Example #1
0
int main(int argc, char **argv)
{
	int i;
	uint8_t status_var;
	
	/* user entry parameters */
	int xi = 0;
	double xd = 0.0;
	
	/* application parameters */
	uint32_t f_target = 0; /* target frequency - invalid default value, has to be specified by user */
	int sf = 10; /* SF10 by default */
	int cr = 1; /* CR1 aka 4/5 by default */
	int bw = 125; /* 125kHz bandwidth by default */
	int pow = 14; /* 14 dBm by default */
	int preamb = 8; /* 8 symbol preamble by default */
	int pl_size = 16; /* 16 bytes payload by default */
	int delay = 1000; /* 1 second between packets by default */
	int repeat = -1; /* by default, repeat until stopped */
	bool invert = false;
	
	/* RF configuration (TX fail if RF chain is not enabled) */
	enum lgw_radio_type_e radio_type = LGW_RADIO_TYPE_NONE;
	uint8_t clocksource = 1; /* Radio B is source by default */
	struct lgw_conf_board_s boardconf;
	struct lgw_conf_rxrf_s rfconf;
	
	/* allocate memory for packet sending */
	struct lgw_pkt_tx_s txpkt; /* array containing 1 outbound packet + metadata */
	
	/* loop variables (also use as counters in the packet payload) */
	uint16_t cycle_count = 0;
	
	/* parse command line options */
	while ((i = getopt (argc, argv, "hif:b:s:c:p:l:z:t:x:r:k")) != -1) {
		switch (i) {
			case 'h':
				usage();
				return EXIT_FAILURE;
				break;
			
			case 'f': /* -f <float> target frequency in MHz */
				i = sscanf(optarg, "%lf", &xd);
				if ((i != 1) || (xd < 30.0) || (xd > 3000.0)) {
					MSG("ERROR: invalid TX frequency\n");
					usage();
					return EXIT_FAILURE;
				} else {
					f_target = (uint32_t)((xd*1e6) + 0.5); /* .5 Hz offset to get rounding instead of truncating */
				}
				break;
			
			case 'b': /* -b <int> Modulation bandwidth in kHz */
				i = sscanf(optarg, "%i", &xi);
				if ((i != 1) || ((xi != 125)&&(xi != 250)&&(xi != 500))) {
					MSG("ERROR: invalid LoRa bandwidth\n");
					usage();
					return EXIT_FAILURE;
				} else {
					bw = xi;
				}
				break;
			
			case 's': /* -s <int> Spreading Factor */
				i = sscanf(optarg, "%i", &xi);
				if ((i != 1) || (xi < 7) || (xi > 12)) {
					MSG("ERROR: invalid spreading factor\n");
					usage();
					return EXIT_FAILURE;
				} else {
					sf = xi;
				}
				break;
			
			case 'c': /* -c <int> Coding Rate */
				i = sscanf(optarg, "%i", &xi);
				if ((i != 1) || (xi < 1) || (xi > 4)) {
					MSG("ERROR: invalid coding rate\n");
					usage();
					return EXIT_FAILURE;
				} else {
					cr = xi;
				}
				break;
			
			case 'p': /* -p <int> RF power */
				i = sscanf(optarg, "%i", &xi);
				if ((i != 1) || (xi < -60) || (xi > 60)) {
					MSG("ERROR: invalid RF power\n");
					usage();
					return EXIT_FAILURE;
				} else {
					pow = xi;
				}
				break;
			
			case 'l': /* -r <uint> preamble length (symbols) */
				i = sscanf(optarg, "%i", &xi);
				if ((i != 1) || (xi < 6)) {
					MSG("ERROR: preamble length must be >6 symbols \n");
					usage();
					return EXIT_FAILURE;
				} else {
					preamb = xi;
				}
				break;
			
			case 'z': /* -z <uint> payload length (bytes) */
				i = sscanf(optarg, "%i", &xi);
				if ((i != 1) || (xi <= 0)) {
					MSG("ERROR: invalid payload size\n");
					usage();
					return EXIT_FAILURE;
				} else {
					pl_size = xi;
				}
				break;
			
			case 't': /* -t <int> pause between packets (ms) */
				i = sscanf(optarg, "%i", &xi);
				if ((i != 1) || (xi < 0)) {
					MSG("ERROR: invalid time between packets\n");
					usage();
					return EXIT_FAILURE;
				} else {
					delay = xi;
				}
				break;
			
			case 'x': /* -x <int> numbers of times the sequence is repeated */
				i = sscanf(optarg, "%i", &xi);
				if ((i != 1) || (xi < -1)) {
					MSG("ERROR: invalid number of repeats\n");
					usage();
					return EXIT_FAILURE;
				} else {
					repeat = xi;
				}
				break;

			case 'r': /* <int> Radio type (1255, 1257) */
				sscanf(optarg, "%i", &xi);
				switch (xi) {
					case 1255:
						radio_type = LGW_RADIO_TYPE_SX1255;
						break;
					case 1257:
						radio_type = LGW_RADIO_TYPE_SX1257;
						break;
					default:
						printf("ERROR: invalid radio type\n");
						usage();
						return EXIT_FAILURE;
				}
				break;

			case 'i': /* -i send packet using inverted modulation polarity */
				invert = true;
				break;

			case 'k': /* <int> Concentrator clock source (Radio A or Radio B) */
				sscanf(optarg, "%i", &xi);
				clocksource = (uint8_t)xi;
				break;

			default:
				MSG("ERROR: argument parsing\n");
				usage();
				return EXIT_FAILURE;
		}
	}
	
	/* check parameter sanity */
	if (f_target == 0) {
		MSG("ERROR: frequency parameter not set, please use -f option to specify it.\n");
		return EXIT_FAILURE;
	}
	if (radio_type == LGW_RADIO_TYPE_NONE) {
		MSG("ERROR: radio type parameter not properly set, please use -r option to specify it.\n");
		return EXIT_FAILURE;
	}
	printf("Sending %i packets on %u Hz (BW %i kHz, SF %i, CR %i, %i bytes payload, %i symbols preamble) at %i dBm, with %i ms between each\n", repeat, f_target, bw, sf, cr, pl_size, preamb, pow, delay);
	
	/* configure signal handling */
	sigemptyset(&sigact.sa_mask);
	sigact.sa_flags = 0;
	sigact.sa_handler = sig_handler;
	sigaction(SIGQUIT, &sigact, NULL);
	sigaction(SIGINT, &sigact, NULL);
	sigaction(SIGTERM, &sigact, NULL);
	
	/* starting the concentrator */
	/* board config */
	memset(&boardconf, 0, sizeof(boardconf));

	boardconf.lorawan_public = true;
	boardconf.clksrc = clocksource;
	lgw_board_setconf(boardconf);

	/* RF config */
	memset(&rfconf, 0, sizeof(rfconf));

	rfconf.enable = true;
	rfconf.freq_hz = f_target;
	rfconf.rssi_offset = DEFAULT_RSSI_OFFSET;
	rfconf.type = radio_type;
	rfconf.tx_enable = true;
	lgw_rxrf_setconf(RF_CHAIN, rfconf);

	i = lgw_start();
	if (i == LGW_HAL_SUCCESS) {
		MSG("INFO: concentrator started, packet can be sent\n");
	} else {
		MSG("ERROR: failed to start the concentrator\n");
		return EXIT_FAILURE;
	}
	
	/* fill-up payload and parameters */
	memset(&txpkt, 0, sizeof(txpkt));
	txpkt.freq_hz = f_target;
	txpkt.tx_mode = IMMEDIATE;
	txpkt.rf_chain = RF_CHAIN;
	txpkt.rf_power = pow;
	txpkt.modulation = MOD_LORA;
	switch (bw) {
		case 125: txpkt.bandwidth = BW_125KHZ; break;
		case 250: txpkt.bandwidth = BW_250KHZ; break;
		case 500: txpkt.bandwidth = BW_500KHZ; break;
		default:
			MSG("ERROR: invalid 'bw' variable\n");
			return EXIT_FAILURE;
	}
	switch (sf) {
		case  7: txpkt.datarate = DR_LORA_SF7;  break;
		case  8: txpkt.datarate = DR_LORA_SF8;  break;
		case  9: txpkt.datarate = DR_LORA_SF9;  break;
		case 10: txpkt.datarate = DR_LORA_SF10; break;
		case 11: txpkt.datarate = DR_LORA_SF11; break;
		case 12: txpkt.datarate = DR_LORA_SF12; break;
		default:
			MSG("ERROR: invalid 'sf' variable\n");
			return EXIT_FAILURE;
	}
	switch (cr) {
		case 1: txpkt.coderate = CR_LORA_4_5; break;
		case 2: txpkt.coderate = CR_LORA_4_6; break;
		case 3: txpkt.coderate = CR_LORA_4_7; break;
		case 4: txpkt.coderate = CR_LORA_4_8; break;
		default:
			MSG("ERROR: invalid 'cr' variable\n");
			return EXIT_FAILURE;
	}
	txpkt.invert_pol = invert;
	txpkt.preamble = preamb;
	txpkt.size = pl_size;
	strcpy((char *)txpkt.payload, "TEST**abcdefghijklmnopqrstuvwxyz#0123456789#ABCDEFGHIJKLMNOPQRSTUVWXYZ#0123456789#abcdefghijklmnopqrstuvwxyz#0123456789#ABCDEFGHIJKLMNOPQRSTUVWXYZ#0123456789#abcdefghijklmnopqrstuvwxyz#0123456789#ABCDEFGHIJKLMNOPQRSTUVWXYZ#0123456789#abcdefghijklmnopqrs#" ); /* abc.. is for padding */
	
	/* main loop */
	cycle_count = 0;
	while ((repeat == -1) || (cycle_count < repeat)) {
		++cycle_count;
		
		/* refresh counters in payload (big endian, for readability) */
		txpkt.payload[4] = (uint8_t)(cycle_count >> 8); /* MSB */
		txpkt.payload[5] = (uint8_t)(cycle_count & 0x00FF); /* LSB */
		
		/* send packet */
		printf("Sending packet number %u ...", cycle_count);
		i = lgw_send(txpkt); /* non-blocking scheduling of TX packet */
		if (i != LGW_HAL_SUCCESS) {
			printf("ERROR\n");
			return EXIT_FAILURE;
		}
		
		/* wait for packet to finish sending */
		do {
			wait_ms(5);
			lgw_status(TX_STATUS, &status_var); /* get TX status */
		} while (status_var != TX_FREE);
		printf("OK\n");
		
		/* wait inter-packet delay */
		wait_ms(delay);
		
		/* exit loop on user signals */
		if ((quit_sig == 1) || (exit_sig == 1)) {
			break;
		}
	}
	
	/* clean up before leaving */
	lgw_stop();
	
	printf("Exiting LoRa concentrator TX test program\n");
	return EXIT_SUCCESS;
}
Example #2
0
int main()
{
	struct sigaction sigact; /* SIGQUIT&SIGINT&SIGTERM signal handling */
	
	struct lgw_conf_rxrf_s rfconf;
	struct lgw_conf_rxif_s ifconf;
	
	struct lgw_pkt_rx_s rxpkt[4]; /* array containing up to 4 inbound packets metadata */
	struct lgw_pkt_tx_s txpkt; /* configuration and metadata for an outbound packet */
	struct lgw_pkt_rx_s *p; /* pointer on a RX packet */
	
	int i, j;
	int nb_pkt;
	
	uint32_t tx_cnt = 0;
	unsigned long loop_cnt = 0;
	uint8_t status_var = 0;
	
	/* configure signal handling */
	sigemptyset(&sigact.sa_mask);
	sigact.sa_flags = 0;
	sigact.sa_handler = sig_handler;
	sigaction(SIGQUIT, &sigact, NULL);
	sigaction(SIGINT, &sigact, NULL);
	sigaction(SIGTERM, &sigact, NULL);
	
	/* beginning of LoRa concentrator-specific code */
	printf("Beginning of test for loragw_hal.c\n");
	
	printf("*** Library version information ***\n%s\n\n", lgw_version_info());
	
	/* set configuration for RF chains */
	memset(&rfconf, 0, sizeof(rfconf));
	
	rfconf.enable = true;
	rfconf.freq_hz = F_RX_0;
	lgw_rxrf_setconf(0, rfconf); /* radio A, f0 */
	
	rfconf.enable = true;
	rfconf.freq_hz = F_RX_1;
	lgw_rxrf_setconf(1, rfconf); /* radio B, f1 */
	
	/* set configuration for LoRa multi-SF channels (bandwidth cannot be set) */
	memset(&ifconf, 0, sizeof(ifconf));
	
	ifconf.enable = true;
	ifconf.rf_chain = 0;
	ifconf.freq_hz = -300000;
	ifconf.datarate = DR_LORA_MULTI;
	lgw_rxif_setconf(0, ifconf); /* chain 0: LoRa 125kHz, all SF, on f0 - 0.3 MHz */
	
	ifconf.enable = true;
	ifconf.rf_chain = 0;
	ifconf.freq_hz = 300000;
	ifconf.datarate = DR_LORA_MULTI;
	lgw_rxif_setconf(1, ifconf); /* chain 1: LoRa 125kHz, all SF, on f0 + 0.3 MHz */
	
	ifconf.enable = true;
	ifconf.rf_chain = 1;
	ifconf.freq_hz = -300000;
	ifconf.datarate = DR_LORA_MULTI;
	lgw_rxif_setconf(2, ifconf); /* chain 2: LoRa 125kHz, all SF, on f1 - 0.3 MHz */
	
	ifconf.enable = true;
	ifconf.rf_chain = 1;
	ifconf.freq_hz = 300000;
	ifconf.datarate = DR_LORA_MULTI;
	lgw_rxif_setconf(3, ifconf); /* chain 3: LoRa 125kHz, all SF, on f1 + 0.3 MHz */
	
	#if (LGW_MULTI_NB >= 8)
	ifconf.enable = true;
	ifconf.rf_chain = 0;
	ifconf.freq_hz = -100000;
	ifconf.datarate = DR_LORA_MULTI;
	lgw_rxif_setconf(4, ifconf); /* chain 4: LoRa 125kHz, all SF, on f0 - 0.1 MHz */
	
	ifconf.enable = true;
	ifconf.rf_chain = 0;
	ifconf.freq_hz = 100000;
	ifconf.datarate = DR_LORA_MULTI;
	lgw_rxif_setconf(5, ifconf); /* chain 5: LoRa 125kHz, all SF, on f0 + 0.1 MHz */
	
	ifconf.enable = true;
	ifconf.rf_chain = 1;
	ifconf.freq_hz = -100000;
	ifconf.datarate = DR_LORA_MULTI;
	lgw_rxif_setconf(6, ifconf); /* chain 6: LoRa 125kHz, all SF, on f1 - 0.1 MHz */
	
	ifconf.enable = true;
	ifconf.rf_chain = 1;
	ifconf.freq_hz = 100000;
	ifconf.datarate = DR_LORA_MULTI;
	lgw_rxif_setconf(7, ifconf); /* chain 7: LoRa 125kHz, all SF, on f1 + 0.1 MHz */
	#endif
	
	/* set configuration for LoRa 'stand alone' channel */
	memset(&ifconf, 0, sizeof(ifconf));
	ifconf.enable = true;
	ifconf.rf_chain = 0;
	ifconf.freq_hz = 0;
	ifconf.bandwidth = BW_250KHZ;
	ifconf.datarate = DR_LORA_SF10;
	lgw_rxif_setconf(8, ifconf); /* chain 8: LoRa 250kHz, SF10, on f0 MHz */
	
	/* set configuration for FSK channel */
	memset(&ifconf, 0, sizeof(ifconf));
	ifconf.enable = true;
	ifconf.rf_chain = 1;
	ifconf.freq_hz = 0;
	ifconf.bandwidth = BW_250KHZ;
	ifconf.datarate = 64000;
	lgw_rxif_setconf(9, ifconf); /* chain 9: FSK 64kbps, on f1 MHz */
	
	/* set configuration for TX packet */
	
	memset(&txpkt, 0, sizeof(txpkt));
	txpkt.freq_hz = F_TX;
	txpkt.tx_mode = IMMEDIATE;
	txpkt.rf_power = 10;
	txpkt.modulation = MOD_LORA;
	txpkt.bandwidth = BW_250KHZ;
	txpkt.datarate = DR_LORA_SF10;
	txpkt.coderate = CR_LORA_4_5;
	strcpy((char *)txpkt.payload, "TX.TEST.LORA.GW.????" );
	txpkt.size = 20;
	txpkt.preamble = 6;
	txpkt.rf_chain = 0;
/*	
	memset(&txpkt, 0, sizeof(txpkt));
	txpkt.freq_hz = F_TX;
	txpkt.tx_mode = IMMEDIATE;
	txpkt.rf_power = 10;
	txpkt.modulation = MOD_FSK;
	txpkt.f_dev = 50;
	txpkt.datarate = 64000;
	strcpy((char *)txpkt.payload, "TX.TEST.LORA.GW.????" );
	txpkt.size = 20;
	txpkt.preamble = 4;
	txpkt.rf_chain = 0;
*/	
	
	/* connect, configure and start the LoRa concentrator */
	i = lgw_start();
	if (i == LGW_HAL_SUCCESS) {
		printf("*** Concentrator started ***\n");
	} else {
		printf("*** Impossible to start concentrator ***\n");
		return -1;
	}
	
	/* once configured, dump content of registers to a file, for reference */
	// FILE * reg_dump = NULL;
	// reg_dump = fopen("reg_dump.log", "w");
	// if (reg_dump != NULL) {
		// lgw_reg_check(reg_dump);
		// fclose(reg_dump);
	// }
	
	while ((quit_sig != 1) && (exit_sig != 1)) {
		loop_cnt++;
		
		/* fetch N packets */
		nb_pkt = lgw_receive(ARRAY_SIZE(rxpkt), rxpkt);
		
		if (nb_pkt == 0) {
			wait_ms(300);
		} else {
			/* display received packets */
			for(i=0; i < nb_pkt; ++i) {
				p = &rxpkt[i];
				printf("---\nRcv pkt #%d >>", i+1);
				if (p->status == STAT_CRC_OK) {
					printf(" if_chain:%2d", p->if_chain);
					printf(" tstamp:%010u", p->count_us);
					printf(" size:%3u", p->size);
					switch (p-> modulation) {
						case MOD_LORA: printf(" LoRa"); break;
						case MOD_FSK: printf(" FSK"); break;
						default: printf(" modulation?");
					}
					switch (p->datarate) {
						case DR_LORA_SF7: printf(" SF7"); break;
						case DR_LORA_SF8: printf(" SF8"); break;
						case DR_LORA_SF9: printf(" SF9"); break;
						case DR_LORA_SF10: printf(" SF10"); break;
						case DR_LORA_SF11: printf(" SF11"); break;
						case DR_LORA_SF12: printf(" SF12"); break;
						default: printf(" datarate?");
					}
					switch (p->coderate) {
						case CR_LORA_4_5: printf(" CR1(4/5)"); break;
						case CR_LORA_4_6: printf(" CR2(2/3)"); break;
						case CR_LORA_4_7: printf(" CR3(4/7)"); break;
						case CR_LORA_4_8: printf(" CR4(1/2)"); break;
						default: printf(" coderate?");
					}
					printf("\n");
					printf(" RSSI:%+6.1f SNR:%+5.1f (min:%+5.1f, max:%+5.1f) payload:\n", p->rssi, p->snr, p->snr_min, p->snr_max);
					
					for (j = 0; j < p->size; ++j) {
						printf(" %02X", p->payload[j]);
					}
					printf(" #\n");
				} else if (p->status == STAT_CRC_BAD) {
					printf(" if_chain:%2d", p->if_chain);
					printf(" tstamp:%010u", p->count_us);
					printf(" size:%3u\n", p->size);
					printf(" CRC error, damaged packet\n\n");
				} else if (p->status == STAT_NO_CRC){
					printf(" if_chain:%2d", p->if_chain);
					printf(" tstamp:%010u", p->count_us);
					printf(" size:%3u\n", p->size);
					printf(" no CRC\n\n");
				} else {
					printf(" if_chain:%2d", p->if_chain);
					printf(" tstamp:%010u", p->count_us);
					printf(" size:%3u\n", p->size);
					printf(" invalid status ?!?\n\n");
				}
			}
		}
		
		/* send a packet every X loop */
		if (loop_cnt%16 == 0) {
			/* 32b counter in the payload, big endian */
			txpkt.payload[16] = 0xff & (tx_cnt >> 24);
			txpkt.payload[17] = 0xff & (tx_cnt >> 16);
			txpkt.payload[18] = 0xff & (tx_cnt >> 8);
			txpkt.payload[19] = 0xff & tx_cnt;
			i = lgw_send(txpkt); /* non-blocking scheduling of TX packet */
			j = 0;
			printf("+++\nSending packet #%d, rf path %d, return %d\nstatus -> ", tx_cnt, txpkt.rf_chain, i);
			do {
				++j;
				wait_ms(100);
				lgw_status(TX_STATUS, &status_var); /* get TX status */
				printf("%d:", status_var);
			} while ((status_var != TX_FREE) && (j < 100));
			++tx_cnt;
			printf("\nTX finished\n");
		}
	}
Example #3
0
int main(int argc, char **argv)
{
	int i;
	uint8_t status_var;
	
	/* user entry parameters */
	int xi = 0;
	double xd = 0.0;
	uint32_t f_min;
	uint32_t f_max;
	
	/* application parameters */
	uint32_t f_target = lowfreq[RF_CHAIN]/2 + upfreq[RF_CHAIN]/2; /* target frequency */
	int sf = 10; /* SF10 by default */
	int bw = 125; /* 125kHz bandwidth by default */
	int pow = 14; /* 14 dBm by default */
	int preamb = 8; /* 8 symbol preamble by default */
	int pl_size = 16; /* 16 bytes payload by default */
	int delay = 1000; /* 1 second between packets by default */
	int repeat = -1; /* by default, repeat until stopped */
	bool invert = false;
	
	/* RF configuration (TX fail if RF chain is not enabled) */
	const struct lgw_conf_rxrf_s rfconf = {true, lowfreq[RF_CHAIN]};
	
	/* allocate memory for packet sending */
	struct lgw_pkt_tx_s txpkt; /* array containing 1 outbound packet + metadata */
	
	/* loop variables (also use as counters in the packet payload) */
	uint16_t cycle_count = 0;
	
	/* parse command line options */
	while ((i = getopt (argc, argv, "hf:s:b:p:r:z:t:x:i")) != -1) {
		switch (i) {
			case 'h':
				usage();
				return EXIT_FAILURE;
				break;
			
			case 'f': /* -f <float> target frequency in MHz */
				i = sscanf(optarg, "%lf", &xd);
				if ((i != 1) || (xd < 30.0) || (xd > 3000.0)) {
					MSG("ERROR: invalid TX frequency\n");
					usage();
					return EXIT_FAILURE;
				} else {
					f_target = (uint32_t)((xd*1e6) + 0.5); /* .5 Hz offset to get rounding instead of truncating */
				}
				break;
			
			case 's': /* -s <int> Spreading Factor */
				i = sscanf(optarg, "%i", &xi);
				if ((i != 1) || (xi < 7) || (xi > 12)) {
					MSG("ERROR: invalid spreading factor\n");
					usage();
					return EXIT_FAILURE;
				} else {
					sf = xi;
				}
				break;
			
			case 'b': /* -b <int> Modulation bandwidth in kHz */
				i = sscanf(optarg, "%i", &xi);
				if ((i != 1) || ((xi != 125)&&(xi != 250)&&(xi != 500))) {
					MSG("ERROR: invalid LoRa bandwidth\n");
					usage();
					return EXIT_FAILURE;
				} else {
					bw = xi;
				}
				break;
			
			case 'p': /* -p <int> RF power */
				i = sscanf(optarg, "%i", &xi);
				if ((i != 1) || (xi < -60) || (xi > 60)) {
					MSG("ERROR: invalid RF power\n");
					usage();
					return EXIT_FAILURE;
				} else {
					pow = xi;
				}
				break;
			
			case 'r': /* -r <uint> preamble length (symbols) */
				i = sscanf(optarg, "%i", &xi);
				if ((i != 1) || (xi < 6)) {
					MSG("ERROR: preamble length must be >6 symbols \n");
					usage();
					return EXIT_FAILURE;
				} else {
					preamb = xi;
				}
				break;
			
			case 'z': /* -z <uint> payload length (bytes) */
				i = sscanf(optarg, "%i", &xi);
				if ((i != 1) || (xi <= 0)) {
					MSG("ERROR: invalid payload size\n");
					usage();
					return EXIT_FAILURE;
				} else {
					pl_size = xi;
				}
				break;
			
			case 't': /* -t <int> pause between packets (ms) */
				i = sscanf(optarg, "%i", &xi);
				if ((i != 1) || (xi < 0)) {
					MSG("ERROR: invalid time between packets\n");
					usage();
					return EXIT_FAILURE;
				} else {
					delay = xi;
				}
				break;
			
			case 'x': /* -x <int> numbers of times the sequence is repeated */
				i = sscanf(optarg, "%i", &xi);
				if ((i != 1) || (xi < -1)) {
					MSG("ERROR: invalid number of repeats\n");
					usage();
					return EXIT_FAILURE;
				} else {
					repeat = xi;
				}
				break;
			
			case 'i': /* -i send packet using inverted modulation polarity */
				invert = true;
				break;
			
			default:
				MSG("ERROR: argument parsing\n");
				usage();
				return EXIT_FAILURE;
		}
	}
	
	/* check parameter sanity */
	f_min = lowfreq[RF_CHAIN] + (500 * bw);
	f_max = upfreq[RF_CHAIN] - (500 * bw);
	if ((f_target < f_min) || (f_target > f_max)) {
		MSG("ERROR: frequency out of authorized band (accounting for modulation bandwidth)\n");
		return EXIT_FAILURE;
	}
	printf("Sending %i packets on %u Hz (BW %i kHz, SF %i, %i bytes payload, %i symbols preamble) at %i dBm, with %i ms between each\n", repeat, f_target, bw, sf, pl_size, preamb, pow, delay);
	
	/* configure signal handling */
	sigemptyset(&sigact.sa_mask);
	sigact.sa_flags = 0;
	sigact.sa_handler = sig_handler;
	sigaction(SIGQUIT, &sigact, NULL);
	sigaction(SIGINT, &sigact, NULL);
	sigaction(SIGTERM, &sigact, NULL);
	
	/* starting the concentrator */
	lgw_rxrf_setconf(RF_CHAIN, rfconf);
	i = lgw_start();
	if (i == LGW_HAL_SUCCESS) {
		MSG("INFO: concentrator started, packet can be sent\n");
	} else {
		MSG("ERROR: failed to start the concentrator\n");
		return EXIT_FAILURE;
	}
	
	/* fill-up payload and parameters */
	memset(&txpkt, 0, sizeof(txpkt));
	txpkt.freq_hz = f_target;
	txpkt.tx_mode = IMMEDIATE;
	txpkt.rf_chain = RF_CHAIN;
	txpkt.rf_power = pow;
	txpkt.modulation = MOD_LORA;
	switch (bw) {
		case 125: txpkt.bandwidth = BW_125KHZ; break;
		case 250: txpkt.bandwidth = BW_250KHZ; break;
		case 500: txpkt.bandwidth = BW_500KHZ; break;
		default:
			MSG("ERROR: invalid 'bw' variable\n");
			return EXIT_FAILURE;
	}
	switch (sf) {
		case  7: txpkt.datarate = DR_LORA_SF7;  break;
		case  8: txpkt.datarate = DR_LORA_SF8;  break;
		case  9: txpkt.datarate = DR_LORA_SF9;  break;
		case 10: txpkt.datarate = DR_LORA_SF10; break;
		case 11: txpkt.datarate = DR_LORA_SF11; break;
		case 12: txpkt.datarate = DR_LORA_SF12; break;
		default:
			MSG("ERROR: invalid 'sf' variable\n");
			return EXIT_FAILURE;
	}
	txpkt.coderate = CR_LORA_4_5;
	txpkt.invert_pol = invert;
	txpkt.preamble = preamb;
	txpkt.size = pl_size;
	strcpy((char *)txpkt.payload, "TEST**abcdefghijklmnopqrstuvwxyz0123456789" ); /* abc.. is for padding */
	
	/* main loop */
	cycle_count = 0;
	while ((repeat == -1) || (cycle_count < repeat)) {
		++cycle_count;
		
		/* refresh counters in payload (big endian, for readability) */
		txpkt.payload[4] = (uint8_t)(cycle_count >> 8); /* MSB */
		txpkt.payload[5] = (uint8_t)(cycle_count & 0x00FF); /* LSB */
		
		/* send packet */
		printf("Sending packet number %u ...", cycle_count);
		i = lgw_send(txpkt); /* non-blocking scheduling of TX packet */
		if (i != LGW_HAL_SUCCESS) {
			printf("ERROR\n");
			return EXIT_FAILURE;
		}
		
		/* wait for packet to finish sending */
		do {
			wait_ms(5);
			lgw_status(TX_STATUS, &status_var); /* get TX status */
		} while (status_var != TX_FREE);
		printf("OK\n");
		
		/* wait inter-packet delay */
		wait_ms(delay);
		
		/* exit loop on user signals */
		if ((quit_sig == 1) || (exit_sig == 1)) {
			break;
		}
	}
	
	/* clean up before leaving */
	lgw_stop();
	
	printf("Exiting LoRa concentrator TX test program\n");
	return EXIT_SUCCESS;
}
Example #4
0
int main(int argc, char **argv)
{
	struct sigaction sigact; /* SIGQUIT&SIGINT&SIGTERM signal handling */
	
	struct lgw_conf_board_s boardconf;
	struct lgw_conf_rxrf_s rfconf;
	struct lgw_conf_rxif_s ifconf;
	
	struct lgw_pkt_rx_s rxpkt[4]; /* array containing up to 4 inbound packets metadata */
	struct lgw_pkt_tx_s txpkt; /* configuration and metadata for an outbound packet */
	struct lgw_pkt_rx_s *p; /* pointer on a RX packet */
	
	int i, j;
	int nb_pkt;
	uint32_t fa = 0, fb = 0, ft = 0;
	enum lgw_radio_type_e radio_type = LGW_RADIO_TYPE_NONE;
	uint8_t clocksource = 0; /* Radio A is source in MTAC-LORA */
	
	uint32_t tx_cnt = 0;
	unsigned long loop_cnt = 0;
	uint8_t status_var = 0;
	double xd = 0.0;
	int xi = 0;

	/* parse command line options */
	while ((i = getopt (argc, argv, "ha:b:t:r:k:")) != -1) {
		switch (i) {
			case 'h':
				usage();
				return -1;
				break;
			case 'a': /* <float> Radio A RX frequency in MHz */
				sscanf(optarg, "%lf", &xd);
				fa = (uint32_t)((xd*1e6) + 0.5); /* .5 Hz offset to get rounding instead of truncating */
				break;
			case 'b': /* <float> Radio B RX frequency in MHz */
				sscanf(optarg, "%lf", &xd);
				fb = (uint32_t)((xd*1e6) + 0.5); /* .5 Hz offset to get rounding instead of truncating */
				break;
			case 't': /* <float> Radio TX frequency in MHz */
				sscanf(optarg, "%lf", &xd);
				ft = (uint32_t)((xd*1e6) + 0.5); /* .5 Hz offset to get rounding instead of truncating */
				break;
			case 'r': /* <int> Radio type (1255, 1257) */
				sscanf(optarg, "%i", &xi);
				switch (xi) {
					case 1255:
						radio_type = LGW_RADIO_TYPE_SX1255;
						break;
					case 1257:
						radio_type = LGW_RADIO_TYPE_SX1257;
						break;
					default:
						printf("ERROR: invalid radio type\n");
						usage();
						return -1;
				}
				break;
			case 'k': /* <int> Concentrator clock source (Radio A or Radio B) */
				sscanf(optarg, "%i", &xi);
				clocksource = (uint8_t)xi;
				break;
			default:
				printf("ERROR: argument parsing\n");
				usage();
				return -1;
		}
	}

	/* check input parameters */
	if ((fa == 0) || (fb == 0) || (ft == 0)) {
		printf("ERROR: missing frequency input parameter:\n");
		printf("  Radio A RX: %u\n", fa);
		printf("  Radio B RX: %u\n", fb);
		printf("  Radio TX: %u\n", ft);
		usage();
		return -1;
	}

	if (radio_type == LGW_RADIO_TYPE_NONE) {
		printf("ERROR: missing radio type parameter:\n");
		usage();
		return -1;
	}

	/* configure signal handling */
	sigemptyset(&sigact.sa_mask);
	sigact.sa_flags = 0;
	sigact.sa_handler = sig_handler;
	sigaction(SIGQUIT, &sigact, NULL);
	sigaction(SIGINT, &sigact, NULL);
	sigaction(SIGTERM, &sigact, NULL);

	/* beginning of LoRa concentrator-specific code */
	printf("Beginning of test for loragw_hal.c\n");

	printf("*** Library version information ***\n%s\n\n", lgw_version_info());

	/* set configuration for board */
	memset(&boardconf, 0, sizeof(boardconf));

	boardconf.lorawan_public = true;
	boardconf.clksrc = clocksource;
	lgw_board_setconf(boardconf);

	/* set configuration for RF chains */
	memset(&rfconf, 0, sizeof(rfconf));

	rfconf.enable = true;
	rfconf.freq_hz = fa;
	rfconf.rssi_offset = DEFAULT_RSSI_OFFSET;
	rfconf.type = radio_type;
	rfconf.tx_enable = true;
	lgw_rxrf_setconf(0, rfconf); /* radio A, f0 */

	rfconf.enable = true;
	rfconf.freq_hz = fb;
	rfconf.rssi_offset = DEFAULT_RSSI_OFFSET;
	rfconf.type = radio_type;
	rfconf.tx_enable = false;
	lgw_rxrf_setconf(1, rfconf); /* radio B, f1 */

	/* set configuration for LoRa multi-SF channels (bandwidth cannot be set) */
	memset(&ifconf, 0, sizeof(ifconf));

	ifconf.enable = true;
	ifconf.rf_chain = 0;
	ifconf.freq_hz = -300000;
	ifconf.datarate = DR_LORA_MULTI;
	lgw_rxif_setconf(0, ifconf); /* chain 0: LoRa 125kHz, all SF, on f0 - 0.3 MHz */
	
	ifconf.enable = true;
	ifconf.rf_chain = 0;
	ifconf.freq_hz = 300000;
	ifconf.datarate = DR_LORA_MULTI;
	lgw_rxif_setconf(1, ifconf); /* chain 1: LoRa 125kHz, all SF, on f0 + 0.3 MHz */
	
	ifconf.enable = true;
	ifconf.rf_chain = 1;
	ifconf.freq_hz = -300000;
	ifconf.datarate = DR_LORA_MULTI;
	lgw_rxif_setconf(2, ifconf); /* chain 2: LoRa 125kHz, all SF, on f1 - 0.3 MHz */
	
	ifconf.enable = true;
	ifconf.rf_chain = 1;
	ifconf.freq_hz = 300000;
	ifconf.datarate = DR_LORA_MULTI;
	lgw_rxif_setconf(3, ifconf); /* chain 3: LoRa 125kHz, all SF, on f1 + 0.3 MHz */
	
	ifconf.enable = true;
	ifconf.rf_chain = 0;
	ifconf.freq_hz = -100000;
	ifconf.datarate = DR_LORA_MULTI;
	lgw_rxif_setconf(4, ifconf); /* chain 4: LoRa 125kHz, all SF, on f0 - 0.1 MHz */
	
	ifconf.enable = true;
	ifconf.rf_chain = 0;
	ifconf.freq_hz = 100000;
	ifconf.datarate = DR_LORA_MULTI;
	lgw_rxif_setconf(5, ifconf); /* chain 5: LoRa 125kHz, all SF, on f0 + 0.1 MHz */
	
	ifconf.enable = true;
	ifconf.rf_chain = 1;
	ifconf.freq_hz = -100000;
	ifconf.datarate = DR_LORA_MULTI;
	lgw_rxif_setconf(6, ifconf); /* chain 6: LoRa 125kHz, all SF, on f1 - 0.1 MHz */
	
	ifconf.enable = true;
	ifconf.rf_chain = 1;
	ifconf.freq_hz = 100000;
	ifconf.datarate = DR_LORA_MULTI;
	lgw_rxif_setconf(7, ifconf); /* chain 7: LoRa 125kHz, all SF, on f1 + 0.1 MHz */
	
	/* set configuration for LoRa 'stand alone' channel */
	memset(&ifconf, 0, sizeof(ifconf));
	ifconf.enable = true;
	ifconf.rf_chain = 0;
	ifconf.freq_hz = 0;
	ifconf.bandwidth = BW_250KHZ;
	ifconf.datarate = DR_LORA_SF10;
	lgw_rxif_setconf(8, ifconf); /* chain 8: LoRa 250kHz, SF10, on f0 MHz */
	
	/* set configuration for FSK channel */
	memset(&ifconf, 0, sizeof(ifconf));
	ifconf.enable = true;
	ifconf.rf_chain = 1;
	ifconf.freq_hz = 0;
	ifconf.bandwidth = BW_250KHZ;
	ifconf.datarate = 64000;
	lgw_rxif_setconf(9, ifconf); /* chain 9: FSK 64kbps, on f1 MHz */
	
	/* set configuration for TX packet */
	memset(&txpkt, 0, sizeof(txpkt));
	txpkt.freq_hz = ft;
	txpkt.tx_mode = IMMEDIATE;
	txpkt.rf_power = 10;
	txpkt.modulation = MOD_LORA;
	txpkt.bandwidth = BW_250KHZ;
	txpkt.datarate = DR_LORA_SF10;
	txpkt.coderate = CR_LORA_4_5;
	strcpy((char *)txpkt.payload, "TX.TEST.LORA.GW.????" );
	txpkt.size = 20;
	txpkt.preamble = 6;
	txpkt.rf_chain = 0;
/*	
	memset(&txpkt, 0, sizeof(txpkt));
	txpkt.freq_hz = F_TX;
	txpkt.tx_mode = IMMEDIATE;
	txpkt.rf_power = 10;
	txpkt.modulation = MOD_FSK;
	txpkt.f_dev = 50;
	txpkt.datarate = 64000;
	strcpy((char *)txpkt.payload, "TX.TEST.LORA.GW.????" );
	txpkt.size = 20;
	txpkt.preamble = 4;
	txpkt.rf_chain = 0;
*/	
	
	/* connect, configure and start the LoRa concentrator */
	i = lgw_start();
	if (i == LGW_HAL_SUCCESS) {
		printf("*** Concentrator started ***\n");
	} else {
		printf("*** Impossible to start concentrator ***\n");
		return -1;
	}
	
	/* once configured, dump content of registers to a file, for reference */
	// FILE * reg_dump = NULL;
	// reg_dump = fopen("reg_dump.log", "w");
	// if (reg_dump != NULL) {
		// lgw_reg_check(reg_dump);
		// fclose(reg_dump);
	// }
	
	while ((quit_sig != 1) && (exit_sig != 1)) {
		loop_cnt++;
		
		/* fetch N packets */
		nb_pkt = lgw_receive(ARRAY_SIZE(rxpkt), rxpkt);
		
		if (nb_pkt == 0) {
			wait_ms(300);
		} else {
			/* display received packets */
			for(i=0; i < nb_pkt; ++i) {
				p = &rxpkt[i];
				printf("---\nRcv pkt #%d >>", i+1);
				if (p->status == STAT_CRC_OK) {
					printf(" if_chain:%2d", p->if_chain);
					printf(" tstamp:%010u", p->count_us);
					printf(" size:%3u", p->size);
					switch (p-> modulation) {
						case MOD_LORA: printf(" LoRa"); break;
						case MOD_FSK: printf(" FSK"); break;
						default: printf(" modulation?");
					}
					switch (p->datarate) {
						case DR_LORA_SF7: printf(" SF7"); break;
						case DR_LORA_SF8: printf(" SF8"); break;
						case DR_LORA_SF9: printf(" SF9"); break;
						case DR_LORA_SF10: printf(" SF10"); break;
						case DR_LORA_SF11: printf(" SF11"); break;
						case DR_LORA_SF12: printf(" SF12"); break;
						default: printf(" datarate?");
					}
					switch (p->coderate) {
						case CR_LORA_4_5: printf(" CR1(4/5)"); break;
						case CR_LORA_4_6: printf(" CR2(2/3)"); break;
						case CR_LORA_4_7: printf(" CR3(4/7)"); break;
						case CR_LORA_4_8: printf(" CR4(1/2)"); break;
						default: printf(" coderate?");
					}
					printf("\n");
					printf(" RSSI:%+6.1f SNR:%+5.1f (min:%+5.1f, max:%+5.1f) payload:\n", p->rssi, p->snr, p->snr_min, p->snr_max);
					
					for (j = 0; j < p->size; ++j) {
						printf(" %02X", p->payload[j]);
					}
					printf(" #\n");
				} else if (p->status == STAT_CRC_BAD) {
					printf(" if_chain:%2d", p->if_chain);
					printf(" tstamp:%010u", p->count_us);
					printf(" size:%3u\n", p->size);
					printf(" CRC error, damaged packet\n\n");
				} else if (p->status == STAT_NO_CRC){
					printf(" if_chain:%2d", p->if_chain);
					printf(" tstamp:%010u", p->count_us);
					printf(" size:%3u\n", p->size);
					printf(" no CRC\n\n");
				} else {
					printf(" if_chain:%2d", p->if_chain);
					printf(" tstamp:%010u", p->count_us);
					printf(" size:%3u\n", p->size);
					printf(" invalid status ?!?\n\n");
				}
			}
		}
		
		/* send a packet every X loop */
		if (loop_cnt%16 == 0) {
			/* 32b counter in the payload, big endian */
			txpkt.payload[16] = 0xff & (tx_cnt >> 24);
			txpkt.payload[17] = 0xff & (tx_cnt >> 16);
			txpkt.payload[18] = 0xff & (tx_cnt >> 8);
			txpkt.payload[19] = 0xff & tx_cnt;
			i = lgw_send(txpkt); /* non-blocking scheduling of TX packet */
			j = 0;
			printf("+++\nSending packet #%d, rf path %d, return %d\nstatus -> ", tx_cnt, txpkt.rf_chain, i);
			do {
				++j;
				wait_ms(100);
				lgw_status(TX_STATUS, &status_var); /* get TX status */
				printf("%d:", status_var);
			} while ((status_var != TX_FREE) && (j < 100));
			++tx_cnt;
			printf("\nTX finished\n");
		}
	}