Example #1
0
void USR_KEYBRD_ProcessData(uint8_t pbuf) {
    led_state(4, 1);
    USB_OTG_BSP_mDelay(50);
    led_state(4, 0);
    //lcd_print_strn((char*)&pbuf, 1);
    usb_keyboard_key = pbuf;
}
Example #2
0
void board_autoled_off(int led)
{
  switch (led)
    {
    case LED_STARTED:
      led_state(LED_OFF, BOARD_LED1_BIT);
      break;

    case LED_HEAPALLOCATE:
      led_state(LED_OFF, BOARD_LED2_BIT);
      break;

    case LED_IRQSENABLED:
      led_state(LED_OFF, BOARD_LED3_BIT);
      break;

    case LED_STACKCREATED:
    case LED_INIRQ:
    case LED_SIGNAL:
    case LED_ASSERTION:
    case LED_PANIC:
      led_state(LED_OFF,  BOARD_LED4_BIT);
      break;
    }
}
Example #3
0
static void make_flash_fs()
{
    FIL fp;
    UINT n;

    led_state(LED_RED, 1);

    if (f_mkfs("0:", 0, 0) != FR_OK) {
        __fatal_error("could not create LFS");
    }

    // create default main.py
    f_open(&fp, "main.py", FA_WRITE | FA_CREATE_ALWAYS);
    f_write(&fp, fresh_main_py, sizeof(fresh_main_py) - 1 /* don't count null terminator */, &n);
    f_close(&fp);

    // create .inf driver file
    f_open(&fp, "pybcdc.inf", FA_WRITE | FA_CREATE_ALWAYS);
    f_write(&fp, fresh_pybcdc_inf, sizeof(fresh_pybcdc_inf) - 1 /* don't count null terminator */, &n);
    f_close(&fp);

    // create readme file
    f_open(&fp, "README.txt", FA_WRITE | FA_CREATE_ALWAYS);
    f_write(&fp, fresh_readme_txt, sizeof(fresh_readme_txt) - 1 /* don't count null terminator */, &n);
    f_close(&fp);

    led_state(LED_RED, 0);
}
Example #4
0
void flash_error(int n) {
    for (int i = 0; i < n; i++) {
        led_state(LED_RED, 0);
        HAL_Delay(100);
        led_state(LED_RED, 1);
        HAL_Delay(100);
    }
    led_state(LED_RED, 0);
}
Example #5
0
File: main.c Project: godda/openmv
void __fatal_error(const char *msg) {
    printf("%s\n", msg);
    while (1) {
        led_state(LED_RED, 1);
        systick_sleep(250);
        led_state(LED_RED, 0);
        systick_sleep(250);
    }
}
Example #6
0
void fatality(void) {
    led_state(PYB_LED_R1, 1);
    led_state(PYB_LED_G1, 1);
    led_state(PYB_LED_R2, 1);
    led_state(PYB_LED_G2, 1);
    for (;;) {
        flash_error(1);
    }
}
Example #7
0
void board_userled_all(uint8_t ledset)
{
#ifdef CONFIG_ARCH_LEDS
  led_state(LED_ON, ledset & ~BOARD_LED4_BIT);
  led_state(LED_OFF, ~(ledset | BOARD_LED4_BIT));
#else
  led_state(LED_ON, ledset);
  led_state(led_OFF, ~ledset);
#endif
}
Example #8
0
void flash_error(int n) {
    for (int i = 0; i < n; i++) {
        led_state(PYB_LED_R1, 1);
        led_state(PYB_LED_R2, 0);
        sys_tick_delay_ms(250);
        led_state(PYB_LED_R1, 0);
        led_state(PYB_LED_R2, 1);
        sys_tick_delay_ms(250);
    }
    led_state(PYB_LED_R2, 0);
}
Example #9
0
void flash_error(int n) {
    for (int i = 0; i < n; i++) {
        led_state(PYB_LED_R1, 1);
        led_state(PYB_LED_R2, 0);
        HAL_Delay(250);
        led_state(PYB_LED_R1, 0);
        led_state(PYB_LED_R2, 1);
        HAL_Delay(250);
    }
    led_state(PYB_LED_R2, 0);
}
Example #10
0
void flash_error(int n) {
    for (int i = 0; i < n; i++) {
        led_state(PYB_LED_RED, 1);
        led_state(PYB_LED_GREEN, 0);
        mp_hal_delay_ms(250);
        led_state(PYB_LED_RED, 0);
        led_state(PYB_LED_GREEN, 1);
        mp_hal_delay_ms(250);
    }
    led_state(PYB_LED_GREEN, 0);
}
Example #11
0
void mpxlcol_load (FORM* form) 
{	
	//Wenn noch kein Colorset gespeichert wurde, wird das Default Colorset
	//Abgespeichert. Sonst wird das COlorset aus dem Speicher geladen.
 	if((BFS_LoadFile(BFS_ID_RGB_Colors, sizeof(struct Colorset), (unsigned char*) &colors))	
 		!= sizeof(struct Colorset)) 
 	{
 		colors = default_Colorset;
 		BFS_SaveFile(BFS_ID_RGB_Colors, sizeof(struct Colorset), (unsigned char*) &colors);
 		msgbox(50,BC_OKOnly | BC_DefaultButton1,"Defaults geladen");
 	}

	pointer = 0;
	//Controls mit den Werten im Speicher initialisieren.
	memcpy(((TXTBOX*)form->controls[3])->text,colors.Name[pointer],20);
	((TRACKBAR*)form->controls[4])->actval = colors.color[pointer].Red;
	((TRACKBAR*)form->controls[5])->actval = colors.color[pointer].Green;
	((TRACKBAR*)form->controls[6])->actval = colors.color[pointer].Blue;
	//und zeichnen
	control_draw(form->controls[3], 0);
	control_draw(form->controls[4], 0);
	control_draw(form->controls[5], 0);
	control_draw(form->controls[6], 0);	

	//setzen der ersten Farbe im Speicher
	cc1100_init();
	setRGB(colors.color[0]);
	//Einschalten des LED-Stacks
	led_state(mpxl_state_on);
}
Example #12
0
/*************************************************************************
* Description: Toggle the state of the setup LED
* Returns: none
* Notes: none
*************************************************************************/
void led_toggle(
    uint8_t index)
{
    if (led_state(index)) {
        led_off(index);
    } else {
        led_on(index);
    }
}
Example #13
0
void NORETURN __fatal_error(const char *msg) {
    for (volatile uint delay = 0; delay < 10000000; delay++) {
    }
    led_state(1, 1);
    led_state(2, 1);
    led_state(3, 1);
    led_state(4, 1);
    mp_hal_stdout_tx_strn("\nFATAL ERROR:\n", 14);
    mp_hal_stdout_tx_strn(msg, strlen(msg));
    for (uint i = 0;;) {
        led_toggle(((i++) & 3) + 1);
        for (volatile uint delay = 0; delay < 10000000; delay++) {
        }
        if (i >= 16) {
            // to conserve power
            __WFI();
        }
    }
}
Example #14
0
interrupt(USCI_A1_VECTOR) USCI_A1_ISR(void)
{
	if(UCA1IFG & UCRXIFG)
	{
		buff_int[buff_count++] = (char)(UCA1RXBUF);
		buff_count %= BUFF_SIZE;
		RX_FLAG = 1;
		led_state(1,ON);
	}
}
Example #15
0
int main(int argc, char **argv) {
    // init the CPU and the peripherals
    cpu_init();
    led_init();
    switch_init();
    uart_init();

soft_reset:

    // flash green led for 150ms to indicate boot
    led_state(1, 0);
    led_state(2, 0);
    led_state(3, 1);
    mp_hal_delay_ms(150);
    led_state(3, 0);

    // init MicroPython runtime
    int stack_dummy;
    MP_STATE_THREAD(stack_top) = (char*)&stack_dummy;
    gc_init(heap, heap + sizeof(heap));
    mp_init();
    mp_hal_init();
    readline_init0();

    // REPL loop
    for (;;) {
        if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) {
            if (pyexec_raw_repl() != 0) {
                break;
            }
        } else {
            if (pyexec_friendly_repl() != 0) {
                break;
            }
        }
    }

    printf("PYB: soft reboot\n");
    mp_deinit();
    goto soft_reset;
}
Example #16
0
void __fatal_error(const char *msg) {
    for (volatile uint delay = 0; delay < 10000000; delay++) {
    }
    led_state(1, 1);
    led_state(2, 1);
    led_state(3, 1);
    led_state(4, 1);
    stdout_tx_strn("\nFATAL ERROR:\n", 14);
    stdout_tx_strn(msg, strlen(msg));
#if 0 && MICROPY_HW_HAS_LCD
    lcd_print_strn("\nFATAL ERROR:\n", 14);
    lcd_print_strn(msg, strlen(msg));
#endif
    for (uint i = 0;;) {
        led_toggle(((i++) & 3) + 1);
        for (volatile uint delay = 0; delay < 10000000; delay++) {
        }
        if (i >= 16) {
            // to conserve power
            __WFI();
        }
    }
}
Example #17
0
void board_userled(int led, bool ledon)
{
  unsigned int ledbit;

#ifndef CONFIG_ARCH_LEDS
  if (led == BOARD_LED4)
    {
      return;
    }
#endif

  ledbit = 1 << led;
  led_state(ledon, ledbit);
}
Example #18
0
static uint8_t *flash_cache_get_addr_for_write(uint32_t flash_addr) {
    uint32_t flash_sector_start;
    uint32_t flash_sector_size;
    uint32_t flash_sector_id = flash_get_sector_info(flash_addr, &flash_sector_start, &flash_sector_size);
    if (flash_cache_sector_id != flash_sector_id) {
        flash_cache_flush();
        memcpy((void*)CACHE_MEM_START_ADDR, (const void*)flash_sector_start, flash_sector_size);
        flash_cache_sector_id = flash_sector_id;
        flash_cache_sector_start = flash_sector_start;
        flash_cache_sector_size = flash_sector_size;
    }
    flash_flags |= FLASH_FLAG_DIRTY;
    led_state(PYB_LED_STORAGE1, 1); // indicate a dirty cache with LED on
    flash_tick_counter_last_write = HAL_GetTick();
    return (uint8_t*)CACHE_MEM_START_ADDR + flash_addr - flash_sector_start;
}
Example #19
0
void storage_irq_handler(void) {
    #if USE_INTERNAL

    if (!(flash_flags & FLASH_FLAG_DIRTY)) {
        return;
    }

    // This code uses interrupts to erase the flash
    /*
    if (flash_erase_state == 0) {
        flash_erase_it(flash_cache_sector_start, (const uint32_t*)CACHE_MEM_START_ADDR, flash_cache_sector_size / 4);
        flash_erase_state = 1;
        return;
    }

    if (flash_erase_state == 1) {
        // wait for erase
        // TODO add timeout
        #define flash_erase_done() (__HAL_FLASH_GET_FLAG(FLASH_FLAG_BSY) == RESET)
        if (!flash_erase_done()) {
            return;
        }
        flash_erase_state = 2;
    }
    */

    // This code erases the flash directly, waiting for it to finish
    if (!(flash_flags & FLASH_FLAG_ERASED)) {
        flash_erase(flash_cache_sector_start, (const uint32_t*)CACHE_MEM_START_ADDR, flash_cache_sector_size / 4);
        flash_flags |= FLASH_FLAG_ERASED;
        return;
    }

    // If not a forced write, wait at least 5 seconds after last write to flush
    // On file close and flash unmount we get a forced write, so we can afford to wait a while
    if ((flash_flags & FLASH_FLAG_FORCE_WRITE) || sys_tick_has_passed(flash_tick_counter_last_write, 5000)) {
        // sync the cache RAM buffer by writing it to the flash page
        flash_write(flash_cache_sector_start, (const uint32_t*)CACHE_MEM_START_ADDR, flash_cache_sector_size / 4);
        // clear the flash flags now that we have a clean cache
        flash_flags = 0;
        // indicate a clean cache with LED off
        led_state(PYB_LED_RED, 0);
    }

    #endif
}
Example #20
0
static uint8_t *flash_cache_get_addr_for_write(uint32_t flash_addr) {
    uint32_t flash_sector_start;
    uint32_t flash_sector_size;
    uint32_t flash_sector_id = flash_get_sector_info(flash_addr, &flash_sector_start, &flash_sector_size);
    if (flash_sector_size > FLASH_SECTOR_SIZE_MAX) {
        flash_sector_size = FLASH_SECTOR_SIZE_MAX;
    }
    if (flash_cache_sector_id != flash_sector_id) {
        flash_bdev_ioctl(BDEV_IOCTL_SYNC, 0);
        memcpy((void*)CACHE_MEM_START_ADDR, (const void*)flash_sector_start, flash_sector_size);
        flash_cache_sector_id = flash_sector_id;
        flash_cache_sector_start = flash_sector_start;
        flash_cache_sector_size = flash_sector_size;
    }
    flash_flags |= FLASH_FLAG_DIRTY;
    led_state(PYB_LED_RED, 1); // indicate a dirty cache with LED on
    flash_tick_counter_last_write = HAL_GetTick();
    return (uint8_t*)CACHE_MEM_START_ADDR + flash_addr - flash_sector_start;
}
Example #21
0
void sWlanCallback(long lEventType, char * data, unsigned char length)
{
    switch (lEventType) {
        case HCI_EVNT_WLAN_UNSOL_CONNECT:
            wlan_connected = 1;
            break;
        case HCI_EVNT_WLAN_UNSOL_DISCONNECT:
            /* Link down */
            wlan_connected = 0;
            led_state(LED_RED, 1);
            break;
        case HCI_EVNT_WLAN_UNSOL_DHCP:
            ip_obtained = 1;
            break;
        case HCI_EVNT_BSD_TCP_CLOSE_WAIT:
            // mark socket for closure
            fd_state |= (1<<((uint8_t)data[0]));
            break;
    }
}
Example #22
0
/// \method off()
/// Turn the LED off.
mp_obj_t led_obj_off(mp_obj_t self_in) {
    board_led_obj_t *self = self_in;
    led_state(self, 0);
    return mp_const_none;
}
Example #23
0
void fatality(void) {
    led_state(PYB_LED_R1, 1);
    led_state(PYB_LED_G1, 1);
    led_state(PYB_LED_R2, 1);
    led_state(PYB_LED_G2, 1);
}
Example #24
0
mp_obj_t led_obj_off(mp_obj_t self_in) {
    pyb_led_obj_t *self = self_in;
    led_state(self->led_id, 0);
    return mp_const_none;
}
Example #25
0
void USR_KEYBRD_ProcessData(uint8_t pbuf) {
    led_state(4, 1);
    USB_OTG_BSP_mDelay(50);
    led_state(4, 0);
    usb_keyboard_key = pbuf;
}
Example #26
0
void USR_KEYBRD_Init(void) {
    led_state(4, 1);
    USB_OTG_BSP_mDelay(100);
    led_state(4, 0);
}
Example #27
0
void USR_MOUSE_ProcessData(HID_MOUSE_Data_TypeDef *data) {
    led_state(4, 1);
    USB_OTG_BSP_mDelay(50);
    led_state(4, 0);
}
Example #28
0
void USR_MOUSE_Init(void) {
    led_state(4, 1);
    USB_OTG_BSP_mDelay(100);
    led_state(4, 0);
}
Example #29
0
int main(void) {
    // TODO disable JTAG

    // update the SystemCoreClock variable
    SystemCoreClockUpdate();

    // set interrupt priority config to use all 4 bits for pre-empting
    NVIC_PriorityGroupConfig(NVIC_PriorityGroup_4);

    // enable the CCM RAM and the GPIO's
    RCC->AHB1ENR |= RCC_AHB1ENR_CCMDATARAMEN | RCC_AHB1ENR_GPIOAEN | RCC_AHB1ENR_GPIOBEN | RCC_AHB1ENR_GPIOCEN | RCC_AHB1ENR_GPIODEN;

#if MICROPY_HW_HAS_SDCARD
    {
        // configure SDIO pins to be high to start with (apparently makes it more robust)
        // FIXME this is not making them high, it just makes them outputs...
        GPIO_InitTypeDef GPIO_InitStructure;
        GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_11 | GPIO_Pin_12;
        GPIO_InitStructure.GPIO_Speed = GPIO_Speed_25MHz;
        GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
        GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
        GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
        GPIO_Init(GPIOC, &GPIO_InitStructure);

        // Configure PD.02 CMD line
        GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
        GPIO_Init(GPIOD, &GPIO_InitStructure);
    }
#endif
#if defined(NETDUINO_PLUS_2)
    {
        GPIO_InitTypeDef GPIO_InitStructure;
        GPIO_InitStructure.GPIO_Speed = GPIO_Speed_25MHz;
        GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
        GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
        GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;

#if MICROPY_HW_HAS_SDCARD
        // Turn on the power enable for the sdcard (PB1)
        GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;
        GPIO_Init(GPIOB, &GPIO_InitStructure);
        GPIO_WriteBit(GPIOB, GPIO_Pin_1, Bit_SET);
#endif

        // Turn on the power for the 5V on the expansion header (PB2)
        GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
        GPIO_Init(GPIOB, &GPIO_InitStructure);
        GPIO_WriteBit(GPIOB, GPIO_Pin_2, Bit_SET);
    }
#endif

    // basic sub-system init
    sys_tick_init();
    pendsv_init();
    led_init();

#if MICROPY_HW_ENABLE_RTC
    rtc_init();
#endif

    // turn on LED to indicate bootup
    led_state(PYB_LED_G1, 1);

    // more sub-system init
#if MICROPY_HW_HAS_SDCARD
    sdcard_init();
#endif
    storage_init();

    // uncomment these 2 lines if you want REPL on USART_6 (or another usart) as well as on USB VCP
    //pyb_usart_global_debug = PYB_USART_YA;
    //usart_init(pyb_usart_global_debug, 115200);

    int first_soft_reset = true;

soft_reset:

    // GC init
    gc_init(&_heap_start, &_heap_end);

    // Micro Python init
    qstr_init();
    mp_init();
    mp_obj_list_init(mp_sys_path, 0);
    mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_0_colon__slash_));
    mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_0_colon__slash_lib));
    mp_obj_list_init(mp_sys_argv, 0);

    exti_init();

#if MICROPY_HW_HAS_SWITCH
    switch_init();
#endif

#if MICROPY_HW_HAS_LCD
    // LCD init (just creates class, init hardware by calling LCD())
    lcd_init();
#endif

#if MICROPY_HW_ENABLE_SERVO
    // servo
    servo_init();
#endif

#if MICROPY_HW_ENABLE_TIMER
    // timer
    timer_init();
#endif

#if MICROPY_HW_ENABLE_RNG
    // RNG
    RCC_AHB2PeriphClockCmd(RCC_AHB2Periph_RNG, ENABLE);
    RNG_Cmd(ENABLE);
#endif

    pin_map_init();

    // add some functions to the builtin Python namespace
    mp_store_name(MP_QSTR_help, mp_make_function_n(0, pyb_help));
    mp_store_name(MP_QSTR_open, mp_make_function_n(2, pyb_io_open));

    // load the pyb module
    mp_module_register(MP_QSTR_pyb, (mp_obj_t)&pyb_module);

    // check if user switch held (initiates reset of filesystem)
    bool reset_filesystem = false;
#if MICROPY_HW_HAS_SWITCH
    if (switch_get()) {
        reset_filesystem = true;
        for (int i = 0; i < 50; i++) {
            if (!switch_get()) {
                reset_filesystem = false;
                break;
            }
            sys_tick_delay_ms(10);
        }
    }
#endif
    // local filesystem init
    {
        // try to mount the flash
        FRESULT res = f_mount(&fatfs0, "0:", 1);
        if (!reset_filesystem && res == FR_OK) {
            // mount sucessful
        } else if (reset_filesystem || res == FR_NO_FILESYSTEM) {
            // no filesystem, so create a fresh one
            // TODO doesn't seem to work correctly when reset_filesystem is true...

            // LED on to indicate creation of LFS
            led_state(PYB_LED_R2, 1);
            uint32_t stc = sys_tick_counter;

            res = f_mkfs("0:", 0, 0);
            if (res == FR_OK) {
                // success creating fresh LFS
            } else {
                __fatal_error("could not create LFS");
            }

            // create src directory
            res = f_mkdir("0:/src");
            // ignore result from mkdir

            // create empty main.py
            FIL fp;
            f_open(&fp, "0:/src/main.py", FA_WRITE | FA_CREATE_ALWAYS);
            UINT n;
            f_write(&fp, fresh_main_py, sizeof(fresh_main_py) - 1 /* don't count null terminator */, &n);
            // TODO check we could write n bytes
            f_close(&fp);

            // keep LED on for at least 200ms
            sys_tick_wait_at_least(stc, 200);
            led_state(PYB_LED_R2, 0);
        } else {
            __fatal_error("could not access LFS");
        }
    }

    // make sure we have a /boot.py
    {
        FILINFO fno;
        FRESULT res = f_stat("0:/boot.py", &fno);
        if (res == FR_OK) {
            if (fno.fattrib & AM_DIR) {
                // exists as a directory
                // TODO handle this case
                // see http://elm-chan.org/fsw/ff/img/app2.c for a "rm -rf" implementation
            } else {
                // exists as a file, good!
            }
        } else {
            // doesn't exist, create fresh file

            // LED on to indicate creation of boot.py
            led_state(PYB_LED_R2, 1);
            uint32_t stc = sys_tick_counter;

            FIL fp;
            f_open(&fp, "0:/boot.py", FA_WRITE | FA_CREATE_ALWAYS);
            UINT n;
            f_write(&fp, fresh_boot_py, sizeof(fresh_boot_py) - 1 /* don't count null terminator */, &n);
            // TODO check we could write n bytes
            f_close(&fp);

            // keep LED on for at least 200ms
            sys_tick_wait_at_least(stc, 200);
            led_state(PYB_LED_R2, 0);
        }
    }

    // run /boot.py
    if (!pyexec_file("0:/boot.py")) {
        flash_error(4);
    }

    if (first_soft_reset) {
#if MICROPY_HW_HAS_MMA7660
        // MMA accel: init and reset address to zero
        accel_init();
#endif
    }

    // turn boot-up LED off
    led_state(PYB_LED_G1, 0);

#if MICROPY_HW_HAS_SDCARD
    // if an SD card is present then mount it on 1:/
    if (sdcard_is_present()) {
        FRESULT res = f_mount(&fatfs1, "1:", 1);
        if (res != FR_OK) {
            printf("[SD] could not mount SD card\n");
        } else {
            if (first_soft_reset) {
                // use SD card as medium for the USB MSD
                usbd_storage_select_medium(USBD_STORAGE_MEDIUM_SDCARD);
            }
        }
    }
#endif

#ifdef USE_HOST_MODE
    // USB host
    pyb_usb_host_init();
#elif defined(USE_DEVICE_MODE)
    // USB device
    pyb_usb_dev_init(PYB_USB_DEV_VCP_MSC);
#endif

    // run main script
    {
        vstr_t *vstr = vstr_new();
        vstr_add_str(vstr, "0:/");
        if (pyb_config_source_dir == MP_OBJ_NULL) {
            vstr_add_str(vstr, "src");
        } else {
            vstr_add_str(vstr, mp_obj_str_get_str(pyb_config_source_dir));
        }
        vstr_add_char(vstr, '/');
        if (pyb_config_main == MP_OBJ_NULL) {
            vstr_add_str(vstr, "main.py");
        } else {
            vstr_add_str(vstr, mp_obj_str_get_str(pyb_config_main));
        }
        if (!pyexec_file(vstr_str(vstr))) {
            flash_error(3);
        }
        vstr_free(vstr);
    }


#if MICROPY_HW_HAS_MMA7660
    // HID example
    if (0) {
        uint8_t data[4];
        data[0] = 0;
        data[1] = 1;
        data[2] = -2;
        data[3] = 0;
        for (;;) {
        #if MICROPY_HW_HAS_SWITCH
            if (switch_get()) {
                data[0] = 0x01; // 0x04 is middle, 0x02 is right
            } else {
                data[0] = 0x00;
            }
        #else
            data[0] = 0x00;
        #endif
            accel_start(0x4c /* ACCEL_ADDR */, 1);
            accel_send_byte(0);
            accel_restart(0x4c /* ACCEL_ADDR */, 0);
            for (int i = 0; i <= 1; i++) {
                int v = accel_read_ack() & 0x3f;
                if (v & 0x20) {
                    v |= ~0x1f;
                }
                data[1 + i] = v;
            }
            accel_read_nack();
            usb_hid_send_report(data);
            sys_tick_delay_ms(15);
        }
    }
#endif

#if MICROPY_HW_HAS_WLAN
    // wifi
    pyb_wlan_init();
    pyb_wlan_start();
#endif

    pyexec_repl();

    printf("PYB: sync filesystems\n");
    storage_flush();

    printf("PYB: soft reboot\n");

    first_soft_reset = false;
    goto soft_reset;
}
Example #30
0
int main(void)
{
    // Stack limit should be less than real stack size, so we
    // had chance to recover from limit hit.
    mp_stack_set_limit((char*)&_ram_end - (char*)&_heap_end - 1024);

    /* STM32F4xx HAL library initialization:
       - Configure the Flash prefetch, instruction and Data caches
       - Configure the Systick to generate an interrupt each 1 msec
       - Set NVIC Group Priority to 4
       - Global MSP (MCU Support Package) initialization
    */
    HAL_Init();

    // basic sub-system init
    pendsv_init();
    timer_tim3_init();
    led_init();

soft_reset:
    // check if user switch held to select the reset mode
    led_state(LED_RED, 1);
    led_state(LED_GREEN, 1);
    led_state(LED_BLUE, 1);

#if MICROPY_HW_ENABLE_RTC
    rtc_init();
#endif

    // GC init
    gc_init(&_heap_start, &_heap_end);

    // Micro Python init
    mp_init();
    mp_obj_list_init(mp_sys_path, 0);
    mp_obj_list_init(mp_sys_argv, 0);

    readline_init0();
    pin_init0();
    extint_init0();
    timer_init0();
    rng_init0();
    i2c_init0();
    spi_init0();
    uart_init0();
    pyb_usb_init0();

    usbdbg_init();

    if (sensor_init() != 0) {
        __fatal_error("Failed to init sensor");
    }

    /* Export functions to the global python namespace */
    mp_store_global(qstr_from_str("randint"),           (mp_obj_t)&py_randint_obj);
    mp_store_global(qstr_from_str("cpu_freq"),          (mp_obj_t)&py_cpu_freq_obj);
    mp_store_global(qstr_from_str("Image"),             (mp_obj_t)&py_image_load_image_obj);
    mp_store_global(qstr_from_str("HaarCascade"),       (mp_obj_t)&py_image_load_cascade_obj);
    mp_store_global(qstr_from_str("FreakDesc"),         (mp_obj_t)&py_image_load_descriptor_obj);
    mp_store_global(qstr_from_str("FreakDescSave"),     (mp_obj_t)&py_image_save_descriptor_obj);
    mp_store_global(qstr_from_str("LBPDesc"),           (mp_obj_t)&py_image_load_lbp_obj);
    mp_store_global(qstr_from_str("vcp_is_connected"),  (mp_obj_t)&py_vcp_is_connected_obj);

    if (sdcard_is_present()) {
        sdcard_init();
        FRESULT res = f_mount(&fatfs, "1:", 1);
        if (res != FR_OK) {
            __fatal_error("could not mount SD\n");
        }
        // Set CWD and USB medium to SD
        f_chdrive("1:");
        pyb_usb_storage_medium = PYB_USB_STORAGE_MEDIUM_SDCARD;
    } else {
        storage_init();
        // try to mount the flash
        FRESULT res = f_mount(&fatfs, "0:", 1);
        if (res == FR_NO_FILESYSTEM) {
            // create a fresh fs
            make_flash_fs();
        } else if (res != FR_OK) {
            __fatal_error("could not access LFS\n");
        }

        // Set CWD and USB medium to flash
        f_chdrive("0:");
        pyb_usb_storage_medium = PYB_USB_STORAGE_MEDIUM_FLASH;
    }

    // turn boot-up LEDs off
    led_state(LED_RED, 0);
    led_state(LED_GREEN, 0);
    led_state(LED_BLUE, 0);

    // init USB device to default setting if it was not already configured
    if (!(pyb_usb_flags & PYB_USB_FLAG_USB_MODE_CALLED)) {
        pyb_usb_dev_init(USBD_VID, USBD_PID_CDC_MSC, USBD_MODE_CDC_MSC, NULL);
    }

    // Run the main script from the current directory.
    FRESULT res = f_stat("main.py", NULL);
    if (res == FR_OK) {
        if (!pyexec_file("main.py")) {
            nlr_buf_t nlr;
            if (nlr_push(&nlr) == 0) {
                flash_error(3);
                nlr_pop();
            }
        }
    }

    // Enter REPL
    nlr_buf_t nlr;
    for (;;) {
        if (nlr_push(&nlr) == 0) {
            while (usbdbg_script_ready()) {
                nlr_buf_t nlr;
                vstr_t *script_buf = usbdbg_get_script();
                // clear script flag
                usbdbg_clr_script();

                // execute the script
                if (nlr_push(&nlr) == 0) {
                    pyexec_push_scope();

                    // parse and compile script
                    mp_lexer_t *lex = mp_lexer_new_from_str_len(MP_QSTR__lt_stdin_gt_,
                            vstr_str(script_buf), vstr_len(script_buf), 0);
                    mp_parse_node_t pn = mp_parse(lex, MP_PARSE_FILE_INPUT);
                    mp_obj_t script = mp_compile(pn, lex->source_name, MP_EMIT_OPT_NONE, false);

                    // execute the script
                    mp_call_function_0(script);
                    nlr_pop();
                } else {
                    mp_obj_print_exception(&mp_plat_print, (mp_obj_t)nlr.ret_val);
                }
                pyexec_pop_scope();
            }

            // clear script flag
            usbdbg_clr_script();

            // no script run REPL
            pyexec_friendly_repl();

            nlr_pop();
        }

    }

    printf("PYB: sync filesystems\n");
    storage_flush();

    printf("PYB: soft reboot\n");

    goto soft_reset;
}