void navigation_setangleerror(unsigned char gotnewgpsreading,fixedpointnum *angleerror)
   { // calculate the angle errors between our current attitude and the one we wish to have
   // and adjust the angle errors that were passed to us.  They have already been set by pilot input.
   // For now, we just override any pilot input.
   
   // keep track of the time between good gps readings.
   navigation_time_sliver+=global.timesliver;

   if (gotnewgpsreading)
      {
      // unshift our timesliver since we are about to use it. Since we are accumulating time, it may get too large to use while shifted.
      navigation_time_sliver=navigation_time_sliver>>TIMESLIVEREXTRASHIFT;
      
      // get the new distance and bearing from our current location to our target position
      global.navigation_distance=navigation_getdistanceandbearing(global.gps_current_latitude,global.gps_current_longitude,target_latitude,target_longitude,&global.navigation_bearing);

      // split the distance into it's ontrack and crosstrack components
      // see the diagram above
      fixedpointnum angledifference=global.navigation_bearing-navigation_starttodestbearing;
      fixedpointnum crosstrack_distance=lib_fp_multiply(global.navigation_distance,lib_fp_sine(angledifference));
      fixedpointnum ontrack_distance=lib_fp_multiply(global.navigation_distance,lib_fp_cosine(angledifference));

      // accumulate integrated error for both ontrack and crosstrack
      navigation_crosstrack_integrated_error+=lib_fp_multiply(crosstrack_distance,navigation_time_sliver);
      navigation_ontrack_integrated_error+=lib_fp_multiply(ontrack_distance,navigation_time_sliver);
      lib_fp_constrain(&navigation_crosstrack_integrated_error,-NAVIGATIONINTEGRATEDERRORLIMIT,NAVIGATIONINTEGRATEDERRORLIMIT);
      lib_fp_constrain(&navigation_ontrack_integrated_error,-NAVIGATIONINTEGRATEDERRORLIMIT,NAVIGATIONINTEGRATEDERRORLIMIT);

      // calculate the ontrack and crosstrack velocities toward our target.
      // We want to put the navigation velocity (change in distance to target over time) into a low pass filter but
      // we don't want to divide by the time interval to get velocity (divide is expensive) to then turn around and
      // multiply by the same time interval. So the following is the same as the lib_fp_lowpassfilter code
      // except we eliminate the multiply.
      // note: if we use a different time period than FIXEDPOINTONEOVERONE, we need to multiply the distances by the new time period.
      fixedpointnum fraction=lib_fp_multiply(navigation_time_sliver,FIXEDPOINTONEOVERONE);
      navigation_crosstrack_velocity=(navigation_last_crosstrack_distance-crosstrack_distance+lib_fp_multiply((FIXEDPOINTONE)-fraction,navigation_crosstrack_velocity));
      navigation_ontrack_velocity=(navigation_last_ontrack_distance-ontrack_distance+lib_fp_multiply((FIXEDPOINTONE)-fraction,navigation_ontrack_velocity));
      navigation_last_crosstrack_distance=crosstrack_distance;
      navigation_last_ontrack_distance=ontrack_distance;
   
      // calculate the desired tilt in each direction independently using navigation PID
      fixedpointnum crosstracktiltangle=lib_fp_multiply(usersettings.pid_pgain[NAVIGATIONINDEX],crosstrack_distance)
                                    +lib_fp_multiply(usersettings.pid_igain[NAVIGATIONINDEX],navigation_crosstrack_integrated_error)
                                    -lib_fp_multiply(usersettings.pid_dgain[NAVIGATIONINDEX],navigation_crosstrack_velocity);
                     
      fixedpointnum ontracktiltangle   =lib_fp_multiply(usersettings.pid_pgain[NAVIGATIONINDEX],ontrack_distance)
                                    +lib_fp_multiply(usersettings.pid_igain[NAVIGATIONINDEX],navigation_ontrack_integrated_error)
                                    -lib_fp_multiply(usersettings.pid_dgain[NAVIGATIONINDEX],navigation_ontrack_velocity);
      
      // don't tilt more than MAX_TILT
      lib_fp_constrain(&crosstracktiltangle,-MAX_TILT,MAX_TILT);
      lib_fp_constrain(&ontracktiltangle,-MAX_TILT,MAX_TILT);

      // Translate the ontrack and cross track tilts into pitch and roll tilts.
      // Set angledifference equal to the difference between the aircraft's heading (the way it's currently pointing)
      // and the angle between waypoints and rotate our tilts by that much.   
      angledifference=global.currentestimatedeulerattitude[YAWINDEX]-navigation_starttodestbearing;
   
      fixedpointnum sineofangle=lib_fp_sine(angledifference);
      fixedpointnum cosineofangle=lib_fp_cosine(angledifference);
   
      navigation_desiredeulerattitude[ROLLINDEX]=lib_fp_multiply(crosstracktiltangle,cosineofangle)-lib_fp_multiply(ontracktiltangle,sineofangle);
      navigation_desiredeulerattitude[PITCHINDEX]=lib_fp_multiply(crosstracktiltangle,sineofangle)+lib_fp_multiply(ontracktiltangle,cosineofangle);
   
      // for now, don't rotate the aircraft in the direction of travel. Add this later.
      
      navigation_time_sliver=0;
      }
   
   // set the angle error as the difference between where we want to be and where we currently are angle wise.
   angleerror[ROLLINDEX]=navigation_desiredeulerattitude[ROLLINDEX]-global.currentestimatedeulerattitude[ROLLINDEX];
   angleerror[PITCHINDEX]=navigation_desiredeulerattitude[PITCHINDEX]-global.currentestimatedeulerattitude[PITCHINDEX];

   // don't set the yaw.  Let the pilot do yaw
//   angleerror[YAWINDEX]=navigation_desiredeulerattitude[YAWINDEX]-global.currentestimatedeulerattitude[YAWINDEX];

   // don't let the yaw angle error get too large for any one cycle in order to control the maximum yaw rate.
//   lib_fp_constrain180(&angleerror[YAWINDEX]);
//   lib_fp_constrain(&angleerror[YAWINDEX],-MAXYAWANGLEERROR,MAXYAWANGLEERROR);
   }
Example #2
0
// It all starts here:
int main(void) {
    // start with default user settings in case there's nothing in eeprom
    default_user_settings();
    // try to load settings from eeprom
    read_user_settings_from_eeprom();
   
    // set our LED as a digital output
    lib_digitalio_initpin(LED1_OUTPUT,DIGITALOUTPUT);

    //initialize the libraries that require initialization
    lib_timers_init();
    lib_i2c_init();

    // pause a moment before initializing everything. To make sure everything is powered up
    lib_timers_delaymilliseconds(100);
   
    // initialize all other modules
    init_rx();
    init_outputs();
    serial_init();
    init_gyro();
    init_acc();
    init_baro();
    init_compass();
    init_gps();
    init_imu();
   
    // set the default i2c speed to 400 KHz.  If a device needs to slow it down, it can, but it should set it back.
    lib_i2c_setclockspeed(I2C_400_KHZ);

    // initialize state
    global.state.armed=0;
    global.state.calibratingCompass=0;
    global.state.calibratingAccAndGyro=0;
    global.state.navigationMode=NAVIGATION_MODE_OFF;
    global.failsafeTimer=lib_timers_starttimer();

    // run loop
    for(;;) {
      // check to see what switches are activated
      check_checkbox_items();
      
      // check for config program activity
      serial_check_for_action();   
      
      calculate_timesliver();
      
      // run the imu to estimate the current attitude of the aircraft
      imu_calculate_estimated_attitude();

      // arm and disarm via rx aux switches
      if (global.rxValues[THROTTLE_INDEX]<FPSTICKLOW) { // see if we want to change armed modes
          if (!global.state.armed) {
             if (global.activeCheckboxItems & CHECKBOX_MASK_ARM) {
                 global.state.armed=1;
                #if (GPS_TYPE!=NO_GPS)
                 navigation_set_home_to_current_location();
                #endif
                 global.home.heading=global.currentEstimatedEulerAttitude[YAW_INDEX];
                 global.home.location.altitude=global.baroRawAltitude;
             }
          } else if (!(global.activeCheckboxItems & CHECKBOX_MASK_ARM)) global.state.armed=0;
      }

      #if (GPS_TYPE!=NO_GPS)
      // turn on or off navigation when appropriate
      if (global.state.navigationMode==NAVIGATION_MODE_OFF) {
          if (global.activeCheckboxItems & CHECKBOX_MASK_RETURNTOHOME) { // return to home switch turned on
              navigation_set_destination(global.home.location.latitude,global.home.location.longitude);
              global.state.navigationMode=NAVIGATION_MODE_RETURN_TO_HOME;
          } else if (global.activeCheckboxItems & CHECKBOX_MASK_POSITIONHOLD) { // position hold turned on
              navigation_set_destination(global.gps.currentLatitude,global.gps.currentLongitude);
              global.state.navigationMode=NAVIGATION_MODE_POSITION_HOLD;
          }
      } else { // we are currently navigating
          // turn off navigation if desired
          if ((global.state.navigationMode==NAVIGATION_MODE_RETURN_TO_HOME && !(global.activeCheckboxItems & CHECKBOX_MASK_RETURNTOHOME)) || (global.state.navigationMode==NAVIGATION_MODE_POSITION_HOLD && !(global.activeCheckboxItems & CHECKBOX_MASK_POSITIONHOLD))) {
              global.state.navigationMode=NAVIGATION_MODE_OFF;
            
              // we will be turning control back over to the pilot.
              reset_pilot_control();
          }
      }
        #endif
      
       // read the receiver
       read_rx();
      
       // turn on the LED when we are stable and the gps has 5 satelites or more
      #if (GPS_TYPE==NO_GPS)
       lib_digitalio_setoutput(LED1_OUTPUT, (global.state.stable==0)==LED1_ON);
      #else
       lib_digitalio_setoutput(LED1_OUTPUT, (!(global.state.stable && global.gps.numSatelites>=5))==LED1_ON);
      #endif
      
       // get the angle error.  Angle error is the difference between our current attitude and our desired attitude.
       // It can be set by navigation, or by the pilot, etc.
       fixedpointnum angleError[3];
      
       // let the pilot control the aircraft.
       get_angle_error_from_pilot_input(angleError);
      
#if (GPS_TYPE!=NO_GPS)
       // read the gps
       unsigned char gotNewGpsReading=read_gps();

       // if we are navigating, use navigation to determine our desired attitude (tilt angles)
       if (global.state.navigationMode!=NAVIGATION_MODE_OFF) { // we are navigating
           navigation_set_angle_error(gotNewGpsReading,angleError);
       }
#endif

       if (global.rxValues[THROTTLE_INDEX]<FPSTICKLOW) {
           // We are probably on the ground. Don't accumnulate error when we can't correct it
           reset_pilot_control();
         
           // bleed off integrated error by averaging in a value of zero
           lib_fp_lowpassfilter(&global.integratedAngleError[ROLL_INDEX],0L,global.timesliver>>TIMESLIVEREXTRASHIFT,FIXEDPOINTONEOVERONEFOURTH,0);
           lib_fp_lowpassfilter(&global.integratedAngleError[PITCH_INDEX],0L,global.timesliver>>TIMESLIVEREXTRASHIFT,FIXEDPOINTONEOVERONEFOURTH,0);
           lib_fp_lowpassfilter(&global.integratedAngleError[YAW_INDEX],0L,global.timesliver>>TIMESLIVEREXTRASHIFT,FIXEDPOINTONEOVERONEFOURTH,0);
       }

#ifndef NO_AUTOTUNE
       // let autotune adjust the angle error if the pilot has autotune turned on
       if (global.activeCheckboxItems & CHECKBOX_MASK_AUTOTUNE) {
           if (!(global.previousActiveCheckboxItems & CHECKBOX_MASK_AUTOTUNE)) {
               autotune(angleError,AUTOTUNE_STARTING); // tell autotune that we just started autotuning
           } else {
               autotune(angleError,AUTOTUNE_TUNING); // tell autotune that we are in the middle of autotuning
           }
       } else if (global.previousActiveCheckboxItems & CHECKBOX_MASK_AUTOTUNE) {
           autotune(angleError,AUTOTUNE_STOPPING); // tell autotune that we just stopped autotuning
       }
#endif

        // This gets reset every loop cycle
        // keep a flag to indicate whether we shoud apply altitude hold.  The pilot can turn it on or
        // uncrashability/autopilot mode can turn it on.
        global.state.altitudeHold=0;
        
        if (global.activeCheckboxItems & CHECKBOX_MASK_ALTHOLD) {
            global.state.altitudeHold=1;
            if (!(global.previousActiveCheckboxItems & CHECKBOX_MASK_ALTHOLD)) {
                // we just turned on alt hold.  Remember our current alt. as our target
                global.altitudeHoldDesiredAltitude=global.altitude;
                global.integratedAltitudeError=0;
            }
        }
        
        fixedpointnum throttleOutput;
        
#ifndef NO_AUTOPILOT
        // autopilot is available
        if (global.activeCheckboxItems & CHECKBOX_MASK_AUTOPILOT) {
            if (!(global.previousActiveCheckboxItems & CHECKBOX_MASK_AUTOPILOT)) {
                // let autopilot know to transition to the starting state
                autopilot(AUTOPILOT_STARTING);
            } else {
                // autopilot normal run state
                autopilot(AUTOPILOT_RUNNING);
            }
        } else if (global.previousActiveCheckboxItems & CHECKBOX_MASK_AUTOPILOT) {
            // tell autopilot that we just stopped autotuning
            autopilot(AUTOPILOT_STOPPING);
        } else {
            // get the pilot's throttle component
            // convert from fixedpoint -1 to 1 to fixedpoint 0 to 1
            throttleOutput=(global.rxValues[THROTTLE_INDEX]>>1)+FIXEDPOINTCONSTANT(.5)+FPTHROTTLETOMOTOROFFSET;
        }
#else

       // get the pilot's throttle component
       // convert from fixedpoint -1 to 1 to fixedpoint 0 to 1
       throttleOutput=(global.rxValues[THROTTLE_INDEX]>>1)+FIXEDPOINTCONSTANT(.5)+FPTHROTTLETOMOTOROFFSET;
#endif

#ifndef NO_UNCRASHABLE
        uncrashable(gotNewGpsReading,angleError,&throttleOutput);
#endif
        
#if (BAROMETER_TYPE!=NO_BAROMETER)
       // check for altitude hold and adjust the throttle output accordingly
       if (global.state.altitudeHold) {
           global.integratedAltitudeError+=lib_fp_multiply(global.altitudeHoldDesiredAltitude-global.altitude,global.timesliver);
           lib_fp_constrain(&global.integratedAltitudeError,-INTEGRATED_ANGLE_ERROR_LIMIT,INTEGRATED_ANGLE_ERROR_LIMIT); // don't let the integrated error get too high
         
           // do pid for the altitude hold and add it to the throttle output
           throttleOutput+=lib_fp_multiply(global.altitudeHoldDesiredAltitude-global.altitude,settings.pid_pgain[ALTITUDE_INDEX])-lib_fp_multiply(global.altitudeVelocity,settings.pid_dgain[ALTITUDE_INDEX])+lib_fp_multiply(global.integratedAltitudeError,settings.pid_igain[ALTITUDE_INDEX]);
       }
#endif

#ifndef NO_AUTOTHROTTLE
       if ((global.activeCheckboxItems & CHECKBOX_MASK_AUTOTHROTTLE) || global.state.altitudeHold) {
           if (global.estimatedDownVector[Z_INDEX]>FIXEDPOINTCONSTANT(.3)) {
               // Divide the throttle by the throttleOutput by the z component of the down vector
               // This is probaly the slow way, but it's a way to do fixed point division
               fixedpointnum recriprocal=lib_fp_invsqrt(global.estimatedDownVector[Z_INDEX]);
               recriprocal=lib_fp_multiply(recriprocal,recriprocal);
         
               throttleOutput=lib_fp_multiply(throttleOutput-AUTOTHROTTLE_DEAD_AREA,recriprocal)+AUTOTHROTTLE_DEAD_AREA;
           }
       }
#endif

#ifndef NO_FAILSAFE
       // if we don't hear from the receiver for over a second, try to land safely
       if (lib_timers_gettimermicroseconds(global.failsafeTimer)>1000000L) {
           throttleOutput=FPFAILSAFEMOTOROUTPUT;

           // make sure we are level!
           angleError[ROLL_INDEX]=-global.currentEstimatedEulerAttitude[ROLL_INDEX];
           angleError[PITCH_INDEX]=-global.currentEstimatedEulerAttitude[PITCH_INDEX];
       }
#endif
        
       // calculate output values.  Output values will range from 0 to 1.0
       // calculate pid outputs based on our angleErrors as inputs
       fixedpointnum pidOutput[3];
      
       // Gain Scheduling essentialy modifies the gains depending on
       // throttle level. If GAIN_SCHEDULING_FACTOR is 1.0, it multiplies PID outputs by 1.5 when at full throttle,
       // 1.0 when at mid throttle, and .5 when at zero throttle.  This helps
       // eliminate the wobbles when decending at low throttle.
       fixedpointnum gainSchedulingMultiplier=lib_fp_multiply(throttleOutput-FIXEDPOINTCONSTANT(.5),FIXEDPOINTCONSTANT(GAIN_SCHEDULING_FACTOR))+FIXEDPOINTONE;
      
       for (int x=0;x<3;++x) {
           global.integratedAngleError[x]+=lib_fp_multiply(angleError[x],global.timesliver);
         
           // don't let the integrated error get too high (windup)
           lib_fp_constrain(&global.integratedAngleError[x],-INTEGRATED_ANGLE_ERROR_LIMIT,INTEGRATED_ANGLE_ERROR_LIMIT);
         
           // do the attitude pid
           pidOutput[x]=lib_fp_multiply(angleError[x],settings.pid_pgain[x])-lib_fp_multiply(global.gyrorate[x],settings.pid_dgain[x])+(lib_fp_multiply(global.integratedAngleError[x],settings.pid_igain[x])>>4);
            
           // add gain scheduling.
           pidOutput[x]=lib_fp_multiply(gainSchedulingMultiplier,pidOutput[x]);
       }

       lib_fp_constrain(&throttleOutput,0,FIXEDPOINTONE); // Keep throttle output between 0 and 1

       compute_mix(throttleOutput, pidOutput); // aircraft type dependent mixes
       
#if (NUM_SERVOS>0)
       // do not update servos during unarmed calibration of sensors which are sensitive to vibration
       if (global.state.armed || (!global.state.calibratingAccAndGyro)) write_servo_outputs();
#endif
       
       write_motor_outputs();
   }