box get_region_box(float *x, float *biases, int n, int index, int i, int j, int w, int h) { box b; b.x = (i + logistic_activate(x[index + 0])) / w; b.y = (j + logistic_activate(x[index + 1])) / h; b.w = exp(x[index + 2]) * biases[2*n]; b.h = exp(x[index + 3]) * biases[2*n+1]; if(DOABS){ b.w = exp(x[index + 2]) * biases[2*n] / w; b.h = exp(x[index + 3]) * biases[2*n+1] / h; } return b; }
float activate(float x, ACTIVATION a) { switch(a){ case LINEAR: return linear_activate(x); case LOGISTIC: return logistic_activate(x); case LOGGY: return loggy_activate(x); case RELU: return relu_activate(x); case ELU: return elu_activate(x); case RELIE: return relie_activate(x); case RAMP: return ramp_activate(x); case LEAKY: return leaky_activate(x); case TANH: return tanh_activate(x); case PLSE: return plse_activate(x); case STAIR: return stair_activate(x); case HARDTAN: return hardtan_activate(x); } return 0; }
void logit_activate_array(float *x, const int n) { int i; for(i = 0; i < n; ++i){ x[i] = logistic_activate(x[i]); } }
float delta_region_box(box truth, float *x, float *biases, int n, int index, int i, int j, int w, int h, float *delta, float scale) { box pred = get_region_box(x, biases, n, index, i, j, w, h); float iou = box_iou(pred, truth); float tx = (truth.x*w - i); float ty = (truth.y*h - j); float tw = log(truth.w / biases[2*n]); float th = log(truth.h / biases[2*n + 1]); if(DOABS){ tw = log(truth.w*w / biases[2*n]); th = log(truth.h*h / biases[2*n + 1]); } delta[index + 0] = scale * (tx - logistic_activate(x[index + 0])) * logistic_gradient(logistic_activate(x[index + 0])); delta[index + 1] = scale * (ty - logistic_activate(x[index + 1])) * logistic_gradient(logistic_activate(x[index + 1])); delta[index + 2] = scale * (tw - x[index + 2]); delta[index + 3] = scale * (th - x[index + 3]); return iou; }
void activate_array(float *x, const int n, const ACTIVATION a) { int i; if (a == LINEAR) {} else if (a == LEAKY) { #pragma omp parallel for for (i = 0; i < n; ++i) { x[i] = leaky_activate(x[i]); } } else if (a == LOGISTIC) { #pragma omp parallel for for (i = 0; i < n; ++i) { x[i] = logistic_activate(x[i]); } } else { for (i = 0; i < n; ++i) { x[i] = activate(x[i], a); } } }
void forward_region_layer(const region_layer l, network_state state) { int i,j,b,t,n; int size = l.coords + l.classes + 1; memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float)); #ifndef GPU flatten(l.output, l.w*l.h, size*l.n, l.batch, 1); #endif for (b = 0; b < l.batch; ++b){ for(i = 0; i < l.h*l.w*l.n; ++i){ int index = size*i + b*l.outputs; l.output[index + 4] = logistic_activate(l.output[index + 4]); } } #ifndef GPU if (l.softmax_tree){ for (b = 0; b < l.batch; ++b){ for(i = 0; i < l.h*l.w*l.n; ++i){ int index = size*i + b*l.outputs; softmax_tree(l.output + index + 5, 1, 0, 1, l.softmax_tree, l.output + index + 5); } } } else if (l.softmax){ for (b = 0; b < l.batch; ++b){ for(i = 0; i < l.h*l.w*l.n; ++i){ int index = size*i + b*l.outputs; softmax(l.output + index + 5, l.classes, 1, l.output + index + 5, 1); } } } #endif if(!state.train) return; memset(l.delta, 0, l.outputs * l.batch * sizeof(float)); float avg_iou = 0; float recall = 0; float avg_cat = 0; float avg_obj = 0; float avg_anyobj = 0; int count = 0; int class_count = 0; *(l.cost) = 0; for (b = 0; b < l.batch; ++b) { if(l.softmax_tree){ int onlyclass_id = 0; for(t = 0; t < l.max_boxes; ++t){ box truth = float_to_box(state.truth + t*5 + b*l.truths); if(!truth.x) break; // continue; int class_id = state.truth[t*5 + b*l.truths + 4]; float maxp = 0; int maxi = 0; if(truth.x > 100000 && truth.y > 100000){ for(n = 0; n < l.n*l.w*l.h; ++n){ int index = size*n + b*l.outputs + 5; float scale = l.output[index-1]; float p = scale*get_hierarchy_probability(l.output + index, l.softmax_tree, class_id); if(p > maxp){ maxp = p; maxi = n; } } int index = size*maxi + b*l.outputs + 5; delta_region_class(l.output, l.delta, index, class_id, l.classes, l.softmax_tree, l.class_scale, &avg_cat, l.focal_loss); ++class_count; onlyclass_id = 1; break; } } if(onlyclass_id) continue; } for (j = 0; j < l.h; ++j) { for (i = 0; i < l.w; ++i) { for (n = 0; n < l.n; ++n) { int index = size*(j*l.w*l.n + i*l.n + n) + b*l.outputs; box pred = get_region_box(l.output, l.biases, n, index, i, j, l.w, l.h); float best_iou = 0; int best_class_id = -1; for(t = 0; t < l.max_boxes; ++t){ box truth = float_to_box(state.truth + t*5 + b*l.truths); int class_id = state.truth[t * 5 + b*l.truths + 4]; if (class_id >= l.classes) continue; // if label contains class_id more than number of classes in the cfg-file if(!truth.x) break; // continue; float iou = box_iou(pred, truth); if (iou > best_iou) { best_class_id = state.truth[t*5 + b*l.truths + 4]; best_iou = iou; } } avg_anyobj += l.output[index + 4]; l.delta[index + 4] = l.noobject_scale * ((0 - l.output[index + 4]) * logistic_gradient(l.output[index + 4])); if(l.classfix == -1) l.delta[index + 4] = l.noobject_scale * ((best_iou - l.output[index + 4]) * logistic_gradient(l.output[index + 4])); else{ if (best_iou > l.thresh) { l.delta[index + 4] = 0; if(l.classfix > 0){ delta_region_class(l.output, l.delta, index + 5, best_class_id, l.classes, l.softmax_tree, l.class_scale*(l.classfix == 2 ? l.output[index + 4] : 1), &avg_cat, l.focal_loss); ++class_count; } } } if(*(state.net.seen) < 12800){ box truth = {0}; truth.x = (i + .5)/l.w; truth.y = (j + .5)/l.h; truth.w = l.biases[2*n]; truth.h = l.biases[2*n+1]; if(DOABS){ truth.w = l.biases[2*n]/l.w; truth.h = l.biases[2*n+1]/l.h; } delta_region_box(truth, l.output, l.biases, n, index, i, j, l.w, l.h, l.delta, .01); } } } } for(t = 0; t < l.max_boxes; ++t){ box truth = float_to_box(state.truth + t*5 + b*l.truths); int class_id = state.truth[t * 5 + b*l.truths + 4]; if (class_id >= l.classes) { printf(" Warning: in txt-labels class_id=%d >= classes=%d in cfg-file. In txt-labels class_id should be [from 0 to %d] \n", class_id, l.classes, l.classes-1); getchar(); continue; // if label contains class_id more than number of classes in the cfg-file } if(!truth.x) break; // continue; float best_iou = 0; int best_index = 0; int best_n = 0; i = (truth.x * l.w); j = (truth.y * l.h); //printf("%d %f %d %f\n", i, truth.x*l.w, j, truth.y*l.h); box truth_shift = truth; truth_shift.x = 0; truth_shift.y = 0; //printf("index %d %d\n",i, j); for(n = 0; n < l.n; ++n){ int index = size*(j*l.w*l.n + i*l.n + n) + b*l.outputs; box pred = get_region_box(l.output, l.biases, n, index, i, j, l.w, l.h); if(l.bias_match){ pred.w = l.biases[2*n]; pred.h = l.biases[2*n+1]; if(DOABS){ pred.w = l.biases[2*n]/l.w; pred.h = l.biases[2*n+1]/l.h; } } //printf("pred: (%f, %f) %f x %f\n", pred.x, pred.y, pred.w, pred.h); pred.x = 0; pred.y = 0; float iou = box_iou(pred, truth_shift); if (iou > best_iou){ best_index = index; best_iou = iou; best_n = n; } } //printf("%d %f (%f, %f) %f x %f\n", best_n, best_iou, truth.x, truth.y, truth.w, truth.h); float iou = delta_region_box(truth, l.output, l.biases, best_n, best_index, i, j, l.w, l.h, l.delta, l.coord_scale); if(iou > .5) recall += 1; avg_iou += iou; //l.delta[best_index + 4] = iou - l.output[best_index + 4]; avg_obj += l.output[best_index + 4]; l.delta[best_index + 4] = l.object_scale * (1 - l.output[best_index + 4]) * logistic_gradient(l.output[best_index + 4]); if (l.rescore) { l.delta[best_index + 4] = l.object_scale * (iou - l.output[best_index + 4]) * logistic_gradient(l.output[best_index + 4]); } if (l.map) class_id = l.map[class_id]; delta_region_class(l.output, l.delta, best_index + 5, class_id, l.classes, l.softmax_tree, l.class_scale, &avg_cat, l.focal_loss); ++count; ++class_count; } } //printf("\n"); #ifndef GPU flatten(l.delta, l.w*l.h, size*l.n, l.batch, 0); #endif *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2); printf("Region Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, Avg Recall: %f, count: %d\n", avg_iou/count, avg_cat/class_count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), recall/count, count); }
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals) { CV_TRACE_FUNCTION(); CV_TRACE_ARG_VALUE(name, "name", name.c_str()); CV_Assert(inputs.size() >= 1); int const cell_size = classes + coords + 1; const float* biasData = blobs[0].ptr<float>(); for (size_t ii = 0; ii < outputs.size(); ii++) { Mat &inpBlob = *inputs[ii]; Mat &outBlob = outputs[ii]; int rows = inpBlob.size[1]; int cols = inpBlob.size[2]; const float *srcData = inpBlob.ptr<float>(); float *dstData = outBlob.ptr<float>(); // logistic activation for t0, for each grid cell (X x Y x Anchor-index) for (int i = 0; i < rows*cols*anchors; ++i) { int index = cell_size*i; float x = srcData[index + 4]; dstData[index + 4] = logistic_activate(x); // logistic activation } if (useSoftmaxTree) { // Yolo 9000 CV_Error(cv::Error::StsNotImplemented, "Yolo9000 is not implemented"); } else if (useSoftmax) { // Yolo v2 // softmax activation for Probability, for each grid cell (X x Y x Anchor-index) for (int i = 0; i < rows*cols*anchors; ++i) { int index = cell_size*i; softmax_activate(srcData + index + 5, classes, 1, dstData + index + 5); } for (int x = 0; x < cols; ++x) for(int y = 0; y < rows; ++y) for (int a = 0; a < anchors; ++a) { int index = (y*cols + x)*anchors + a; // index for each grid-cell & anchor int p_index = index * cell_size + 4; float scale = dstData[p_index]; if (classfix == -1 && scale < .5) scale = 0; // if(t0 < 0.5) t0 = 0; int box_index = index * cell_size; dstData[box_index + 0] = (x + logistic_activate(srcData[box_index + 0])) / cols; dstData[box_index + 1] = (y + logistic_activate(srcData[box_index + 1])) / rows; dstData[box_index + 2] = exp(srcData[box_index + 2]) * biasData[2 * a] / cols; dstData[box_index + 3] = exp(srcData[box_index + 3]) * biasData[2 * a + 1] / rows; int class_index = index * cell_size + 5; if (useSoftmaxTree) { CV_Error(cv::Error::StsNotImplemented, "Yolo9000 is not implemented"); } else { for (int j = 0; j < classes; ++j) { float prob = scale*dstData[class_index + j]; // prob = IoU(box, object) = t0 * class-probability dstData[class_index + j] = (prob > thresh) ? prob : 0; // if (IoU < threshold) IoU = 0; } } } } if (nmsThreshold > 0) { do_nms_sort(dstData, rows*cols*anchors, thresh, nmsThreshold); } } }