) + used);
    used = (used + sizeof(uint16_t) - 1) / sizeof(uint16_t) * sizeof(uint16_t);

    size_t blank((used - required) / sizeof(uint16_t));

    uint16_t backup[used / sizeof(uint16_t)];
    memcpy(backup, area, used);

    if (MSDebug) {
        char name[16];
        sprintf(name, "%p", area);
        MSLogHexEx(area, used + sizeof(uint16_t), 2, name);
    }

    if (result != NULL) {

    size_t length(used);
    for (unsigned offset(0); offset != used / sizeof(uint16_t); ++offset)
        if (T$pcrel$ldr(backup[offset]))
            length += 3 * sizeof(uint16_t);
        else if (T$pcrel$b(backup[offset]))
            length += 6 * sizeof(uint16_t);
        else if (T2$pcrel$b(backup + offset)) {
            length += 5 * sizeof(uint16_t);
            ++offset;
        } else if (T$pcrel$bl(backup + offset)) {
            length += 5 * sizeof(uint16_t);
            ++offset;
        } else if (T$pcrel$cbz(backup[offset])) {
            length += 16 * sizeof(uint16_t);
        } else if (T$pcrel$ldrw(backup[offset])) {
            length += 4 * sizeof(uint16_t);
            ++offset;
        } else if (T$pcrel$add(backup[offset]))
            length += 6 * sizeof(uint16_t);
        else if (T$32bit$i(backup[offset]))
            ++offset;

    unsigned pad((length & 0x2) == 0 ? 0 : 1);
    length += (pad + 2) * sizeof(uint16_t) + 2 * sizeof(uint32_t);

    uint16_t *buffer(reinterpret_cast<uint16_t *>(mmap(
        NULL, length, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0
    )));

    if (buffer == MAP_FAILED) {
        MSLog(MSLogLevelError, "MS:Error:mmap() = %d", errno);
        *result = NULL;
        return;
    }

    if (false) fail: {
        munmap(buffer, length);
        *result = NULL;
        return;
    }

    size_t start(pad), end(length / sizeof(uint16_t));
    uint32_t *trailer(reinterpret_cast<uint32_t *>(buffer + end));
    for (unsigned offset(0); offset != used / sizeof(uint16_t); ++offset) {
        if (T$pcrel$ldr(backup[offset])) {
            union {
                uint16_t value;

                struct {
                    uint16_t immediate : 8;
                    uint16_t rd : 3;
                    uint16_t : 5;
                };
            } bits = {backup[offset+0]};

            buffer[start+0] = T$ldr_rd_$pc_im_4$(bits.rd, T$Label(start+0, end-2) / 4);
            buffer[start+1] = T$ldr_rd_$rn_im_4$(bits.rd, bits.rd, 0);

            // XXX: this code "works", but is "wrong": the mechanism is more complex than this
            *--trailer = ((reinterpret_cast<uint32_t>(area + offset) + 4) & ~0x2) + bits.immediate * 4;

            start += 2;
            end -= 2;
        } else if (T$pcrel$b(backup[offset])) {
            union {
                uint16_t value;

                struct {
                    uint16_t imm8 : 8;
                    uint16_t cond : 4;
                    uint16_t /*1101*/ : 4;
                };
            } bits = {backup[offset+0]};

            intptr_t jump(bits.imm8 << 1);
            jump |= 1;
            jump <<= 23;
            jump >>= 23;

            buffer[start+0] = T$b$_$im(bits.cond, (end-6 - (start+0)) * 2 - 4);

            *--trailer = reinterpret_cast<uint32_t>(area + offset) + 4 + jump;
            *--trailer = A$ldr_rd_$rn_im$(A$pc, A$pc, 4 - 8);
            *--trailer = T$nop << 16 | T$bx(A$pc);

            start += 1;
            end -= 6;
        } else if (T2$pcrel$b(backup + offset)) {
            union {
                uint16_t value;

                struct {
                    uint16_t imm6 : 6;
                    uint16_t cond : 4;
                    uint16_t s : 1;
                    uint16_t : 5;
                };
            } bits = {backup[offset+0]};

            union {
                uint16_t value;

                struct {
                    uint16_t imm11 : 11;
                    uint16_t j2 : 1;
                    uint16_t a : 1;
                    uint16_t j1 : 1;
                    uint16_t : 2;
                };
            } exts = {backup[offset+1]};

            intptr_t jump(1);
            jump |= exts.imm11 << 1;
            jump |= bits.imm6 << 12;

            if (exts.a) {
                jump |= bits.s << 24;
                jump |= (~(bits.s ^ exts.j1) & 0x1) << 23;
                jump |= (~(bits.s ^ exts.j2) & 0x1) << 22;
                jump |= bits.cond << 18;
                jump <<= 7;
                jump >>= 7;
            } else {