Example #1
0
lzma_block_compressed_size(lzma_block *block, lzma_vli unpadded_size)
{
	// Validate everything but Uncompressed Size and filters.
	if (lzma_block_unpadded_size(block) == 0)
		return LZMA_PROG_ERROR;

	const uint32_t container_size = block->header_size
			+ lzma_check_size(block->check);

	// Validate that Compressed Size will be greater than zero.
	if (unpadded_size <= container_size)
		return LZMA_DATA_ERROR;

	// Calculate what Compressed Size is supposed to be.
	// If Compressed Size was present in Block Header,
	// compare that the new value matches it.
	const lzma_vli compressed_size = unpadded_size - container_size;
	if (block->compressed_size != LZMA_VLI_UNKNOWN
			&& block->compressed_size != compressed_size)
		return LZMA_DATA_ERROR;

	block->compressed_size = compressed_size;

	return LZMA_OK;
}
Example #2
0
lzma_block_header_encode(const lzma_block *block, uint8_t *out)
{
	// Validate everything but filters.
	if (lzma_block_unpadded_size(block) == 0
			|| !lzma_vli_is_valid(block->uncompressed_size))
		return LZMA_PROG_ERROR;

	// Indicate the size of the buffer _excluding_ the CRC32 field.
	const size_t out_size = block->header_size - 4;

	// Store the Block Header Size.
	out[0] = out_size / 4;

	// We write Block Flags in pieces.
	out[1] = 0x00;
	size_t out_pos = 2;

	// Compressed Size
	if (block->compressed_size != LZMA_VLI_UNKNOWN) {
		return_if_error(lzma_vli_encode(block->compressed_size, NULL,
				out, &out_pos, out_size));

		out[1] |= 0x40;
	}

	// Uncompressed Size
	if (block->uncompressed_size != LZMA_VLI_UNKNOWN) {
		return_if_error(lzma_vli_encode(block->uncompressed_size, NULL,
				out, &out_pos, out_size));

		out[1] |= 0x80;
	}

	// Filter Flags
	if (block->filters == NULL || block->filters[0].id == LZMA_VLI_UNKNOWN)
		return LZMA_PROG_ERROR;

	size_t filter_count = 0;
	do {
		// There can be a maximum of four filters.
		if (filter_count == LZMA_FILTERS_MAX)
			return LZMA_PROG_ERROR;

		return_if_error(lzma_filter_flags_encode(
				block->filters + filter_count,
				out, &out_pos, out_size));

	} while (block->filters[++filter_count].id != LZMA_VLI_UNKNOWN);

	out[1] |= filter_count - 1;

	// Padding
	memzero(out + out_pos, out_size - out_pos);

	// CRC32
	unaligned_write32le(out + out_size, lzma_crc32(out, out_size, 0));

	return LZMA_OK;
}
Example #3
0
lzma_block_total_size(const lzma_block *block)
{
	lzma_vli unpadded_size = lzma_block_unpadded_size(block);

	if (unpadded_size != LZMA_VLI_UNKNOWN)
		unpadded_size = vli_ceil4(unpadded_size);

	return unpadded_size;
}
lzma_block_header_decode(lzma_block *block,
		lzma_allocator *allocator, const uint8_t *in)
{
	const size_t filter_count = (in[1] & 3) + 1;
	size_t in_size;
	size_t i;

	// Start after the Block Header Size and Block Flags fields.
	size_t in_pos = 2;

	// NOTE: We consider the header to be corrupt not only when the
	// CRC32 doesn't match, but also when variable-length integers
	// are invalid or over 63 bits, or if the header is too small
	// to contain the claimed information.

	// Initialize the filter options array. This way the caller can
	// safely free() the options even if an error occurs in this function.
	for (i = 0; i <= LZMA_FILTERS_MAX; ++i) {
		block->filters[i].id = LZMA_VLI_UNKNOWN;
		block->filters[i].options = NULL;
	}

	// Always zero for now.
	block->version = 0;

	// Validate Block Header Size and Check type. The caller must have
	// already set these, so it is a programming error if this test fails.
	if (lzma_block_header_size_decode(in[0]) != block->header_size
			|| (unsigned int)(block->check) > LZMA_CHECK_ID_MAX)
		return LZMA_PROG_ERROR;

	// Exclude the CRC32 field.
	in_size = block->header_size - 4;

	// Verify CRC32
	if (lzma_crc32(in, in_size, 0) != unaligned_read32le(in + in_size))
		return LZMA_DATA_ERROR;

	// Check for unsupported flags.
	if (in[1] & 0x3C)
		return LZMA_OPTIONS_ERROR;

	// Compressed Size
	if (in[1] & 0x40) {
		return_if_error(lzma_vli_decode(&block->compressed_size,
				NULL, in, &in_pos, in_size));

		// Validate Compressed Size. This checks that it isn't zero
		// and that the total size of the Block is a valid VLI.
		if (lzma_block_unpadded_size(block) == 0)
			return LZMA_DATA_ERROR;
	} else {
		block->compressed_size = LZMA_VLI_UNKNOWN;
	}

	// Uncompressed Size
	if (in[1] & 0x80)
		return_if_error(lzma_vli_decode(&block->uncompressed_size,
				NULL, in, &in_pos, in_size));
	else
		block->uncompressed_size = LZMA_VLI_UNKNOWN;

	// Filter Flags
	for (i = 0; i < filter_count; ++i) {
		const lzma_ret ret = lzma_filter_flags_decode(
				&block->filters[i], allocator,
				in, &in_pos, in_size);
		if (ret != LZMA_OK) {
			free_properties(block, allocator);
			return ret;
		}
	}

	// Padding
	while (in_pos < in_size) {
		if (in[in_pos++] != 0x00) {
			free_properties(block, allocator);

			// Possibly some new field present so use
			// LZMA_OPTIONS_ERROR instead of LZMA_DATA_ERROR.
			return LZMA_OPTIONS_ERROR;
		}
	}

	return LZMA_OK;
}
lzma_stream_buffer_encode(lzma_filter *filters, lzma_check check,
		lzma_allocator *allocator, const uint8_t *in, size_t in_size,
		uint8_t *out, size_t *out_pos_ptr, size_t out_size)
{
	// Sanity checks
	if (filters == NULL || (unsigned int)(check) > LZMA_CHECK_ID_MAX
			|| (in == NULL && in_size != 0) || out == NULL
			|| out_pos_ptr == NULL || *out_pos_ptr > out_size)
		return LZMA_PROG_ERROR;

	if (!lzma_check_is_supported(check))
		return LZMA_UNSUPPORTED_CHECK;

	// Note for the paranoids: Index encoder prevents the Stream from
	// getting too big and still being accepted with LZMA_OK, and Block
	// encoder catches if the input is too big. So we don't need to
	// separately check if the buffers are too big.

	// Use a local copy. We update *out_pos_ptr only if everything
	// succeeds.
	size_t out_pos = *out_pos_ptr;

	// Check that there's enough space for both Stream Header and
	// Stream Footer.
	if (out_size - out_pos <= 2 * LZMA_STREAM_HEADER_SIZE)
		return LZMA_BUF_ERROR;

	// Reserve space for Stream Footer so we don't need to check for
	// available space again before encoding Stream Footer.
	out_size -= LZMA_STREAM_HEADER_SIZE;

	// Encode the Stream Header.
	lzma_stream_flags stream_flags = {
		.version = 0,
		.check = check,
	};

	if (lzma_stream_header_encode(&stream_flags, out + out_pos)
			!= LZMA_OK)
		return LZMA_PROG_ERROR;

	out_pos += LZMA_STREAM_HEADER_SIZE;

	// Encode a Block but only if there is at least one byte of input.
	lzma_block block = {
		.version = 0,
		.check = check,
		.filters = filters,
	};

	if (in_size > 0)
		return_if_error(lzma_block_buffer_encode(&block, allocator,
				in, in_size, out, &out_pos, out_size));

	// Index
	{
		// Create an Index. It will have one Record if there was
		// at least one byte of input to encode. Otherwise the
		// Index will be empty.
		lzma_index *i = lzma_index_init(allocator);
		if (i == NULL)
			return LZMA_MEM_ERROR;

		lzma_ret ret = LZMA_OK;

		if (in_size > 0)
			ret = lzma_index_append(i, allocator,
					lzma_block_unpadded_size(&block),
					block.uncompressed_size);

		// If adding the Record was successful, encode the Index
		// and get its size which will be stored into Stream Footer.
		if (ret == LZMA_OK) {
			ret = lzma_index_buffer_encode(
					i, out, &out_pos, out_size);

			stream_flags.backward_size = lzma_index_size(i);
		}

		lzma_index_end(i, allocator);

		if (ret != LZMA_OK)
			return ret;
	}

	// Stream Footer. We have already reserved space for this.
	if (lzma_stream_footer_encode(&stream_flags, out + out_pos)
			!= LZMA_OK)
		return LZMA_PROG_ERROR;

	out_pos += LZMA_STREAM_HEADER_SIZE;

	// Everything went fine, make the new output position available
	// to the application.
	*out_pos_ptr = out_pos;
	return LZMA_OK;
}