static int cn23xx_vf_setup_global_input_regs(struct lio_device *lio_dev) { uint64_t q_no; uint64_t d64; PMD_INIT_FUNC_TRACE(); if (cn23xx_vf_reset_io_queues(lio_dev, lio_dev->sriov_info.rings_per_vf)) return -1; for (q_no = 0; q_no < (lio_dev->sriov_info.rings_per_vf); q_no++) { lio_write_csr64(lio_dev, CN23XX_SLI_IQ_DOORBELL(q_no), 0xFFFFFFFF); d64 = lio_read_csr64(lio_dev, CN23XX_SLI_IQ_INSTR_COUNT64(q_no)); d64 &= 0xEFFFFFFFFFFFFFFFL; lio_write_csr64(lio_dev, CN23XX_SLI_IQ_INSTR_COUNT64(q_no), d64); /* Select ES, RO, NS, RDSIZE,DPTR Fomat#0 for * the Input Queues */ lio_write_csr64(lio_dev, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), CN23XX_PKT_INPUT_CTL_MASK); } return 0; }
static int lio_cn23xx_pf_soft_reset(struct octeon_device *oct) { lio_write_csr64(oct, LIO_CN23XX_SLI_WIN_WR_MASK_REG, 0xFF); lio_dev_dbg(oct, "BIST enabled for CN23XX soft reset\n"); lio_write_csr64(oct, LIO_CN23XX_SLI_SCRATCH1, 0x1234ULL); /* Initiate chip-wide soft reset */ lio_pci_readq(oct, LIO_CN23XX_RST_SOFT_RST); lio_pci_writeq(oct, 1, LIO_CN23XX_RST_SOFT_RST); /* Wait for 100ms as Octeon resets. */ lio_mdelay(100); if (lio_read_csr64(oct, LIO_CN23XX_SLI_SCRATCH1)) { lio_dev_err(oct, "Soft reset failed\n"); return (1); } lio_dev_dbg(oct, "Reset completed\n"); /* restore the reset value */ lio_write_csr64(oct, LIO_CN23XX_SLI_WIN_WR_MASK_REG, 0xFF); return (0); }
static int lio_cn23xx_pf_setup_device_regs(struct octeon_device *oct) { lio_cn23xx_pf_enable_error_reporting(oct); /* program the MAC(0..3)_RINFO before setting up input/output regs */ lio_cn23xx_pf_setup_global_mac_regs(oct); if (lio_cn23xx_pf_setup_global_input_regs(oct)) return (-1); lio_cn23xx_pf_setup_global_output_regs(oct); /* * Default error timeout value should be 0x200000 to avoid host hang * when reads invalid register */ lio_write_csr64(oct, LIO_CN23XX_SLI_WINDOW_CTL, LIO_CN23XX_SLI_WINDOW_CTL_DEFAULT); /* set SLI_PKT_IN_JABBER to handle large VXLAN packets */ lio_write_csr64(oct, LIO_CN23XX_SLI_PKT_IN_JABBER, LIO_CN23XX_MAX_INPUT_JABBER); return (0); }
static int lio_cn23xx_pf_reset_io_queues(struct octeon_device *oct) { uint64_t d64; uint32_t ern, loop = BUSY_READING_REG_PF_LOOP_COUNT; uint32_t q_no, srn; int ret_val = 0; srn = oct->sriov_info.pf_srn; ern = srn + oct->sriov_info.num_pf_rings; /* As per HRM reg description, s/w cant write 0 to ENB. */ /* to make the queue off, need to set the RST bit. */ /* Reset the Enable bit for all the 64 IQs. */ for (q_no = srn; q_no < ern; q_no++) { /* set RST bit to 1. This bit applies to both IQ and OQ */ d64 = lio_read_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); d64 = d64 | LIO_CN23XX_PKT_INPUT_CTL_RST; lio_write_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no), d64); } /* wait until the RST bit is clear or the RST and quiet bits are set */ for (q_no = srn; q_no < ern; q_no++) { volatile uint64_t reg_val = lio_read_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); while ((reg_val & LIO_CN23XX_PKT_INPUT_CTL_RST) && !(reg_val & LIO_CN23XX_PKT_INPUT_CTL_QUIET) && loop) { reg_val = lio_read_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); loop--; } if (!loop) { lio_dev_err(oct, "clearing the reset reg failed or setting the quiet reg failed for qno: %u\n", q_no); return (-1); } reg_val &= ~LIO_CN23XX_PKT_INPUT_CTL_RST; lio_write_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no), reg_val); reg_val = lio_read_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); if (reg_val & LIO_CN23XX_PKT_INPUT_CTL_RST) { lio_dev_err(oct, "clearing the reset failed for qno: %u\n", q_no); ret_val = -1; } } return (ret_val); }
static int cn23xx_vf_reset_io_queues(struct lio_device *lio_dev, uint32_t num_queues) { uint32_t loop = CN23XX_VF_BUSY_READING_REG_LOOP_COUNT; uint64_t d64, q_no; int ret_val = 0; PMD_INIT_FUNC_TRACE(); for (q_no = 0; q_no < num_queues; q_no++) { /* set RST bit to 1. This bit applies to both IQ and OQ */ d64 = lio_read_csr64(lio_dev, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); d64 = d64 | CN23XX_PKT_INPUT_CTL_RST; lio_write_csr64(lio_dev, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), d64); } /* wait until the RST bit is clear or the RST and QUIET bits are set */ for (q_no = 0; q_no < num_queues; q_no++) { volatile uint64_t reg_val; reg_val = lio_read_csr64(lio_dev, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); while ((reg_val & CN23XX_PKT_INPUT_CTL_RST) && !(reg_val & CN23XX_PKT_INPUT_CTL_QUIET) && loop) { reg_val = lio_read_csr64( lio_dev, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); loop = loop - 1; } if (loop == 0) { lio_dev_err(lio_dev, "clearing the reset reg failed or setting the quiet reg failed for qno: %lu\n", (unsigned long)q_no); return -1; } reg_val = reg_val & ~CN23XX_PKT_INPUT_CTL_RST; lio_write_csr64(lio_dev, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), reg_val); reg_val = lio_read_csr64( lio_dev, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); if (reg_val & CN23XX_PKT_INPUT_CTL_RST) { lio_dev_err(lio_dev, "clearing the reset failed for qno: %lu\n", (unsigned long)q_no); ret_val = -1; } } return ret_val; }
static void lio_cn23xx_pf_setup_oq_regs(struct octeon_device *oct, uint32_t oq_no) { struct lio_droq *droq = oct->droq[oq_no]; struct lio_cn23xx_pf *cn23xx = (struct lio_cn23xx_pf *)oct->chip; uint64_t cnt_threshold; uint64_t time_threshold; uint32_t reg_val; oq_no += oct->sriov_info.pf_srn; lio_write_csr64(oct, LIO_CN23XX_SLI_OQ_BASE_ADDR64(oq_no), droq->desc_ring_dma); lio_write_csr32(oct, LIO_CN23XX_SLI_OQ_SIZE(oq_no), droq->max_count); lio_write_csr32(oct, LIO_CN23XX_SLI_OQ_BUFF_INFO_SIZE(oq_no), droq->buffer_size); /* pkt_sent and pkts_credit regs */ droq->pkts_sent_reg = LIO_CN23XX_SLI_OQ_PKTS_SENT(oq_no); droq->pkts_credit_reg = LIO_CN23XX_SLI_OQ_PKTS_CREDIT(oq_no); if (!oct->msix_on) { /* * Enable this output queue to generate Packet Timer * Interrupt */ reg_val = lio_read_csr32(oct, LIO_CN23XX_SLI_OQ_PKT_CONTROL(oq_no)); reg_val |= LIO_CN23XX_PKT_OUTPUT_CTL_TENB; lio_write_csr32(oct, LIO_CN23XX_SLI_OQ_PKT_CONTROL(oq_no), reg_val); /* * Enable this output queue to generate Packet Count * Interrupt */ reg_val = lio_read_csr32(oct, LIO_CN23XX_SLI_OQ_PKT_CONTROL(oq_no)); reg_val |= LIO_CN23XX_PKT_OUTPUT_CTL_CENB; lio_write_csr32(oct, LIO_CN23XX_SLI_OQ_PKT_CONTROL(oq_no), reg_val); } else { time_threshold = lio_cn23xx_pf_get_oq_ticks(oct, (uint32_t)LIO_GET_OQ_INTR_TIME_CFG(cn23xx->conf)); cnt_threshold = (uint32_t)LIO_GET_OQ_INTR_PKT_CFG(cn23xx->conf); lio_write_csr64(oct, LIO_CN23XX_SLI_OQ_PKT_INT_LEVELS(oq_no), ((time_threshold << 32 | cnt_threshold))); } }
static int cn23xx_vf_enable_io_queues(struct lio_device *lio_dev) { uint32_t q_no; PMD_INIT_FUNC_TRACE(); for (q_no = 0; q_no < lio_dev->num_iqs; q_no++) { uint64_t reg_val; /* set the corresponding IQ IS_64B bit */ if (lio_dev->io_qmask.iq64B & (1ULL << q_no)) { reg_val = lio_read_csr64( lio_dev, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); reg_val = reg_val | CN23XX_PKT_INPUT_CTL_IS_64B; lio_write_csr64(lio_dev, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), reg_val); } /* set the corresponding IQ ENB bit */ if (lio_dev->io_qmask.iq & (1ULL << q_no)) { reg_val = lio_read_csr64( lio_dev, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); reg_val = reg_val | CN23XX_PKT_INPUT_CTL_RING_ENB; lio_write_csr64(lio_dev, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), reg_val); } } for (q_no = 0; q_no < lio_dev->num_oqs; q_no++) { uint32_t reg_val; /* set the corresponding OQ ENB bit */ if (lio_dev->io_qmask.oq & (1ULL << q_no)) { reg_val = lio_read_csr( lio_dev, CN23XX_SLI_OQ_PKT_CONTROL(q_no)); reg_val = reg_val | CN23XX_PKT_OUTPUT_CTL_RING_ENB; lio_write_csr(lio_dev, CN23XX_SLI_OQ_PKT_CONTROL(q_no), reg_val); } } return 0; }
static void lio_cn23xx_pf_disable_interrupt(struct octeon_device *oct, uint8_t intr_flag) { struct lio_cn23xx_pf *cn23xx = (struct lio_cn23xx_pf *)oct->chip; uint64_t intr_val = 0; /* Disable Interrupts */ if (intr_flag == OCTEON_ALL_INTR) { lio_write_csr64(oct, cn23xx->intr_enb_reg64, 0); } else if (intr_flag & OCTEON_OUTPUT_INTR) { intr_val = lio_read_csr64(oct, cn23xx->intr_enb_reg64); intr_val &= ~LIO_CN23XX_INTR_PKT_DATA; lio_write_csr64(oct, cn23xx->intr_enb_reg64, intr_val); } }
static void lio_cn23xx_pf_interrupt_handler(void *dev) { struct octeon_device *oct = (struct octeon_device *)dev; struct lio_cn23xx_pf *cn23xx = (struct lio_cn23xx_pf *)oct->chip; uint64_t intr64; lio_dev_dbg(oct, "In %s octeon_dev @ %p\n", __func__, oct); intr64 = lio_read_csr64(oct, cn23xx->intr_sum_reg64); oct->int_status = 0; if (intr64 & LIO_CN23XX_INTR_ERR) lio_dev_err(oct, "Error Intr: 0x%016llx\n", LIO_CAST64(intr64)); if (oct->msix_on != LIO_FLAG_MSIX_ENABLED) { if (intr64 & LIO_CN23XX_INTR_PKT_DATA) oct->int_status |= LIO_DEV_INTR_PKT_DATA; } if (intr64 & (LIO_CN23XX_INTR_DMA0_FORCE)) oct->int_status |= LIO_DEV_INTR_DMA0_FORCE; if (intr64 & (LIO_CN23XX_INTR_DMA1_FORCE)) oct->int_status |= LIO_DEV_INTR_DMA1_FORCE; /* Clear the current interrupts */ lio_write_csr64(oct, cn23xx->intr_sum_reg64, intr64); }
static void lio_cn23xx_pf_setup_global_mac_regs(struct octeon_device *oct) { uint64_t reg_val; uint16_t mac_no = oct->pcie_port; uint16_t pf_num = oct->pf_num; /* programming SRN and TRS for each MAC(0..3) */ lio_dev_dbg(oct, "%s: Using pcie port %d\n", __func__, mac_no); /* By default, mapping all 64 IOQs to a single MACs */ reg_val = lio_read_csr64(oct, LIO_CN23XX_SLI_PKT_MAC_RINFO64(mac_no, pf_num)); /* setting SRN <6:0> */ reg_val = pf_num * LIO_CN23XX_PF_MAX_RINGS; /* setting TRS <23:16> */ reg_val = reg_val | (oct->sriov_info.trs << LIO_CN23XX_PKT_MAC_CTL_RINFO_TRS_BIT_POS); /* write these settings to MAC register */ lio_write_csr64(oct, LIO_CN23XX_SLI_PKT_MAC_RINFO64(mac_no, pf_num), reg_val); lio_dev_dbg(oct, "SLI_PKT_MAC(%d)_PF(%d)_RINFO : 0x%016llx\n", mac_no, pf_num, LIO_CAST64(lio_read_csr64(oct, LIO_CN23XX_SLI_PKT_MAC_RINFO64(mac_no, pf_num)))); }
static void cn23xx_vf_setup_iq_regs(struct lio_device *lio_dev, uint32_t iq_no) { struct lio_instr_queue *iq = lio_dev->instr_queue[iq_no]; uint64_t pkt_in_done = 0; PMD_INIT_FUNC_TRACE(); /* Write the start of the input queue's ring and its size */ lio_write_csr64(lio_dev, CN23XX_SLI_IQ_BASE_ADDR64(iq_no), iq->base_addr_dma); lio_write_csr(lio_dev, CN23XX_SLI_IQ_SIZE(iq_no), iq->max_count); /* Remember the doorbell & instruction count register addr * for this queue */ iq->doorbell_reg = (uint8_t *)lio_dev->hw_addr + CN23XX_SLI_IQ_DOORBELL(iq_no); iq->inst_cnt_reg = (uint8_t *)lio_dev->hw_addr + CN23XX_SLI_IQ_INSTR_COUNT64(iq_no); lio_dev_dbg(lio_dev, "InstQ[%d]:dbell reg @ 0x%p instcnt_reg @ 0x%p\n", iq_no, iq->doorbell_reg, iq->inst_cnt_reg); /* Store the current instruction counter (used in flush_iq * calculation) */ pkt_in_done = rte_read64(iq->inst_cnt_reg); /* Clear the count by writing back what we read, but don't * enable data traffic here */ rte_write64(pkt_in_done, iq->inst_cnt_reg); }
static void lio_cn23xx_pf_enable_interrupt(struct octeon_device *oct, uint8_t intr_flag) { struct lio_cn23xx_pf *cn23xx = (struct lio_cn23xx_pf *)oct->chip; uint64_t intr_val = 0; /* Divide the single write to multiple writes based on the flag. */ /* Enable Interrupt */ if (intr_flag == OCTEON_ALL_INTR) { lio_write_csr64(oct, cn23xx->intr_enb_reg64, cn23xx->intr_mask64); } else if (intr_flag & OCTEON_OUTPUT_INTR) { intr_val = lio_read_csr64(oct, cn23xx->intr_enb_reg64); intr_val |= LIO_CN23XX_INTR_PKT_DATA; lio_write_csr64(oct, cn23xx->intr_enb_reg64, intr_val); } }
static void lio_cn23xx_pf_setup_iq_regs(struct octeon_device *oct, uint32_t iq_no) { struct lio_instr_queue *iq = oct->instr_queue[iq_no]; uint64_t pkt_in_done; iq_no += oct->sriov_info.pf_srn; /* Write the start of the input queue's ring and its size */ lio_write_csr64(oct, LIO_CN23XX_SLI_IQ_BASE_ADDR64(iq_no), iq->base_addr_dma); lio_write_csr32(oct, LIO_CN23XX_SLI_IQ_SIZE(iq_no), iq->max_count); /* * Remember the doorbell & instruction count register addr * for this queue */ iq->doorbell_reg = LIO_CN23XX_SLI_IQ_DOORBELL(iq_no); iq->inst_cnt_reg = LIO_CN23XX_SLI_IQ_INSTR_COUNT64(iq_no); lio_dev_dbg(oct, "InstQ[%d]:dbell reg @ 0x%x instcnt_reg @ 0x%x\n", iq_no, iq->doorbell_reg, iq->inst_cnt_reg); /* * Store the current instruction counter (used in flush_iq * calculation) */ pkt_in_done = lio_read_csr64(oct, iq->inst_cnt_reg); if (oct->msix_on) { /* Set CINT_ENB to enable IQ interrupt */ lio_write_csr64(oct, iq->inst_cnt_reg, (pkt_in_done | LIO_CN23XX_INTR_CINT_ENB)); } else { /* * Clear the count by writing back what we read, but don't * enable interrupts */ lio_write_csr64(oct, iq->inst_cnt_reg, pkt_in_done); } iq->reset_instr_cnt = 0; }
int cn23xx_vf_set_io_queues_off(struct lio_device *lio_dev) { uint32_t loop = CN23XX_VF_BUSY_READING_REG_LOOP_COUNT; uint64_t q_no; /* Disable the i/p and o/p queues for this Octeon. * IOQs will already be in reset. * If RST bit is set, wait for Quiet bit to be set * Once Quiet bit is set, clear the RST bit */ PMD_INIT_FUNC_TRACE(); for (q_no = 0; q_no < lio_dev->sriov_info.rings_per_vf; q_no++) { volatile uint64_t reg_val; reg_val = lio_read_csr64(lio_dev, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); while ((reg_val & CN23XX_PKT_INPUT_CTL_RST) && !(reg_val & CN23XX_PKT_INPUT_CTL_QUIET) && loop) { reg_val = lio_read_csr64( lio_dev, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); loop = loop - 1; } if (loop == 0) { lio_dev_err(lio_dev, "clearing the reset reg failed or setting the quiet reg failed for qno %lu\n", (unsigned long)q_no); return -1; } reg_val = reg_val & ~CN23XX_PKT_INPUT_CTL_RST; lio_write_csr64(lio_dev, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), reg_val); reg_val = lio_read_csr64(lio_dev, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); if (reg_val & CN23XX_PKT_INPUT_CTL_RST) { lio_dev_err(lio_dev, "unable to reset qno %lu\n", (unsigned long)q_no); return -1; } } return 0; }
static void cn23xx_vf_setup_oq_regs(struct lio_device *lio_dev, uint32_t oq_no) { struct lio_droq *droq = lio_dev->droq[oq_no]; PMD_INIT_FUNC_TRACE(); lio_write_csr64(lio_dev, CN23XX_SLI_OQ_BASE_ADDR64(oq_no), droq->desc_ring_dma); lio_write_csr(lio_dev, CN23XX_SLI_OQ_SIZE(oq_no), droq->max_count); lio_write_csr(lio_dev, CN23XX_SLI_OQ_BUFF_INFO_SIZE(oq_no), (droq->buffer_size | (OCTEON_RH_SIZE << 16))); /* Get the mapped address of the pkt_sent and pkts_credit regs */ droq->pkts_sent_reg = (uint8_t *)lio_dev->hw_addr + CN23XX_SLI_OQ_PKTS_SENT(oq_no); droq->pkts_credit_reg = (uint8_t *)lio_dev->hw_addr + CN23XX_SLI_OQ_PKTS_CREDIT(oq_no); }
static int lio_cn23xx_pf_setup_global_input_regs(struct octeon_device *oct) { struct lio_cn23xx_pf *cn23xx = (struct lio_cn23xx_pf *)oct->chip; struct lio_instr_queue *iq; uint64_t intr_threshold; uint64_t pf_num, reg_val; uint32_t q_no, ern, srn; pf_num = oct->pf_num; srn = oct->sriov_info.pf_srn; ern = srn + oct->sriov_info.num_pf_rings; if (lio_cn23xx_pf_reset_io_queues(oct)) return (-1); /* * Set the MAC_NUM and PVF_NUM in IQ_PKT_CONTROL reg * for all queues.Only PF can set these bits. * bits 29:30 indicate the MAC num. * bits 32:47 indicate the PVF num. */ for (q_no = 0; q_no < ern; q_no++) { reg_val = oct->pcie_port << LIO_CN23XX_PKT_INPUT_CTL_MAC_NUM_POS; reg_val |= pf_num << LIO_CN23XX_PKT_INPUT_CTL_PF_NUM_POS; lio_write_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no), reg_val); } /* * Select ES, RO, NS, RDSIZE,DPTR Fomat#0 for * pf queues */ for (q_no = srn; q_no < ern; q_no++) { uint32_t inst_cnt_reg; iq = oct->instr_queue[q_no]; if (iq != NULL) inst_cnt_reg = iq->inst_cnt_reg; else inst_cnt_reg = LIO_CN23XX_SLI_IQ_INSTR_COUNT64(q_no); reg_val = lio_read_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); reg_val |= LIO_CN23XX_PKT_INPUT_CTL_MASK; lio_write_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no), reg_val); /* Set WMARK level for triggering PI_INT */ /* intr_threshold = LIO_CN23XX_DEF_IQ_INTR_THRESHOLD & */ intr_threshold = LIO_GET_IQ_INTR_PKT_CFG(cn23xx->conf) & LIO_CN23XX_PKT_IN_DONE_WMARK_MASK; lio_write_csr64(oct, inst_cnt_reg, (lio_read_csr64(oct, inst_cnt_reg) & ~(LIO_CN23XX_PKT_IN_DONE_WMARK_MASK << LIO_CN23XX_PKT_IN_DONE_WMARK_BIT_POS)) | (intr_threshold << LIO_CN23XX_PKT_IN_DONE_WMARK_BIT_POS)); } return (0); }
static void lio_cn23xx_pf_setup_global_output_regs(struct octeon_device *oct) { struct lio_cn23xx_pf *cn23xx = (struct lio_cn23xx_pf *)oct->chip; uint64_t time_threshold; uint32_t ern, q_no, reg_val, srn; srn = oct->sriov_info.pf_srn; ern = srn + oct->sriov_info.num_pf_rings; if (LIO_GET_IS_SLI_BP_ON_CFG(cn23xx->conf)) { lio_write_csr64(oct, LIO_CN23XX_SLI_OQ_WMARK, 32); } else { /* Set Output queue watermark to 0 to disable backpressure */ lio_write_csr64(oct, LIO_CN23XX_SLI_OQ_WMARK, 0); } for (q_no = srn; q_no < ern; q_no++) { reg_val = lio_read_csr32(oct, LIO_CN23XX_SLI_OQ_PKT_CONTROL(q_no)); /* set IPTR & DPTR */ reg_val |= LIO_CN23XX_PKT_OUTPUT_CTL_DPTR; /* reset BMODE */ reg_val &= ~(LIO_CN23XX_PKT_OUTPUT_CTL_BMODE); /* * No Relaxed Ordering, No Snoop, 64-bit Byte swap for * Output Queue ScatterList reset ROR_P, NSR_P */ reg_val &= ~(LIO_CN23XX_PKT_OUTPUT_CTL_ROR_P); reg_val &= ~(LIO_CN23XX_PKT_OUTPUT_CTL_NSR_P); #if BYTE_ORDER == LITTLE_ENDIAN reg_val &= ~(LIO_CN23XX_PKT_OUTPUT_CTL_ES_P); #else /* BYTE_ORDER != LITTLE_ENDIAN */ reg_val |= (LIO_CN23XX_PKT_OUTPUT_CTL_ES_P); #endif /* BYTE_ORDER == LITTLE_ENDIAN */ /* * No Relaxed Ordering, No Snoop, 64-bit Byte swap for * Output Queue Data reset ROR, NSR */ reg_val &= ~(LIO_CN23XX_PKT_OUTPUT_CTL_ROR); reg_val &= ~(LIO_CN23XX_PKT_OUTPUT_CTL_NSR); /* set the ES bit */ reg_val |= (LIO_CN23XX_PKT_OUTPUT_CTL_ES); /* write all the selected settings */ lio_write_csr32(oct, LIO_CN23XX_SLI_OQ_PKT_CONTROL(q_no), reg_val); /* * Enabling these interrupt in oct->fn_list.enable_interrupt() * routine which called after IOQ init. * Set up interrupt packet and time thresholds * for all the OQs */ time_threshold =lio_cn23xx_pf_get_oq_ticks( oct, (uint32_t)LIO_GET_OQ_INTR_TIME_CFG(cn23xx->conf)); lio_write_csr64(oct, LIO_CN23XX_SLI_OQ_PKT_INT_LEVELS(q_no), (LIO_GET_OQ_INTR_PKT_CFG(cn23xx->conf) | (time_threshold << 32))); } /* Setting the water mark level for pko back pressure * */ lio_write_csr64(oct, LIO_CN23XX_SLI_OQ_WMARK, 0x40); /* Enable channel-level backpressure */ if (oct->pf_num) lio_write_csr64(oct, LIO_CN23XX_SLI_OUT_BP_EN2_W1S, 0xffffffffffffffffULL); else lio_write_csr64(oct, LIO_CN23XX_SLI_OUT_BP_EN_W1S, 0xffffffffffffffffULL); }
int lio_cn23xx_pf_setup_device(struct octeon_device *oct) { uint64_t BAR0, BAR1; uint32_t data32; data32 = lio_read_pci_cfg(oct, 0x10); BAR0 = (uint64_t)(data32 & ~0xf); data32 = lio_read_pci_cfg(oct, 0x14); BAR0 |= ((uint64_t)data32 << 32); data32 = lio_read_pci_cfg(oct, 0x18); BAR1 = (uint64_t)(data32 & ~0xf); data32 = lio_read_pci_cfg(oct, 0x1c); BAR1 |= ((uint64_t)data32 << 32); if (!BAR0 || !BAR1) { if (!BAR0) lio_dev_err(oct, "Device BAR0 unassigned\n"); if (!BAR1) lio_dev_err(oct, "Device BAR1 unassigned\n"); return (1); } if (lio_map_pci_barx(oct, 0)) return (1); if (lio_map_pci_barx(oct, 1)) { lio_dev_err(oct, "%s CN23XX BAR1 map failed\n", __func__); lio_unmap_pci_barx(oct, 0); return (1); } lio_cn23xx_pf_get_pf_num(oct); if (lio_cn23xx_pf_sriov_config(oct)) { lio_unmap_pci_barx(oct, 0); lio_unmap_pci_barx(oct, 1); return (1); } lio_write_csr64(oct, LIO_CN23XX_SLI_MAC_CREDIT_CNT, 0x3F802080802080ULL); oct->fn_list.setup_iq_regs = lio_cn23xx_pf_setup_iq_regs; oct->fn_list.setup_oq_regs = lio_cn23xx_pf_setup_oq_regs; oct->fn_list.process_interrupt_regs = lio_cn23xx_pf_interrupt_handler; oct->fn_list.msix_interrupt_handler = lio_cn23xx_pf_msix_interrupt_handler; oct->fn_list.soft_reset = lio_cn23xx_pf_soft_reset; oct->fn_list.setup_device_regs = lio_cn23xx_pf_setup_device_regs; oct->fn_list.update_iq_read_idx = lio_cn23xx_pf_update_read_index; oct->fn_list.bar1_idx_setup = lio_cn23xx_pf_bar1_idx_setup; oct->fn_list.bar1_idx_write = lio_cn23xx_pf_bar1_idx_write; oct->fn_list.bar1_idx_read = lio_cn23xx_pf_bar1_idx_read; oct->fn_list.enable_interrupt = lio_cn23xx_pf_enable_interrupt; oct->fn_list.disable_interrupt = lio_cn23xx_pf_disable_interrupt; oct->fn_list.enable_io_queues = lio_cn23xx_pf_enable_io_queues; oct->fn_list.disable_io_queues = lio_cn23xx_pf_disable_io_queues; lio_cn23xx_pf_setup_reg_address(oct); oct->coproc_clock_rate = 1000000ULL * lio_cn23xx_pf_coprocessor_clock(oct); return (0); }
static int lio_cn23xx_pf_enable_io_queues(struct octeon_device *oct) { uint64_t reg_val; uint32_t ern, loop = BUSY_READING_REG_PF_LOOP_COUNT; uint32_t q_no, srn; srn = oct->sriov_info.pf_srn; ern = srn + oct->num_iqs; for (q_no = srn; q_no < ern; q_no++) { /* set the corresponding IQ IS_64B bit */ if (oct->io_qmask.iq64B & BIT_ULL(q_no - srn)) { reg_val = lio_read_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); reg_val = reg_val | LIO_CN23XX_PKT_INPUT_CTL_IS_64B; lio_write_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no), reg_val); } /* set the corresponding IQ ENB bit */ if (oct->io_qmask.iq & BIT_ULL(q_no - srn)) { /* * IOQs are in reset by default in PEM2 mode, * clearing reset bit */ reg_val = lio_read_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); if (reg_val & LIO_CN23XX_PKT_INPUT_CTL_RST) { while ((reg_val & LIO_CN23XX_PKT_INPUT_CTL_RST) && !(reg_val & LIO_CN23XX_PKT_INPUT_CTL_QUIET) && loop) { reg_val = lio_read_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); loop--; } if (!loop) { lio_dev_err(oct, "clearing the reset reg failed or setting the quiet reg failed for qno: %u\n", q_no); return (-1); } reg_val = reg_val & ~LIO_CN23XX_PKT_INPUT_CTL_RST; lio_write_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no), reg_val); reg_val = lio_read_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); if (reg_val & LIO_CN23XX_PKT_INPUT_CTL_RST) { lio_dev_err(oct, "clearing the reset failed for qno: %u\n", q_no); return (-1); } } reg_val = lio_read_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); reg_val = reg_val | LIO_CN23XX_PKT_INPUT_CTL_RING_ENB; lio_write_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no), reg_val); } } for (q_no = srn; q_no < ern; q_no++) { uint32_t reg_val; /* set the corresponding OQ ENB bit */ if (oct->io_qmask.oq & BIT_ULL(q_no - srn)) { reg_val = lio_read_csr32(oct, LIO_CN23XX_SLI_OQ_PKT_CONTROL(q_no)); reg_val = reg_val | LIO_CN23XX_PKT_OUTPUT_CTL_RING_ENB; lio_write_csr32(oct, LIO_CN23XX_SLI_OQ_PKT_CONTROL(q_no), reg_val); } } return (0); }
static void lio_cn23xx_pf_disable_io_queues(struct octeon_device *oct) { volatile uint64_t d64; volatile uint32_t d32; int loop; unsigned int q_no; uint32_t ern, srn; srn = oct->sriov_info.pf_srn; ern = srn + oct->num_iqs; /* Disable Input Queues. */ for (q_no = srn; q_no < ern; q_no++) { loop = lio_ms_to_ticks(1000); /* start the Reset for a particular ring */ d64 = lio_read_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); d64 &= ~LIO_CN23XX_PKT_INPUT_CTL_RING_ENB; d64 |= LIO_CN23XX_PKT_INPUT_CTL_RST; lio_write_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no), d64); /* * Wait until hardware indicates that the particular IQ * is out of reset. */ d64 = lio_read_csr64(oct, LIO_CN23XX_SLI_PKT_IOQ_RING_RST); while (!(d64 & BIT_ULL(q_no)) && loop--) { d64 = lio_read_csr64(oct, LIO_CN23XX_SLI_PKT_IOQ_RING_RST); lio_sleep_timeout(1); loop--; } /* Reset the doorbell register for this Input Queue. */ lio_write_csr32(oct, LIO_CN23XX_SLI_IQ_DOORBELL(q_no), 0xFFFFFFFF); while (((lio_read_csr64(oct, LIO_CN23XX_SLI_IQ_DOORBELL(q_no))) != 0ULL) && loop--) { lio_sleep_timeout(1); } } /* Disable Output Queues. */ for (q_no = srn; q_no < ern; q_no++) { loop = lio_ms_to_ticks(1000); /* * Wait until hardware indicates that the particular IQ * is out of reset.It given that SLI_PKT_RING_RST is * common for both IQs and OQs */ d64 = lio_read_csr64(oct, LIO_CN23XX_SLI_PKT_IOQ_RING_RST); while (!(d64 & BIT_ULL(q_no)) && loop--) { d64 = lio_read_csr64(oct, LIO_CN23XX_SLI_PKT_IOQ_RING_RST); lio_sleep_timeout(1); loop--; } /* Reset the doorbell register for this Output Queue. */ lio_write_csr32(oct, LIO_CN23XX_SLI_OQ_PKTS_CREDIT(q_no), 0xFFFFFFFF); while ((lio_read_csr64(oct, LIO_CN23XX_SLI_OQ_PKTS_CREDIT(q_no)) != 0ULL) && loop--) { lio_sleep_timeout(1); } /* clear the SLI_PKT(0..63)_CNTS[CNT] reg value */ d32 = lio_read_csr32(oct, LIO_CN23XX_SLI_OQ_PKTS_SENT(q_no)); lio_write_csr32(oct, LIO_CN23XX_SLI_OQ_PKTS_SENT(q_no), d32); } }