Example #1
0
/**
 * Interleave vector elements.
 *
 * Matches the PUNPCKLxx and PUNPCKHxx SSE instructions
 * (but not for 256bit AVX vectors).
 */
LLVMValueRef
lp_build_interleave2(struct gallivm_state *gallivm,
                     struct lp_type type,
                     LLVMValueRef a,
                     LLVMValueRef b,
                     unsigned lo_hi)
{
   LLVMValueRef shuffle;

   if (type.length == 2 && type.width == 128 && util_cpu_caps.has_avx) {
      /*
       * XXX: This is a workaround for llvm code generation deficiency. Strangely
       * enough, while this needs vinsertf128/vextractf128 instructions (hence
       * a natural match when using 2x128bit vectors) the "normal" unpack shuffle
       * generates code ranging from atrocious (llvm 3.1) to terrible (llvm 3.2, 3.3).
       * So use some different shuffles instead (the exact shuffles don't seem to
       * matter, as long as not using 128bit wide vectors, works with 8x32 or 4x64).
       */
      struct lp_type tmp_type = type;
      LLVMValueRef srchalf[2], tmpdst;
      tmp_type.length = 4;
      tmp_type.width = 64;
      a = LLVMBuildBitCast(gallivm->builder, a, lp_build_vec_type(gallivm, tmp_type), "");
      b = LLVMBuildBitCast(gallivm->builder, b, lp_build_vec_type(gallivm, tmp_type), "");
      srchalf[0] = lp_build_extract_range(gallivm, a, lo_hi * 2, 2);
      srchalf[1] = lp_build_extract_range(gallivm, b, lo_hi * 2, 2);
      tmp_type.length = 2;
      tmpdst = lp_build_concat(gallivm, srchalf, tmp_type, 2);
      return LLVMBuildBitCast(gallivm->builder, tmpdst, lp_build_vec_type(gallivm, type), "");
   }

   shuffle = lp_build_const_unpack_shuffle(gallivm, type.length, lo_hi);

   return LLVMBuildShuffleVector(gallivm->builder, a, b, shuffle, "");
}
/**
 * Truncate or expand the bitwidth.
 *
 * NOTE: Getting the right sign flags is crucial here, as we employ some
 * intrinsics that do saturation.
 */
void
lp_build_resize(struct gallivm_state *gallivm,
                struct lp_type src_type,
                struct lp_type dst_type,
                const LLVMValueRef *src, unsigned num_srcs,
                LLVMValueRef *dst, unsigned num_dsts)
{
   LLVMBuilderRef builder = gallivm->builder;
   LLVMValueRef tmp[LP_MAX_VECTOR_LENGTH];
   unsigned i;

   /*
    * We don't support float <-> int conversion here. That must be done
    * before/after calling this function.
    */
   assert(src_type.floating == dst_type.floating);

   /*
    * We don't support double <-> float conversion yet, although it could be
    * added with little effort.
    */
   assert((!src_type.floating && !dst_type.floating) ||
          src_type.width == dst_type.width);

   /* We must not loose or gain channels. Only precision */
   assert(src_type.length * num_srcs == dst_type.length * num_dsts);

   /* We don't support M:N conversion, only 1:N, M:1, or 1:1 */
   assert(num_srcs == 1 || num_dsts == 1);

   assert(src_type.length <= LP_MAX_VECTOR_LENGTH);
   assert(dst_type.length <= LP_MAX_VECTOR_LENGTH);
   assert(num_srcs <= LP_MAX_VECTOR_LENGTH);
   assert(num_dsts <= LP_MAX_VECTOR_LENGTH);

   if (src_type.width > dst_type.width) {
      /*
       * Truncate bit width.
       */

      assert(num_dsts == 1);

      if (src_type.width * src_type.length == dst_type.width * dst_type.length) {
        /*
         * Register width remains constant -- use vector packing intrinsics
         */
         tmp[0] = lp_build_pack(gallivm, src_type, dst_type, TRUE, src, num_srcs);
      }
      else {
         if (src_type.width / dst_type.width > num_srcs) {
            /*
            * First change src vectors size (with shuffle) so they have the
            * same size as the destination vector, then pack normally.
            * Note: cannot use cast/extract because llvm generates atrocious code.
            */
            unsigned size_ratio = (src_type.width * src_type.length) /
                                  (dst_type.length * dst_type.width);
            unsigned new_length = src_type.length / size_ratio;

            for (i = 0; i < size_ratio * num_srcs; i++) {
               unsigned start_index = (i % size_ratio) * new_length;
               tmp[i] = lp_build_extract_range(gallivm, src[i / size_ratio],
                                               start_index, new_length);
            }
            num_srcs *= size_ratio;
            src_type.length = new_length;
            tmp[0] = lp_build_pack(gallivm, src_type, dst_type, TRUE, tmp, num_srcs);
         }
         else {
            /*
             * Truncate bit width but expand vector size - first pack
             * then expand simply because this should be more AVX-friendly
             * for the cases we probably hit.
             */
            unsigned size_ratio = (dst_type.width * dst_type.length) /
                                  (src_type.length * src_type.width);
            unsigned num_pack_srcs = num_srcs / size_ratio;
            dst_type.length = dst_type.length / size_ratio;

            for (i = 0; i < size_ratio; i++) {
               tmp[i] = lp_build_pack(gallivm, src_type, dst_type, TRUE,
                                      &src[i*num_pack_srcs], num_pack_srcs);
            }
            tmp[0] = lp_build_concat(gallivm, tmp, dst_type, size_ratio);
         }
      }
   }
   else if (src_type.width < dst_type.width) {
      /*
       * Expand bit width.
       */

      assert(num_srcs == 1);

      if (src_type.width * src_type.length == dst_type.width * dst_type.length) {
         /*
          * Register width remains constant -- use vector unpack intrinsics
          */
         lp_build_unpack(gallivm, src_type, dst_type, src[0], tmp, num_dsts);
      }
      else {
         /*
          * Do it element-wise.
          */
         assert(src_type.length * num_srcs == dst_type.length * num_dsts);

         for (i = 0; i < num_dsts; i++) {
            tmp[i] = lp_build_undef(gallivm, dst_type);
         }

         for (i = 0; i < src_type.length; ++i) {
            unsigned j = i / dst_type.length;
            LLVMValueRef srcindex = lp_build_const_int32(gallivm, i);
            LLVMValueRef dstindex = lp_build_const_int32(gallivm, i % dst_type.length);
            LLVMValueRef val = LLVMBuildExtractElement(builder, src[0], srcindex, "");

            if (src_type.sign && dst_type.sign) {
               val = LLVMBuildSExt(builder, val, lp_build_elem_type(gallivm, dst_type), "");
            } else {
               val = LLVMBuildZExt(builder, val, lp_build_elem_type(gallivm, dst_type), "");
            }
            tmp[j] = LLVMBuildInsertElement(builder, tmp[j], val, dstindex, "");
         }
      }
   }
   else {
      /*
       * No-op
       */

      assert(num_srcs == 1);
      assert(num_dsts == 1);

      tmp[0] = src[0];
   }

   for(i = 0; i < num_dsts; ++i)
      dst[i] = tmp[i];
}
/**
 * Non-interleaved pack.
 *
 * This will move values as
 *         (LSB)                     (MSB)
 *   lo =   l0 __ l1 __ l2 __..  __ ln __
 *   hi =   h0 __ h1 __ h2 __..  __ hn __
 *   res =  l0 l1 l2 .. ln h0 h1 h2 .. hn
 *
 * This will only change the number of bits the values are represented, not the
 * values themselves.
 *
 * It is assumed the values are already clamped into the destination type range.
 * Values outside that range will produce undefined results. Use
 * lp_build_packs2 instead.
 */
LLVMValueRef
lp_build_pack2(struct gallivm_state *gallivm,
               struct lp_type src_type,
               struct lp_type dst_type,
               LLVMValueRef lo,
               LLVMValueRef hi)
{
   LLVMBuilderRef builder = gallivm->builder;
   LLVMTypeRef dst_vec_type = lp_build_vec_type(gallivm, dst_type);
   LLVMValueRef shuffle;
   LLVMValueRef res = NULL;
   struct lp_type intr_type = dst_type;

#if HAVE_LLVM < 0x0207
   intr_type = src_type;
#endif

   assert(!src_type.floating);
   assert(!dst_type.floating);
   assert(src_type.width == dst_type.width * 2);
   assert(src_type.length * 2 == dst_type.length);

   /* Check for special cases first */
   if(util_cpu_caps.has_sse2 && src_type.width * src_type.length >= 128) {
      const char *intrinsic = NULL;

      switch(src_type.width) {
      case 32:
         if(dst_type.sign) {
            intrinsic = "llvm.x86.sse2.packssdw.128";
         }
         else {
            if (util_cpu_caps.has_sse4_1) {
               intrinsic = "llvm.x86.sse41.packusdw";
#if HAVE_LLVM < 0x0207
               /* llvm < 2.7 has inconsistent signatures except for packusdw */
               intr_type = dst_type;
#endif
            }
         }
         break;
      case 16:
         if (dst_type.sign) {
            intrinsic = "llvm.x86.sse2.packsswb.128";
         }
         else {
            intrinsic = "llvm.x86.sse2.packuswb.128";
         }
         break;
      /* default uses generic shuffle below */
      }
      if (intrinsic) {
         if (src_type.width * src_type.length == 128) {
            LLVMTypeRef intr_vec_type = lp_build_vec_type(gallivm, intr_type);
            res = lp_build_intrinsic_binary(builder, intrinsic, intr_vec_type, lo, hi);
            if (dst_vec_type != intr_vec_type) {
               res = LLVMBuildBitCast(builder, res, dst_vec_type, "");
            }
         }
         else {
            int num_split = src_type.width * src_type.length / 128;
            int i;
            int nlen = 128 / src_type.width;
            struct lp_type ndst_type = lp_type_unorm(dst_type.width, 128);
            struct lp_type nintr_type = lp_type_unorm(intr_type.width, 128);
            LLVMValueRef tmpres[LP_MAX_VECTOR_WIDTH / 128];
            LLVMValueRef tmplo, tmphi;
            LLVMTypeRef ndst_vec_type = lp_build_vec_type(gallivm, ndst_type);
            LLVMTypeRef nintr_vec_type = lp_build_vec_type(gallivm, nintr_type);

            assert(num_split <= LP_MAX_VECTOR_WIDTH / 128);

            for (i = 0; i < num_split / 2; i++) {
               tmplo = lp_build_extract_range(gallivm,
                                              lo, i*nlen*2, nlen);
               tmphi = lp_build_extract_range(gallivm,
                                              lo, i*nlen*2 + nlen, nlen);
               tmpres[i] = lp_build_intrinsic_binary(builder, intrinsic,
                                                     nintr_vec_type, tmplo, tmphi);
               if (ndst_vec_type != nintr_vec_type) {
                  tmpres[i] = LLVMBuildBitCast(builder, tmpres[i], ndst_vec_type, "");
               }
            }
            for (i = 0; i < num_split / 2; i++) {
               tmplo = lp_build_extract_range(gallivm,
                                              hi, i*nlen*2, nlen);
               tmphi = lp_build_extract_range(gallivm,
                                              hi, i*nlen*2 + nlen, nlen);
               tmpres[i+num_split/2] = lp_build_intrinsic_binary(builder, intrinsic,
                                                                 nintr_vec_type,
                                                                 tmplo, tmphi);
               if (ndst_vec_type != nintr_vec_type) {
                  tmpres[i+num_split/2] = LLVMBuildBitCast(builder, tmpres[i+num_split/2],
                                                           ndst_vec_type, "");
               }
            }
            res = lp_build_concat(gallivm, tmpres, ndst_type, num_split);
         }
         return res;
      }
   }

   /* generic shuffle */
   lo = LLVMBuildBitCast(builder, lo, dst_vec_type, "");
   hi = LLVMBuildBitCast(builder, hi, dst_vec_type, "");

   shuffle = lp_build_const_pack_shuffle(gallivm, dst_type.length);

   res = LLVMBuildShuffleVector(builder, lo, hi, shuffle, "");

   return res;
}
Example #4
0
/**
 * Generic type conversion.
 *
 * TODO: Take a precision argument, or even better, add a new precision member
 * to the lp_type union.
 */
void
lp_build_conv(struct gallivm_state *gallivm,
              struct lp_type src_type,
              struct lp_type dst_type,
              const LLVMValueRef *src, unsigned num_srcs,
              LLVMValueRef *dst, unsigned num_dsts)
{
    LLVMBuilderRef builder = gallivm->builder;
    struct lp_type tmp_type;
    LLVMValueRef tmp[LP_MAX_VECTOR_LENGTH];
    unsigned num_tmps;
    unsigned i;

    /* We must not loose or gain channels. Only precision */
    assert(src_type.length * num_srcs == dst_type.length * num_dsts);

    assert(src_type.length <= LP_MAX_VECTOR_LENGTH);
    assert(dst_type.length <= LP_MAX_VECTOR_LENGTH);
    assert(num_srcs <= LP_MAX_VECTOR_LENGTH);
    assert(num_dsts <= LP_MAX_VECTOR_LENGTH);

    tmp_type = src_type;
    for(i = 0; i < num_srcs; ++i) {
        assert(lp_check_value(src_type, src[i]));
        tmp[i] = src[i];
    }
    num_tmps = num_srcs;


    /* Special case 4x4f --> 1x16ub
     */
    if (src_type.floating == 1 &&
            src_type.fixed    == 0 &&
            src_type.sign     == 1 &&
            src_type.norm     == 0 &&
            src_type.width    == 32 &&
            src_type.length   == 4 &&

            dst_type.floating == 0 &&
            dst_type.fixed    == 0 &&
            dst_type.sign     == 0 &&
            dst_type.norm     == 1 &&
            dst_type.width    == 8 &&
            dst_type.length   == 16 &&

            4 * num_dsts      == num_srcs &&

            util_cpu_caps.has_sse2)
    {
        struct lp_build_context bld;
        struct lp_type int16_type = dst_type;
        struct lp_type int32_type = dst_type;
        LLVMValueRef const_255f;
        unsigned i, j;

        lp_build_context_init(&bld, gallivm, src_type);

        int16_type.width *= 2;
        int16_type.length /= 2;
        int16_type.sign = 1;

        int32_type.width *= 4;
        int32_type.length /= 4;
        int32_type.sign = 1;

        const_255f = lp_build_const_vec(gallivm, src_type, 255.0f);

        for (i = 0; i < num_dsts; ++i, src += 4) {
            LLVMValueRef lo, hi;

            for (j = 0; j < 4; ++j) {
                tmp[j] = LLVMBuildFMul(builder, src[j], const_255f, "");
                tmp[j] = lp_build_iround(&bld, tmp[j]);
            }

            /* relying on clamping behavior of sse2 intrinsics here */
            lo = lp_build_pack2(gallivm, int32_type, int16_type, tmp[0], tmp[1]);
            hi = lp_build_pack2(gallivm, int32_type, int16_type, tmp[2], tmp[3]);
            dst[i] = lp_build_pack2(gallivm, int16_type, dst_type, lo, hi);
        }

        return;
    }

    /* Special case 2x8f --> 1x16ub
     */
    else if (src_type.floating == 1 &&
             src_type.fixed    == 0 &&
             src_type.sign     == 1 &&
             src_type.norm     == 0 &&
             src_type.width    == 32 &&
             src_type.length   == 8 &&

             dst_type.floating == 0 &&
             dst_type.fixed    == 0 &&
             dst_type.sign     == 0 &&
             dst_type.norm     == 1 &&
             dst_type.width    == 8 &&
             dst_type.length   == 16 &&

             2 * num_dsts      == num_srcs &&

             util_cpu_caps.has_avx) {

        struct lp_build_context bld;
        struct lp_type int16_type = dst_type;
        struct lp_type int32_type = dst_type;
        LLVMValueRef const_255f;
        unsigned i;

        lp_build_context_init(&bld, gallivm, src_type);

        int16_type.width *= 2;
        int16_type.length /= 2;
        int16_type.sign = 1;

        int32_type.width *= 4;
        int32_type.length /= 4;
        int32_type.sign = 1;

        const_255f = lp_build_const_vec(gallivm, src_type, 255.0f);

        for (i = 0; i < num_dsts; ++i, src += 2) {
            LLVMValueRef lo, hi, a, b;

            a = LLVMBuildFMul(builder, src[0], const_255f, "");
            b = LLVMBuildFMul(builder, src[1], const_255f, "");

            a = lp_build_iround(&bld, a);
            b = lp_build_iround(&bld, b);

            tmp[0] = lp_build_extract_range(gallivm, a, 0, 4);
            tmp[1] = lp_build_extract_range(gallivm, a, 4, 4);
            tmp[2] = lp_build_extract_range(gallivm, b, 0, 4);
            tmp[3] = lp_build_extract_range(gallivm, b, 4, 4);

            /* relying on clamping behavior of sse2 intrinsics here */
            lo = lp_build_pack2(gallivm, int32_type, int16_type, tmp[0], tmp[1]);
            hi = lp_build_pack2(gallivm, int32_type, int16_type, tmp[2], tmp[3]);
            dst[i] = lp_build_pack2(gallivm, int16_type, dst_type, lo, hi);
        }
        return;
    }

    /* Pre convert half-floats to floats
     */
    else if (src_type.floating && src_type.width == 16)
    {
        for(i = 0; i < num_tmps; ++i)
            tmp[i] = lp_build_half_to_float(gallivm, src_type, tmp[i]);

        tmp_type.width = 32;
    }

    /*
     * Clamp if necessary
     */

    if(memcmp(&src_type, &dst_type, sizeof src_type) != 0) {
        struct lp_build_context bld;
        double src_min = lp_const_min(src_type);
        double dst_min = lp_const_min(dst_type);
        double src_max = lp_const_max(src_type);
        double dst_max = lp_const_max(dst_type);
        LLVMValueRef thres;

        lp_build_context_init(&bld, gallivm, tmp_type);

        if(src_min < dst_min) {
            if(dst_min == 0.0)
                thres = bld.zero;
            else
                thres = lp_build_const_vec(gallivm, src_type, dst_min);
            for(i = 0; i < num_tmps; ++i)
                tmp[i] = lp_build_max(&bld, tmp[i], thres);
        }

        if(src_max > dst_max) {
            if(dst_max == 1.0)
                thres = bld.one;
            else
                thres = lp_build_const_vec(gallivm, src_type, dst_max);
            for(i = 0; i < num_tmps; ++i)
                tmp[i] = lp_build_min(&bld, tmp[i], thres);
        }
    }

    /*
     * Scale to the narrowest range
     */

    if(dst_type.floating) {
        /* Nothing to do */
    }
    else if(tmp_type.floating) {
        if(!dst_type.fixed && !dst_type.sign && dst_type.norm) {
            for(i = 0; i < num_tmps; ++i) {
                tmp[i] = lp_build_clamped_float_to_unsigned_norm(gallivm,
                         tmp_type,
                         dst_type.width,
                         tmp[i]);
            }
            tmp_type.floating = FALSE;
        }
        else {
            double dst_scale = lp_const_scale(dst_type);
            LLVMTypeRef tmp_vec_type;

            if (dst_scale != 1.0) {
                LLVMValueRef scale = lp_build_const_vec(gallivm, tmp_type, dst_scale);
                for(i = 0; i < num_tmps; ++i)
                    tmp[i] = LLVMBuildFMul(builder, tmp[i], scale, "");
            }

            /* Use an equally sized integer for intermediate computations */
            tmp_type.floating = FALSE;
            tmp_vec_type = lp_build_vec_type(gallivm, tmp_type);
            for(i = 0; i < num_tmps; ++i) {
#if 0
                if(dst_type.sign)
                    tmp[i] = LLVMBuildFPToSI(builder, tmp[i], tmp_vec_type, "");
                else
                    tmp[i] = LLVMBuildFPToUI(builder, tmp[i], tmp_vec_type, "");
#else
                /* FIXME: there is no SSE counterpart for LLVMBuildFPToUI */
                tmp[i] = LLVMBuildFPToSI(builder, tmp[i], tmp_vec_type, "");
#endif
            }
        }
    }
    else {
        unsigned src_shift = lp_const_shift(src_type);
        unsigned dst_shift = lp_const_shift(dst_type);
        unsigned src_offset = lp_const_offset(src_type);
        unsigned dst_offset = lp_const_offset(dst_type);

        /* Compensate for different offsets */
        if (dst_offset > src_offset && src_type.width > dst_type.width) {
            for (i = 0; i < num_tmps; ++i) {
                LLVMValueRef shifted;
                LLVMValueRef shift = lp_build_const_int_vec(gallivm, tmp_type, src_shift - 1);
                if(src_type.sign)
                    shifted = LLVMBuildAShr(builder, tmp[i], shift, "");
                else
                    shifted = LLVMBuildLShr(builder, tmp[i], shift, "");

                tmp[i] = LLVMBuildSub(builder, tmp[i], shifted, "");
            }
        }

        if(src_shift > dst_shift) {
            LLVMValueRef shift = lp_build_const_int_vec(gallivm, tmp_type,
                                 src_shift - dst_shift);
            for(i = 0; i < num_tmps; ++i)
                if(src_type.sign)
                    tmp[i] = LLVMBuildAShr(builder, tmp[i], shift, "");
                else
                    tmp[i] = LLVMBuildLShr(builder, tmp[i], shift, "");
        }
    }

    /*
     * Truncate or expand bit width
     *
     * No data conversion should happen here, although the sign bits are
     * crucial to avoid bad clamping.
     */

    {
        struct lp_type new_type;

        new_type = tmp_type;
        new_type.sign   = dst_type.sign;
        new_type.width  = dst_type.width;
        new_type.length = dst_type.length;

        lp_build_resize(gallivm, tmp_type, new_type, tmp, num_srcs, tmp, num_dsts);

        tmp_type = new_type;
        num_tmps = num_dsts;
    }

    /*
     * Scale to the widest range
     */

    if(src_type.floating) {
        /* Nothing to do */
    }
    else if(!src_type.floating && dst_type.floating) {
        if(!src_type.fixed && !src_type.sign && src_type.norm) {
            for(i = 0; i < num_tmps; ++i) {
                tmp[i] = lp_build_unsigned_norm_to_float(gallivm,
                         src_type.width,
                         dst_type,
                         tmp[i]);
            }
            tmp_type.floating = TRUE;
        }
        else {
            double src_scale = lp_const_scale(src_type);
            LLVMTypeRef tmp_vec_type;

            /* Use an equally sized integer for intermediate computations */
            tmp_type.floating = TRUE;
            tmp_type.sign = TRUE;
            tmp_vec_type = lp_build_vec_type(gallivm, tmp_type);
            for(i = 0; i < num_tmps; ++i) {
#if 0
                if(dst_type.sign)
                    tmp[i] = LLVMBuildSIToFP(builder, tmp[i], tmp_vec_type, "");
                else
                    tmp[i] = LLVMBuildUIToFP(builder, tmp[i], tmp_vec_type, "");
#else
                /* FIXME: there is no SSE counterpart for LLVMBuildUIToFP */
                tmp[i] = LLVMBuildSIToFP(builder, tmp[i], tmp_vec_type, "");
#endif
            }

            if (src_scale != 1.0) {
                LLVMValueRef scale = lp_build_const_vec(gallivm, tmp_type, 1.0/src_scale);
                for(i = 0; i < num_tmps; ++i)
                    tmp[i] = LLVMBuildFMul(builder, tmp[i], scale, "");
            }
        }
    }
    else {
        unsigned src_shift = lp_const_shift(src_type);
        unsigned dst_shift = lp_const_shift(dst_type);
        unsigned src_offset = lp_const_offset(src_type);
        unsigned dst_offset = lp_const_offset(dst_type);

        if (src_shift < dst_shift) {
            LLVMValueRef pre_shift[LP_MAX_VECTOR_LENGTH];
            LLVMValueRef shift = lp_build_const_int_vec(gallivm, tmp_type, dst_shift - src_shift);

            for (i = 0; i < num_tmps; ++i) {
                pre_shift[i] = tmp[i];
                tmp[i] = LLVMBuildShl(builder, tmp[i], shift, "");
            }

            /* Compensate for different offsets */
            if (dst_offset > src_offset) {
                for (i = 0; i < num_tmps; ++i) {
                    tmp[i] = LLVMBuildSub(builder, tmp[i], pre_shift[i], "");
                }
            }
        }
    }

    for(i = 0; i < num_dsts; ++i) {
        dst[i] = tmp[i];
        assert(lp_check_value(dst_type, dst[i]));
    }
}
Example #5
0
/**
 * Store depth/stencil values.
 * Incoming values are swizzled (typically n 2x2 quads), stored linear.
 * If there's a mask it will do select/store otherwise just store.
 *
 * \param type  the data type of the fragment depth/stencil values
 * \param format_desc  description of the depth/stencil surface
 * \param mask  the alive/dead pixel mask for the quad (vector)
 * \param z_fb  z values read from fb (with padding)
 * \param s_fb  s values read from fb (with padding)
 * \param loop_counter  the current loop iteration
 * \param depth_ptr  pointer to the depth/stencil values of this 4x4 block
 * \param depth_stride  stride of the depth/stencil buffer
 * \param z_value the depth values to store (with padding)
 * \param s_value the stencil values to store (with padding)
 */
void
lp_build_depth_stencil_write_swizzled(struct gallivm_state *gallivm,
                                      struct lp_type z_src_type,
                                      const struct util_format_description *format_desc,
                                      struct lp_build_mask_context *mask,
                                      LLVMValueRef z_fb,
                                      LLVMValueRef s_fb,
                                      LLVMValueRef loop_counter,
                                      LLVMValueRef depth_ptr,
                                      LLVMValueRef depth_stride,
                                      LLVMValueRef z_value,
                                      LLVMValueRef s_value)
{
   struct lp_build_context z_bld;
   LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH / 4];
   LLVMBuilderRef builder = gallivm->builder;
   LLVMValueRef mask_value = NULL;
   LLVMValueRef zs_dst1, zs_dst2;
   LLVMValueRef zs_dst_ptr1, zs_dst_ptr2;
   LLVMValueRef depth_offset1, depth_offset2;
   LLVMTypeRef load_ptr_type;
   unsigned depth_bytes = format_desc->block.bits / 8;
   struct lp_type zs_type = lp_depth_type(format_desc, z_src_type.length);
   struct lp_type z_type = zs_type;
   struct lp_type zs_load_type = zs_type;

   zs_load_type.length = zs_load_type.length / 2;
   load_ptr_type = LLVMPointerType(lp_build_vec_type(gallivm, zs_load_type), 0);

   z_type.width = z_src_type.width;

   lp_build_context_init(&z_bld, gallivm, z_type);

   /*
    * This is far from ideal, at least for late depth write we should do this
    * outside the fs loop to avoid all the swizzle stuff.
    */
   if (z_src_type.length == 4) {
      LLVMValueRef looplsb = LLVMBuildAnd(builder, loop_counter,
                                          lp_build_const_int32(gallivm, 1), "");
      LLVMValueRef loopmsb = LLVMBuildAnd(builder, loop_counter,
                                          lp_build_const_int32(gallivm, 2), "");
      LLVMValueRef offset2 = LLVMBuildMul(builder, loopmsb,
                                          depth_stride, "");
      depth_offset1 = LLVMBuildMul(builder, looplsb,
                                   lp_build_const_int32(gallivm, depth_bytes * 2), "");
      depth_offset1 = LLVMBuildAdd(builder, depth_offset1, offset2, "");
   }
   else {
      unsigned i;
      LLVMValueRef loopx2 = LLVMBuildShl(builder, loop_counter,
                                         lp_build_const_int32(gallivm, 1), "");
      assert(z_src_type.length == 8);
      depth_offset1 = LLVMBuildMul(builder, loopx2, depth_stride, "");
      /*
       * We load 2x4 values, and need to swizzle them (order
       * 0,1,4,5,2,3,6,7) - not so hot with avx unfortunately.
       */
      for (i = 0; i < 8; i++) {
         shuffles[i] = lp_build_const_int32(gallivm, (i&1) + (i&2) * 2 + (i&4) / 2);
      }
   }

   depth_offset2 = LLVMBuildAdd(builder, depth_offset1, depth_stride, "");

   zs_dst_ptr1 = LLVMBuildGEP(builder, depth_ptr, &depth_offset1, 1, "");
   zs_dst_ptr1 = LLVMBuildBitCast(builder, zs_dst_ptr1, load_ptr_type, "");
   zs_dst_ptr2 = LLVMBuildGEP(builder, depth_ptr, &depth_offset2, 1, "");
   zs_dst_ptr2 = LLVMBuildBitCast(builder, zs_dst_ptr2, load_ptr_type, "");

   if (format_desc->block.bits > 32) {
      s_value = LLVMBuildBitCast(builder, s_value, z_bld.vec_type, "");
   }

   if (mask) {
      mask_value = lp_build_mask_value(mask);
      z_value = lp_build_select(&z_bld, mask_value, z_value, z_fb);
      if (format_desc->block.bits > 32) {
         s_fb = LLVMBuildBitCast(builder, s_fb, z_bld.vec_type, "");
         s_value = lp_build_select(&z_bld, mask_value, s_value, s_fb);
      }
   }

   if (zs_type.width < z_src_type.width) {
      /* Truncate ZS values (e.g., when writing to Z16_UNORM) */
      z_value = LLVMBuildTrunc(builder, z_value,
                               lp_build_int_vec_type(gallivm, zs_type), "");
   }

   if (format_desc->block.bits <= 32) {
      if (z_src_type.length == 4) {
         zs_dst1 = lp_build_extract_range(gallivm, z_value, 0, 2);
         zs_dst2 = lp_build_extract_range(gallivm, z_value, 2, 2);
      }
      else {
         assert(z_src_type.length == 8);
         zs_dst1 = LLVMBuildShuffleVector(builder, z_value, z_value,
                                          LLVMConstVector(&shuffles[0],
                                                          zs_load_type.length), "");
         zs_dst2 = LLVMBuildShuffleVector(builder, z_value, z_value,
                                          LLVMConstVector(&shuffles[4],
                                                          zs_load_type.length), "");
      }
   }
   else {
      if (z_src_type.length == 4) {
         zs_dst1 = lp_build_interleave2(gallivm, z_type,
                                        z_value, s_value, 0);
         zs_dst2 = lp_build_interleave2(gallivm, z_type,
                                        z_value, s_value, 1);
      }
      else {
         unsigned i;
         LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH / 2];
         assert(z_src_type.length == 8);
         for (i = 0; i < 8; i++) {
            shuffles[i*2] = lp_build_const_int32(gallivm, (i&1) + (i&2) * 2 + (i&4) / 2);
            shuffles[i*2+1] = lp_build_const_int32(gallivm, (i&1) + (i&2) * 2 + (i&4) / 2 +
                                                   z_src_type.length);
         }
         zs_dst1 = LLVMBuildShuffleVector(builder, z_value, s_value,
                                          LLVMConstVector(&shuffles[0],
                                                          z_src_type.length), "");
         zs_dst2 = LLVMBuildShuffleVector(builder, z_value, s_value,
                                          LLVMConstVector(&shuffles[8],
                                                          z_src_type.length), "");
      }
      zs_dst1 = LLVMBuildBitCast(builder, zs_dst1,
                                 lp_build_vec_type(gallivm, zs_load_type), "");
      zs_dst2 = LLVMBuildBitCast(builder, zs_dst2,
                                 lp_build_vec_type(gallivm, zs_load_type), "");
   }

   LLVMBuildStore(builder, zs_dst1, zs_dst_ptr1);
   LLVMBuildStore(builder, zs_dst2, zs_dst_ptr2);
}
Example #6
0
/**
 * Converts float32 to int16 half-float
 * Note this can be performed in 1 instruction if vcvtps2ph exists (f16c/cvt16)
 * [llvm.x86.vcvtps2ph / _mm_cvtps_ph]
 *
 * @param src           value to convert
 *
 * Convert float32 to half floats, preserving Infs and NaNs,
 * with rounding towards zero (trunc).
 */
LLVMValueRef
lp_build_float_to_half(struct gallivm_state *gallivm,
                       LLVMValueRef src)
{
   LLVMBuilderRef builder = gallivm->builder;
   LLVMTypeRef f32_vec_type = LLVMTypeOf(src);
   unsigned length = LLVMGetTypeKind(f32_vec_type) == LLVMVectorTypeKind
                   ? LLVMGetVectorSize(f32_vec_type) : 1;
   struct lp_type i32_type = lp_type_int_vec(32, 32 * length);
   struct lp_type i16_type = lp_type_int_vec(16, 16 * length);
   LLVMValueRef result;

   if (util_cpu_caps.has_f16c && HAVE_LLVM >= 0x0301 &&
       (length == 4 || length == 8)) {
      struct lp_type i168_type = lp_type_int_vec(16, 16 * 8);
      unsigned mode = 3; /* same as LP_BUILD_ROUND_TRUNCATE */
      LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
      const char *intrinsic = NULL;
      if (length == 4) {
         intrinsic = "llvm.x86.vcvtps2ph.128";
      }
      else {
         intrinsic = "llvm.x86.vcvtps2ph.256";
      }
      result = lp_build_intrinsic_binary(builder, intrinsic,
                                         lp_build_vec_type(gallivm, i168_type),
                                         src, LLVMConstInt(i32t, mode, 0));
      if (length == 4) {
         result = lp_build_extract_range(gallivm, result, 0, 4);
      }
   }

   else {
      result = lp_build_float_to_smallfloat(gallivm, i32_type, src, 10, 5, 0, true);
      /* Convert int32 vector to int16 vector by trunc (might generate bad code) */
      result = LLVMBuildTrunc(builder, result, lp_build_vec_type(gallivm, i16_type), "");
   }

   /*
    * Debugging code.
    */
   if (0) {
     LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
     LLVMTypeRef i16t = LLVMInt16TypeInContext(gallivm->context);
     LLVMTypeRef f32t = LLVMFloatTypeInContext(gallivm->context);
     LLVMValueRef ref_result = LLVMGetUndef(LLVMVectorType(i16t, length));
     unsigned i;

     LLVMTypeRef func_type = LLVMFunctionType(i16t, &f32t, 1, 0);
     LLVMValueRef func = lp_build_const_int_pointer(gallivm, func_to_pointer((func_pointer)util_float_to_half));
     func = LLVMBuildBitCast(builder, func, LLVMPointerType(func_type, 0), "util_float_to_half");

     for (i = 0; i < length; ++i) {
        LLVMValueRef index = LLVMConstInt(i32t, i, 0);
        LLVMValueRef f32 = LLVMBuildExtractElement(builder, src, index, "");
#if 0
        /* XXX: not really supported by backends */
        LLVMValueRef f16 = lp_build_intrinsic_unary(builder, "llvm.convert.to.fp16", i16t, f32);
#else
        LLVMValueRef f16 = LLVMBuildCall(builder, func, &f32, 1, "");
#endif
        ref_result = LLVMBuildInsertElement(builder, ref_result, f16, index, "");
     }

     lp_build_print_value(gallivm, "src  = ", src);
     lp_build_print_value(gallivm, "llvm = ", result);
     lp_build_print_value(gallivm, "util = ", ref_result);
     lp_build_printf(gallivm, "\n");
  }

   return result;
}
Example #7
0
/**
 * Call intrinsic with arguments adapted to intrinsic vector length.
 *
 * Split vectors which are too large for the hw, or expand them if they
 * are too small, so a caller calling a function which might use intrinsics
 * doesn't need to do splitting/expansion on its own.
 * This only supports intrinsics where src and dst types match.
 */
LLVMValueRef
lp_build_intrinsic_binary_anylength(struct gallivm_state *gallivm,
                                    const char *name,
                                    struct lp_type src_type,
                                    unsigned intr_size,
                                    LLVMValueRef a,
                                    LLVMValueRef b)
{
   unsigned i;
   struct lp_type intrin_type = src_type;
   LLVMBuilderRef builder = gallivm->builder;
   LLVMValueRef i32undef = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
   LLVMValueRef anative, bnative;
   unsigned intrin_length = intr_size / src_type.width;

   intrin_type.length = intrin_length;

   if (intrin_length > src_type.length) {
      LLVMValueRef elems[LP_MAX_VECTOR_LENGTH];
      LLVMValueRef constvec, tmp;

      for (i = 0; i < src_type.length; i++) {
         elems[i] = lp_build_const_int32(gallivm, i);
      }
      for (; i < intrin_length; i++) {
         elems[i] = i32undef;
      }
      if (src_type.length == 1) {
         LLVMTypeRef elem_type = lp_build_elem_type(gallivm, intrin_type);
         a = LLVMBuildBitCast(builder, a, LLVMVectorType(elem_type, 1), "");
         b = LLVMBuildBitCast(builder, b, LLVMVectorType(elem_type, 1), "");
      }
      constvec = LLVMConstVector(elems, intrin_length);
      anative = LLVMBuildShuffleVector(builder, a, a, constvec, "");
      bnative = LLVMBuildShuffleVector(builder, b, b, constvec, "");
      tmp = lp_build_intrinsic_binary(builder, name,
                                      lp_build_vec_type(gallivm, intrin_type),
                                      anative, bnative);
      if (src_type.length > 1) {
         constvec = LLVMConstVector(elems, src_type.length);
         return LLVMBuildShuffleVector(builder, tmp, tmp, constvec, "");
      }
      else {
         return LLVMBuildExtractElement(builder, tmp, elems[0], "");
      }
   }
   else if (intrin_length < src_type.length) {
      unsigned num_vec = src_type.length / intrin_length;
      LLVMValueRef tmp[LP_MAX_VECTOR_LENGTH];

      /* don't support arbitrary size here as this is so yuck */
      if (src_type.length % intrin_length) {
         /* FIXME: This is something which should be supported
          * but there doesn't seem to be any need for it currently
          * so crash and burn.
          */
         debug_printf("%s: should handle arbitrary vector size\n",
                      __FUNCTION__);
         assert(0);
         return NULL;
      }

      for (i = 0; i < num_vec; i++) {
         anative = lp_build_extract_range(gallivm, a, i*intrin_length,
                                        intrin_length);
         bnative = lp_build_extract_range(gallivm, b, i*intrin_length,
                                        intrin_length);
         tmp[i] = lp_build_intrinsic_binary(builder, name,
                                            lp_build_vec_type(gallivm, intrin_type),
                                            anative, bnative);
      }
      return lp_build_concat(gallivm, tmp, intrin_type, num_vec);
   }
   else {
      return lp_build_intrinsic_binary(builder, name,
                                       lp_build_vec_type(gallivm, src_type),
                                       a, b);
   }
}