Example #1
0
	static int lua_loadfile(lua_State *L, const std::string& fname, const std::string& relativename)
	{
		lua_filestream lfs(fname);
		//lua uses '@' to know that this is a file (as opposed to something loaded via loadstring )
		std::string chunkname = '@' + relativename;
		LOG_LUA << "starting to read from " << fname << "\n";
		return  lua_load(L, &lua_filestream::lua_read_data, &lfs, chunkname.c_str(), "t");
	}
address CppInterpreterGenerator::generate_stack_to_native_abi_converter(
    BasicType type)
{
  const Register stack = r5;

  address start = __ pc();

  switch (type) {
  case T_VOID:
    break;

  case T_BOOLEAN:
  case T_CHAR:
  case T_BYTE:
  case T_SHORT:
  case T_INT:
    __ load (stack, STATE(_stack));
    __ lwa (r3, Address(stack, wordSize));
    break;

  case T_LONG:
    __ load (stack, STATE(_stack));
    __ load (r3, Address(stack, wordSize));
#ifdef PPC32
    __ load (r4, Address(stack, wordSize * 2));
#endif
    break;

  case T_FLOAT:
    __ load (stack, STATE(_stack));
    __ lfs (f1, Address(stack, wordSize));
    break;

  case T_DOUBLE:
    __ load (stack, STATE(_stack));
    __ lfd (f1, Address(stack, wordSize));
    break;

  case T_OBJECT:
    __ load (stack, STATE(_stack));
    __ load (r3, Address(stack, wordSize));
    __ verify_oop (r3);
    break;
    
  default:
    ShouldNotReachHere();
  }
  __ blr ();

  return start;
}
Example #3
0
  seg::Model* load_model(const char * model_path, const char * lexicon_path = NULL) {
    if ((NULL == model_path)&&(NULL == lexicon_path)) {
      return NULL;
    }

    seg::Model *mdl = new seg::Model;

    if (NULL != model_path) {
      std::ifstream mfs(model_path, std::ifstream::binary);

      if (mfs) {
        if (!mdl->load(mfs)) {
          delete mdl;
          mdl = 0;
          return NULL;
        }
      } else {
        delete mdl;
        mdl = 0;
        return NULL;
      }
    }

    if (NULL != lexicon_path) {
      std::ifstream lfs(lexicon_path);

      if (lfs) {
        std::string buffer;
        while (std::getline(lfs, buffer)) {
          buffer = ltp::strutils::chomp(buffer);
          if (buffer.size() == 0) {
            continue;
          }
          mdl->external_lexicon.set(buffer.c_str(), true);
        }
      }
    }

    beg_tag0 = mdl->labels.index( seg::__b__ );
    beg_tag1 = mdl->labels.index( seg::__s__ );

    if (!rule) {
      rule = new seg::rulebase::RuleBase(mdl->labels);
    }

    return mdl;
  }
Example #4
0
 static void load_model_constrain(Model * model , const char * lexicon_file = NULL) {
    if (NULL != lexicon_file) {
       std::ifstream lfs(lexicon_file);
       if (lfs) {
           std::string buffer;
           std::vector<std::string> key_values;
           int key_values_size;
           std::string key;
           int value;
           Bitset *  original_bitset;
           while (std::getline(lfs, buffer)) {
               buffer = ltp::strutils::chomp(buffer);
               if (buffer.size() == 0) {
                   continue;
               }
               Bitset values;
               key_values = ltp::strutils::split(buffer);
               key_values_size = key_values.size();
               if(key_values_size == 0 || key_values_size == 1) {
                 continue;
               }
               key = ltp::strutils::chartypes::sbc2dbc_x(key_values[0]);
               for(int i=1;i<key_values_size;i++){
                   value = model->labels.index(key_values[i]);
                   if (value != -1){
                       if(!(values.set(value))) {
                           WARNING_LOG("Tag named %s for word %s add external lexicon error.",key_values[i].c_str(),key_values[0].c_str());
                       }
                   }
                   else {
                       WARNING_LOG("Tag named %s for word %s is not existed in LTP labels set.",key_values[i].c_str(),key_values[0].c_str());
                   }
               }
               if(!values.empty()) {
                 original_bitset = model->external_lexicon.get(key.c_str());
                 if(original_bitset){
                   original_bitset->merge(values);
                 }
                 else{
                   model->external_lexicon.set(key.c_str(),values);
                 }
               }
           }
       }
   }
 }//end func load_model_constrain
Example #5
0
int main( void )
{
    printf("snoc list:\n");
    char name[] = "Kate";    
    snoc_list res0 = 
        snoc(
            snoc( 
                snoc( 
                    snoc(NULL, name), 
                    name + 1), 
                name + 2),     
            name + 3);

    sprint( print_char, res0 );
    printf("\n");
    

    printf("\nntree :\n");
    ntree res1 = br(snoc( snoc( NULL, lf(1) ), lfs( 3, 2, 3, 4 )));
    nprint( res1 );
    printf("\n");
    return 0;
}
Example #6
0
    bool load(const char * model_file, const char * lexicon_file = NULL) {
        std::ifstream mfs(model_file, std::ifstream::binary);

        if (!mfs) {
            return false;
        }

        model = new ltp::segmentor::Model;
        if (!model->load(mfs)) {
            delete model;
            return false;
        }

        if (NULL != lexicon_file) {
            std::ifstream lfs(lexicon_file);

            if (lfs) {
                std::string buffer;
                while (std::getline(lfs, buffer)) {
                    buffer = ltp::strutils::chomp(buffer);
                    if (buffer.size() == 0) {
                        continue;
                    }
                    model->external_lexicon.set(buffer.c_str(), true);
                }
            }
        }

        // don't need to allocate a decoder
        // one sentence, one decoder
        baseAll = new ltp::segmentor::rulebase::RuleBase(model->labels);

        beg_tag0 = model->labels.index( ltp::segmentor::__b__ );
        beg_tag1 = model->labels.index( ltp::segmentor::__s__ );

        return true;
    }
Example #7
0
address AbstractInterpreterGenerator::generate_slow_signature_handler() {
  // Slow_signature handler that respects the PPC C calling conventions.
  //
  // We get called by the native entry code with our output register
  // area == 8. First we call InterpreterRuntime::get_result_handler
  // to copy the pointer to the signature string temporarily to the
  // first C-argument and to return the result_handler in
  // R3_RET. Since native_entry will copy the jni-pointer to the
  // first C-argument slot later on, it is OK to occupy this slot
  // temporarilly. Then we copy the argument list on the java
  // expression stack into native varargs format on the native stack
  // and load arguments into argument registers. Integer arguments in
  // the varargs vector will be sign-extended to 8 bytes.
  //
  // On entry:
  //   R3_ARG1        - intptr_t*     Address of java argument list in memory.
  //   R15_prev_state - BytecodeInterpreter* Address of interpreter state for
  //     this method
  //   R19_method
  //
  // On exit (just before return instruction):
  //   R3_RET            - contains the address of the result_handler.
  //   R4_ARG2           - is not updated for static methods and contains "this" otherwise.
  //   R5_ARG3-R10_ARG8: - When the (i-2)th Java argument is not of type float or double,
  //                       ARGi contains this argument. Otherwise, ARGi is not updated.
  //   F1_ARG1-F13_ARG13 - contain the first 13 arguments of type float or double.

  const int LogSizeOfTwoInstructions = 3;

  // FIXME: use Argument:: GL: Argument names different numbers!
  const int max_fp_register_arguments  = 13;
  const int max_int_register_arguments = 6;  // first 2 are reserved

  const Register arg_java       = R21_tmp1;
  const Register arg_c          = R22_tmp2;
  const Register signature      = R23_tmp3;  // is string
  const Register sig_byte       = R24_tmp4;
  const Register fpcnt          = R25_tmp5;
  const Register argcnt         = R26_tmp6;
  const Register intSlot        = R27_tmp7;
  const Register target_sp      = R28_tmp8;
  const FloatRegister floatSlot = F0;

  address entry = __ function_entry();

  __ save_LR_CR(R0);
  __ save_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
  // We use target_sp for storing arguments in the C frame.
  __ mr(target_sp, R1_SP);
  __ push_frame_reg_args_nonvolatiles(0, R11_scratch1);

  __ mr(arg_java, R3_ARG1);

  __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_signature), R16_thread, R19_method);

  // Signature is in R3_RET. Signature is callee saved.
  __ mr(signature, R3_RET);

  // Get the result handler.
  __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_result_handler), R16_thread, R19_method);

  {
    Label L;
    // test if static
    // _access_flags._flags must be at offset 0.
    // TODO PPC port: requires change in shared code.
    //assert(in_bytes(AccessFlags::flags_offset()) == 0,
    //       "MethodDesc._access_flags == MethodDesc._access_flags._flags");
    // _access_flags must be a 32 bit value.
    assert(sizeof(AccessFlags) == 4, "wrong size");
    __ lwa(R11_scratch1/*access_flags*/, method_(access_flags));
    // testbit with condition register.
    __ testbitdi(CCR0, R0, R11_scratch1/*access_flags*/, JVM_ACC_STATIC_BIT);
    __ btrue(CCR0, L);
    // For non-static functions, pass "this" in R4_ARG2 and copy it
    // to 2nd C-arg slot.
    // We need to box the Java object here, so we use arg_java
    // (address of current Java stack slot) as argument and don't
    // dereference it as in case of ints, floats, etc.
    __ mr(R4_ARG2, arg_java);
    __ addi(arg_java, arg_java, -BytesPerWord);
    __ std(R4_ARG2, _abi(carg_2), target_sp);
    __ bind(L);
  }

  // Will be incremented directly after loop_start. argcnt=0
  // corresponds to 3rd C argument.
  __ li(argcnt, -1);
  // arg_c points to 3rd C argument
  __ addi(arg_c, target_sp, _abi(carg_3));
  // no floating-point args parsed so far
  __ li(fpcnt, 0);

  Label move_intSlot_to_ARG, move_floatSlot_to_FARG;
  Label loop_start, loop_end;
  Label do_int, do_long, do_float, do_double, do_dontreachhere, do_object, do_array, do_boxed;

  // signature points to '(' at entry
#ifdef ASSERT
  __ lbz(sig_byte, 0, signature);
  __ cmplwi(CCR0, sig_byte, '(');
  __ bne(CCR0, do_dontreachhere);
#endif

  __ bind(loop_start);

  __ addi(argcnt, argcnt, 1);
  __ lbzu(sig_byte, 1, signature);

  __ cmplwi(CCR0, sig_byte, ')'); // end of signature
  __ beq(CCR0, loop_end);

  __ cmplwi(CCR0, sig_byte, 'B'); // byte
  __ beq(CCR0, do_int);

  __ cmplwi(CCR0, sig_byte, 'C'); // char
  __ beq(CCR0, do_int);

  __ cmplwi(CCR0, sig_byte, 'D'); // double
  __ beq(CCR0, do_double);

  __ cmplwi(CCR0, sig_byte, 'F'); // float
  __ beq(CCR0, do_float);

  __ cmplwi(CCR0, sig_byte, 'I'); // int
  __ beq(CCR0, do_int);

  __ cmplwi(CCR0, sig_byte, 'J'); // long
  __ beq(CCR0, do_long);

  __ cmplwi(CCR0, sig_byte, 'S'); // short
  __ beq(CCR0, do_int);

  __ cmplwi(CCR0, sig_byte, 'Z'); // boolean
  __ beq(CCR0, do_int);

  __ cmplwi(CCR0, sig_byte, 'L'); // object
  __ beq(CCR0, do_object);

  __ cmplwi(CCR0, sig_byte, '['); // array
  __ beq(CCR0, do_array);

  //  __ cmplwi(CCR0, sig_byte, 'V'); // void cannot appear since we do not parse the return type
  //  __ beq(CCR0, do_void);

  __ bind(do_dontreachhere);

  __ unimplemented("ShouldNotReachHere in slow_signature_handler", 120);

  __ bind(do_array);

  {
    Label start_skip, end_skip;

    __ bind(start_skip);
    __ lbzu(sig_byte, 1, signature);
    __ cmplwi(CCR0, sig_byte, '[');
    __ beq(CCR0, start_skip); // skip further brackets
    __ cmplwi(CCR0, sig_byte, '9');
    __ bgt(CCR0, end_skip);   // no optional size
    __ cmplwi(CCR0, sig_byte, '0');
    __ bge(CCR0, start_skip); // skip optional size
    __ bind(end_skip);

    __ cmplwi(CCR0, sig_byte, 'L');
    __ beq(CCR0, do_object);  // for arrays of objects, the name of the object must be skipped
    __ b(do_boxed);          // otherwise, go directly to do_boxed
  }

  __ bind(do_object);
  {
    Label L;
    __ bind(L);
    __ lbzu(sig_byte, 1, signature);
    __ cmplwi(CCR0, sig_byte, ';');
    __ bne(CCR0, L);
   }
  // Need to box the Java object here, so we use arg_java (address of
  // current Java stack slot) as argument and don't dereference it as
  // in case of ints, floats, etc.
  Label do_null;
  __ bind(do_boxed);
  __ ld(R0,0, arg_java);
  __ cmpdi(CCR0, R0, 0);
  __ li(intSlot,0);
  __ beq(CCR0, do_null);
  __ mr(intSlot, arg_java);
  __ bind(do_null);
  __ std(intSlot, 0, arg_c);
  __ addi(arg_java, arg_java, -BytesPerWord);
  __ addi(arg_c, arg_c, BytesPerWord);
  __ cmplwi(CCR0, argcnt, max_int_register_arguments);
  __ blt(CCR0, move_intSlot_to_ARG);
  __ b(loop_start);

  __ bind(do_int);
  __ lwa(intSlot, 0, arg_java);
  __ std(intSlot, 0, arg_c);
  __ addi(arg_java, arg_java, -BytesPerWord);
  __ addi(arg_c, arg_c, BytesPerWord);
  __ cmplwi(CCR0, argcnt, max_int_register_arguments);
  __ blt(CCR0, move_intSlot_to_ARG);
  __ b(loop_start);

  __ bind(do_long);
  __ ld(intSlot, -BytesPerWord, arg_java);
  __ std(intSlot, 0, arg_c);
  __ addi(arg_java, arg_java, - 2 * BytesPerWord);
  __ addi(arg_c, arg_c, BytesPerWord);
  __ cmplwi(CCR0, argcnt, max_int_register_arguments);
  __ blt(CCR0, move_intSlot_to_ARG);
  __ b(loop_start);

  __ bind(do_float);
  __ lfs(floatSlot, 0, arg_java);
#if defined(LINUX)
  // Linux uses ELF ABI. Both original ELF and ELFv2 ABIs have float
  // in the least significant word of an argument slot.
#if defined(VM_LITTLE_ENDIAN)
  __ stfs(floatSlot, 0, arg_c);
#else
  __ stfs(floatSlot, 4, arg_c);
#endif
#elif defined(AIX)
  // Although AIX runs on big endian CPU, float is in most significant
  // word of an argument slot.
  __ stfs(floatSlot, 0, arg_c);
#else
#error "unknown OS"
#endif
  __ addi(arg_java, arg_java, -BytesPerWord);
  __ addi(arg_c, arg_c, BytesPerWord);
  __ cmplwi(CCR0, fpcnt, max_fp_register_arguments);
  __ blt(CCR0, move_floatSlot_to_FARG);
  __ b(loop_start);

  __ bind(do_double);
  __ lfd(floatSlot, - BytesPerWord, arg_java);
  __ stfd(floatSlot, 0, arg_c);
  __ addi(arg_java, arg_java, - 2 * BytesPerWord);
  __ addi(arg_c, arg_c, BytesPerWord);
  __ cmplwi(CCR0, fpcnt, max_fp_register_arguments);
  __ blt(CCR0, move_floatSlot_to_FARG);
  __ b(loop_start);

  __ bind(loop_end);

  __ pop_frame();
  __ restore_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
  __ restore_LR_CR(R0);

  __ blr();

  Label move_int_arg, move_float_arg;
  __ bind(move_int_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions)
  __ mr(R5_ARG3, intSlot);  __ b(loop_start);
  __ mr(R6_ARG4, intSlot);  __ b(loop_start);
  __ mr(R7_ARG5, intSlot);  __ b(loop_start);
  __ mr(R8_ARG6, intSlot);  __ b(loop_start);
  __ mr(R9_ARG7, intSlot);  __ b(loop_start);
  __ mr(R10_ARG8, intSlot); __ b(loop_start);

  __ bind(move_float_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions)
  __ fmr(F1_ARG1, floatSlot);   __ b(loop_start);
  __ fmr(F2_ARG2, floatSlot);   __ b(loop_start);
  __ fmr(F3_ARG3, floatSlot);   __ b(loop_start);
  __ fmr(F4_ARG4, floatSlot);   __ b(loop_start);
  __ fmr(F5_ARG5, floatSlot);   __ b(loop_start);
  __ fmr(F6_ARG6, floatSlot);   __ b(loop_start);
  __ fmr(F7_ARG7, floatSlot);   __ b(loop_start);
  __ fmr(F8_ARG8, floatSlot);   __ b(loop_start);
  __ fmr(F9_ARG9, floatSlot);   __ b(loop_start);
  __ fmr(F10_ARG10, floatSlot); __ b(loop_start);
  __ fmr(F11_ARG11, floatSlot); __ b(loop_start);
  __ fmr(F12_ARG12, floatSlot); __ b(loop_start);
  __ fmr(F13_ARG13, floatSlot); __ b(loop_start);

  __ bind(move_intSlot_to_ARG);
  __ sldi(R0, argcnt, LogSizeOfTwoInstructions);
  __ load_const(R11_scratch1, move_int_arg); // Label must be bound here.
  __ add(R11_scratch1, R0, R11_scratch1);
  __ mtctr(R11_scratch1/*branch_target*/);
  __ bctr();
  __ bind(move_floatSlot_to_FARG);
  __ sldi(R0, fpcnt, LogSizeOfTwoInstructions);
  __ addi(fpcnt, fpcnt, 1);
  __ load_const(R11_scratch1, move_float_arg); // Label must be bound here.
  __ add(R11_scratch1, R0, R11_scratch1);
  __ mtctr(R11_scratch1/*branch_target*/);
  __ bctr();

  return entry;
}
Example #8
0
int main( void )
{
    ntree res = br(snoc( snoc( NULL, lf(1) ), lfs( 3, 2, 3, 4 )));
    nprint( res );
    return 0;
}