Example #1
0
/*
 *      From Knuth, The Art of Computer Programming:
 *
 *      To compute GCD(u,v)
 *          
 *      A1:
 *	    if (v == 0)  return (u)
 *      A2:
 *          t = u mod v
 *	    u = v
 *	    v = t
 *	    goto A1
 */
void	m_apm_gcd_traditional(M_APM r, M_APM u, M_APM v)
{
M_APM   tmpD, tmpN, tmpU, tmpV;

tmpD = M_get_stack_var();
tmpN = M_get_stack_var();
tmpU = M_get_stack_var();
tmpV = M_get_stack_var();

m_apm_absolute_value(tmpU, u);
m_apm_absolute_value(tmpV, v);

while (TRUE)
  {
   if (tmpV->m_apm_sign == 0)
     break;

   m_apm_integer_div_rem(tmpD, tmpN, tmpU, tmpV);
   m_apm_copy(tmpU, tmpV);
   m_apm_copy(tmpV, tmpN);
  }

m_apm_copy(r, tmpU);
M_restore_stack(4);
}
Example #2
0
/*
 *      arcsinh(x) == log [ x + sqrt(x^2 + 1) ]
 *
 *      also, use arcsinh(-x) == -arcsinh(x)
 */
void	m_apm_arcsinh(M_APM rr, int places, M_APM aa)
{
M_APM	tmp0, tmp1, tmp2;

/* result is 0 if input is 0 */

if (aa->m_apm_sign == 0)
  {
   M_set_to_zero(rr);
   return;
  }

tmp0 = M_get_stack_var();
tmp1 = M_get_stack_var();
tmp2 = M_get_stack_var();

m_apm_absolute_value(tmp0, aa);
m_apm_multiply(tmp1, tmp0, tmp0);
m_apm_add(tmp2, tmp1, MM_One);
m_apm_sqrt(tmp1, (places + 6), tmp2);
m_apm_add(tmp2, tmp0, tmp1);
m_apm_log(rr, places, tmp2);

rr->m_apm_sign = aa->m_apm_sign; 			  /* fix final sign */

M_restore_stack(3);
}
Example #3
0
/*
 *      arctanh(x) == 0.5 * log [ (1 + x) / (1 - x) ]
 *
 *      |x| < 1.0
 */
void	m_apm_arctanh(M_APM rr, int places, M_APM aa)
{
M_APM	tmp1, tmp2, tmp3;
int     ii, local_precision;

tmp1 = M_get_stack_var();

m_apm_absolute_value(tmp1, aa);

ii = m_apm_compare(tmp1, MM_One);

if (ii >= 0)       /* |x| >= 1.0 */
  {
   M_apm_log_error_msg(M_APM_RETURN, "\'m_apm_arctanh\', |Argument| >= 1");
   M_set_to_zero(rr);
   M_restore_stack(1);
   return;
  }

tmp2 = M_get_stack_var();
tmp3 = M_get_stack_var();

local_precision = places + 8;

m_apm_add(tmp1, MM_One, aa);
m_apm_subtract(tmp2, MM_One, aa);
m_apm_divide(tmp3, local_precision, tmp1, tmp2);
m_apm_log(tmp2, local_precision, tmp3);
m_apm_multiply(tmp1, tmp2, MM_0_5);
m_apm_round(rr, places, tmp1);

M_restore_stack(3);
}
Example #4
0
void	m_apm_arccos(M_APM r, int places, M_APM x)
{
M_APM   tmp0, tmp1, tmp2, tmp3, current_x;
int	ii, maxiter, maxp, tolerance, local_precision;

current_x = M_get_stack_var();
tmp0      = M_get_stack_var();
tmp1      = M_get_stack_var();
tmp2      = M_get_stack_var();
tmp3      = M_get_stack_var();

m_apm_absolute_value(tmp0, x);

ii = m_apm_compare(tmp0, MM_One);

if (ii == 1)       /* |x| > 1 */
  {
   M_apm_log_error_msg(M_APM_RETURN, "\'m_apm_arccos\', |Argument| > 1");
   M_set_to_zero(r);
   M_restore_stack(5);
   return;
  }

if (ii == 0)       /* |x| == 1, arccos = 0, PI */
  {
   if (x->m_apm_sign == 1)
     {
      M_set_to_zero(r);
     }
   else
     {
      M_check_PI_places(places);
      m_apm_round(r, places, MM_lc_PI);
     }

   M_restore_stack(5);
   return;
  }

if (m_apm_compare(tmp0, MM_0_85) == 1)        /* check if > 0.85 */
  {
   M_cos_to_sin(tmp2, (places + 4), x);

   if (x->m_apm_sign == 1)
     {
      m_apm_arcsin(r, places, tmp2);
     }
   else
     {
      M_check_PI_places(places);
      m_apm_arcsin(tmp3, (places + 4), tmp2);
      m_apm_subtract(tmp1, MM_lc_PI, tmp3);
      m_apm_round(r, places, tmp1);
     }

   M_restore_stack(5);
   return;
  }

if (x->m_apm_sign == 0)			      /* input == 0 ?? */
  {
   M_check_PI_places(places);
   m_apm_round(r, places, MM_lc_HALF_PI);
   M_restore_stack(5);
   return;
  }

if (x->m_apm_exponent <= -4)		      /* input close to 0 ?? */
  {
   M_arccos_near_0(r, places, x);
   M_restore_stack(5);
   return;
  }

tolerance       = -(places + 4);
maxp            = places + 8;
local_precision = 18;

/*
 *      compute the maximum number of iterations
 *	that should be needed to calculate to
 *	the desired accuracy.  [ constant below ~= 1 / log(2) ]
 */

maxiter = (int)(log((double)(places + 2)) * 1.442695) + 3;

if (maxiter < 5)
  maxiter = 5;

M_get_acos_guess(current_x, x);

/*    Use the following iteration to solve for arc-cos :

                      cos(X) - N
      X     =  X  +  ------------
       n+1              sin(X)
*/

ii = 0;

while (TRUE)
  {
   M_4x_cos(tmp1, local_precision, current_x);

   M_cos_to_sin(tmp2, local_precision, tmp1);
   if (tmp2->m_apm_sign != 0)
     tmp2->m_apm_sign = current_x->m_apm_sign;

   m_apm_subtract(tmp3, tmp1, x);
   m_apm_divide(tmp0, local_precision, tmp3, tmp2);

   m_apm_add(tmp2, current_x, tmp0);
   m_apm_copy(current_x, tmp2);

   if (ii != 0)
     {
      if (((2 * tmp0->m_apm_exponent) < tolerance) || (tmp0->m_apm_sign == 0))
        break;
     }

   if (++ii == maxiter)
     {
      M_apm_log_error_msg(M_APM_RETURN,
            "\'m_apm_arccos\', max iteration count reached");
      break;
     }

   local_precision *= 2;

   if (local_precision > maxp)
     local_precision = maxp;
  }

m_apm_round(r, places, current_x);
M_restore_stack(5);
}
Example #5
0
void	m_apm_reciprocal(M_APM rr, int places, M_APM aa)
{
M_APM   last_x, guess, tmpN, tmp1, tmp2;
int	ii, bflag, dplaces, nexp, tolerance;

if (aa->m_apm_sign == 0)
  {
   M_apm_log_error_msg(M_APM_RETURN, 
                       "Warning! ... \'m_apm_reciprocal\', Input = 0");

   M_set_to_zero(rr);
   return;
  }

last_x = M_get_stack_var();
guess  = M_get_stack_var();
tmpN   = M_get_stack_var();
tmp1   = M_get_stack_var();
tmp2   = M_get_stack_var();

m_apm_absolute_value(tmpN, aa);

/* 
    normalize the input number (make the exponent 0) so
    the 'guess' below will not over/under flow on large
    magnitude exponents.
*/

nexp = aa->m_apm_exponent;
tmpN->m_apm_exponent -= nexp;

m_apm_set_double(guess, (1.0 / m_apm_get_double(tmpN)));

tolerance = places + 4;
dplaces   = places + 16;
bflag     = FALSE;

m_apm_negate(last_x, MM_Ten);

/*   Use the following iteration to calculate the reciprocal :


         X     =  X  *  [ 2 - N * X ]
          n+1
*/

ii = 0;

while (TRUE)
  {
   m_apm_multiply(tmp1, tmpN, guess);
   m_apm_subtract(tmp2, MM_Two, tmp1);
   m_apm_multiply(tmp1, tmp2, guess);

   if (bflag)
     break;

   m_apm_round(guess, dplaces, tmp1);

   /* force at least 2 iterations so 'last_x' has valid data */

   if (ii != 0)
     {
      m_apm_subtract(tmp2, guess, last_x);

      if (tmp2->m_apm_sign == 0)
        break;

      /* 
       *   if we are within a factor of 4 on the error term,
       *   we will be accurate enough after the *next* iteration
       *   is complete.
       */

      if ((-4 * tmp2->m_apm_exponent) > tolerance)
        bflag = TRUE;
     }

   m_apm_copy(last_x, guess);
   ii++;
  }

m_apm_round(rr, places, tmp1);
rr->m_apm_exponent -= nexp;
rr->m_apm_sign = aa->m_apm_sign;
M_restore_stack(5);
}
Example #6
0
void	m_apm_absolute_value_mt(M_APM d, M_APM s)
{
	m_apm_enter();
	m_apm_absolute_value(d,s);
	m_apm_leave();
}
Example #7
0
MAPM MAPM::abs(void) const
{
    MAPM ret;
    m_apm_absolute_value(ret.val(),cval());
    return ret;
}
Example #8
0
void	m_apm_to_fixpt_stringex(char *s, int dplaces, M_APM atmp, 
				char ch_radix, char ch_sep, int count_sep)
{
M_APM   btmp;
char    ch, *cpd, *cps;
int	ii, jj, kk, ct, dl, xp, no_sep_flg, places;

btmp       = M_get_stack_var();
places     = dplaces;
cpd        = s;
no_sep_flg = FALSE;

m_apm_absolute_value(btmp, atmp);	/* do conversion of positive number */

if (ch_sep == 0 || count_sep == 0)	/* no separator char OR count */
  no_sep_flg = TRUE;

/* determine how much memory to get for the temp string */

dl = btmp->m_apm_datalength;
xp = btmp->m_apm_exponent;

if (places < 0)				/* show ALL digits */
  {
   if (xp < 0)
      ii = dl - xp;
   else
     {
      if (dl > xp)
        ii = dl;
      else
        ii = xp;
     }
  }
else
  {
   ii = places;
      
   if (xp > 0)
     ii += xp;
  }

if ((cps = (char *)MAPM_MALLOC((ii + 32) * sizeof(char))) == NULL)
  {
   /* fatal, this does not return */

   M_apm_log_error_msg(M_APM_FATAL, 
                       "\'m_apm_to_fixpt_stringex\', Out of memory");
  }

m_apm_to_fixpt_string(cps, places, btmp);

/*
 *  the converted string may be all 'zero', 0.0000...
 *  if so and the original number is negative,
 *  do NOT set the '-' sign of our output string.
 */

if (atmp->m_apm_sign == -1)		/* if input number negative */
  {
   kk = 0;
   jj = 0;

   while (TRUE)
     {
      ch = cps[kk++];
      if ((ch == '\0') || (jj != 0))
        break;

      if (isdigit((int)ch))
        {
	 if (ch != '0')
	   jj = 1;
	}
     }

   if (jj)
     *cpd++ = '-';
  }

ct = M_strposition(cps, ".");      /* find the default (.) radix char */

if (ct == -1)			   /* if not found .. */
  {
   strcat(cps, ".");               /* add one */
   ct = M_strposition(cps, ".");   /* and then find it */
  }

if (places == 0)		   /* int format, terminate at radix char */
  cps[ct] = '\0';
else
  cps[ct] = ch_radix;		   /* assign the radix char */

/*
 *  if the number is small enough to not have any separator char's ...
 */

if (ct <= count_sep)
  no_sep_flg = TRUE;

if (no_sep_flg)
  {
   strcpy(cpd, cps);

  }
else
  {
   jj = 0;
   kk = count_sep;
   ii = ct / count_sep;

   if ((ii = ct - ii * count_sep) == 0)
     ii = count_sep;

   while (TRUE)				/* write out the first 1,2  */
     {					/* (up to count_sep) digits */
      *cpd++ = cps[jj++];

      if (--ii == 0)
        break;
     }

   while (TRUE)				/* write rest of the string   */
     {
      if (kk == count_sep)		/* write a new separator char */
        {
	 if (jj != ct)			/* unless we're at the radix  */
	   {
            *cpd++ = ch_sep;		/* note that this also disables */
	    kk = 0;			/* the separator char AFTER     */
	   }				/* the radix char               */
	}

      if ((*cpd++ = cps[jj++]) == '\0')
        break;

      kk++;
     }
  }

MAPM_FREE(cps);
M_restore_stack(1);
}
Example #9
0
/*
 *      From Knuth, The Art of Computer Programming: 
 *
 *	This is the binary GCD algorithm as described
 *	in the book (Algorithm B)
 */
void	m_apm_gcd(M_APM r, M_APM u, M_APM v)
{
M_APM   tmpM, tmpN, tmpT, tmpU, tmpV;
int	kk, kr, mm;
long    pow_2;

/* 'is_integer' will return 0 || 1 */

if ((m_apm_is_integer(u) + m_apm_is_integer(v)) != 2)
  {
   M_apm_log_error_msg(M_APM_RETURN, 
                       "Warning! \'m_apm_gcd\', Non-integer input");

   M_set_to_zero(r);
   return;
  }

if (u->m_apm_sign == 0)
  {
   m_apm_absolute_value(r, v);
   return;
  }

if (v->m_apm_sign == 0)
  {
   m_apm_absolute_value(r, u);
   return;
  }

tmpM = M_get_stack_var();
tmpN = M_get_stack_var();
tmpT = M_get_stack_var();
tmpU = M_get_stack_var();
tmpV = M_get_stack_var();

m_apm_absolute_value(tmpU, u);
m_apm_absolute_value(tmpV, v);

/* Step B1 */

kk = 0;

while (TRUE)
  {
   mm = 1;
   if (m_apm_is_odd(tmpU))
     break;

   mm = 0;
   if (m_apm_is_odd(tmpV))
     break;

   m_apm_multiply(tmpN, MM_0_5, tmpU);
   m_apm_copy(tmpU, tmpN);

   m_apm_multiply(tmpN, MM_0_5, tmpV);
   m_apm_copy(tmpV, tmpN);

   kk++;
  }

/* Step B2 */

if (mm)
  {
   m_apm_negate(tmpT, tmpV);
   goto B4;
  }

m_apm_copy(tmpT, tmpU);

/* Step: */

B3:

m_apm_multiply(tmpN, MM_0_5, tmpT);
m_apm_copy(tmpT, tmpN);

/* Step: */

B4:

if (m_apm_is_even(tmpT))
  goto B3;

/* Step B5 */

if (tmpT->m_apm_sign == 1)
  m_apm_copy(tmpU, tmpT);
else
  m_apm_negate(tmpV, tmpT);

/* Step B6 */

m_apm_subtract(tmpT, tmpU, tmpV);

if (tmpT->m_apm_sign != 0)
  goto B3;

/*
 *  result = U * 2 ^ kk
 */

if (kk == 0)
   m_apm_copy(r, tmpU);
else
  {
   if (kk == 1)
     m_apm_multiply(r, tmpU, MM_Two);

   if (kk == 2)
     m_apm_multiply(r, tmpU, MM_Four);

   if (kk >= 3)
     {
      mm = kk / 28;
      kr = kk % 28;
      pow_2 = 1L << kr;

      if (mm == 0)
        {
	 m_apm_set_long(tmpN, pow_2);
         m_apm_multiply(r, tmpU, tmpN);
	}
      else
        {
	 m_apm_copy(tmpN, MM_One);
         m_apm_set_long(tmpM, 0x10000000L);   /* 2 ^ 28 */

	 while (TRUE)
	   {
            m_apm_multiply(tmpT, tmpN, tmpM);
            m_apm_copy(tmpN, tmpT);

	    if (--mm == 0)
	      break;
	   }

	 if (kr == 0)
	   {
            m_apm_multiply(r, tmpU, tmpN);
	   }
	 else
	   {
	    m_apm_set_long(tmpM, pow_2);
            m_apm_multiply(tmpT, tmpN, tmpM);
            m_apm_multiply(r, tmpU, tmpT);
	   }
	}
     }
  }

M_restore_stack(5);
}
Example #10
0
void	M_apm_sdivide(M_APM r, int places, M_APM a, M_APM b)
{
int	j, k, m, b0, sign, nexp, indexr, icompare, iterations;
long    trial_numer;
void	*vp;

if (M_div_firsttime)
  {
   M_div_firsttime = FALSE;

   M_div_worka = m_apm_init();
   M_div_workb = m_apm_init();
   M_div_tmp7  = m_apm_init();
   M_div_tmp8  = m_apm_init();
   M_div_tmp9  = m_apm_init();
  }

sign = a->m_apm_sign * b->m_apm_sign;

if (sign == 0)      /* one number is zero, result is zero */
  {
   if (b->m_apm_sign == 0)
     {
      M_apm_log_error_msg(M_APM_RETURN, "\'M_apm_sdivide\', Divide by 0");
     }

   M_set_to_zero(r);
   return;
  }

/*
 *  Knuth step D1. Since base = 100, base / 2 = 50.
 *  (also make the working copies positive)
 */

if (b->m_apm_data[0] >= 50)
  {
   m_apm_absolute_value(M_div_worka, a);
   m_apm_absolute_value(M_div_workb, b);
  }
else       /* 'normal' step D1 */
  {
   k = 100 / (b->m_apm_data[0] + 1);
   m_apm_set_long(M_div_tmp9, (long)k);

   m_apm_multiply(M_div_worka, M_div_tmp9, a);
   m_apm_multiply(M_div_workb, M_div_tmp9, b);

   M_div_worka->m_apm_sign = 1;
   M_div_workb->m_apm_sign = 1;
  }

/* setup trial denominator for step D3 */

b0 = 100 * (int)M_div_workb->m_apm_data[0];

if (M_div_workb->m_apm_datalength >= 3)
  b0 += M_div_workb->m_apm_data[1];

nexp = M_div_worka->m_apm_exponent - M_div_workb->m_apm_exponent;

if (nexp > 0)
  iterations = nexp + places + 1;
else
  iterations = places + 1;

k = (iterations + 1) >> 1;     /* required size of result, in bytes */

if (k > r->m_apm_malloclength)
  {
   if ((vp = MAPM_REALLOC(r->m_apm_data, (k + 32))) == NULL)
     {
      /* fatal, this does not return */

      M_apm_log_error_msg(M_APM_FATAL, "\'M_apm_sdivide\', Out of memory");
     }
  
   r->m_apm_malloclength = k + 28;
   r->m_apm_data = (UCHAR *)vp;
  }

/* clear the exponent in the working copies */

M_div_worka->m_apm_exponent = 0;
M_div_workb->m_apm_exponent = 0;

/* if numbers are equal, ratio == 1.00000... */

if ((icompare = m_apm_compare(M_div_worka, M_div_workb)) == 0)
  {
   iterations = 1;
   r->m_apm_data[0] = 10;
   nexp++;
  }
else			           /* ratio not 1, do the real division */
  {
   if (icompare == 1)                        /* numerator > denominator */
     {
      nexp++;                           /* to adjust the final exponent */
      M_div_worka->m_apm_exponent += 1;     /* multiply numerator by 10 */
     }
   else                                      /* numerator < denominator */
     {
      M_div_worka->m_apm_exponent += 2;    /* multiply numerator by 100 */
     }

   indexr = 0;
   m      = 0;

   while (TRUE)
     {
      /*
       *  Knuth step D3. Only use the 3rd -> 6th digits if the number
       *  actually has that many digits.
       */

      trial_numer = 10000L * (long)M_div_worka->m_apm_data[0];
      
      if (M_div_worka->m_apm_datalength >= 5)
        {
         trial_numer += 100 * M_div_worka->m_apm_data[1]
                            + M_div_worka->m_apm_data[2];
	}
      else
        {
         if (M_div_worka->m_apm_datalength >= 3)
           trial_numer += 100 * M_div_worka->m_apm_data[1];
        }

      j = (int)(trial_numer / b0);

      /* 
       *    Since the library 'normalizes' all the results, we need
       *    to look at the exponent of the number to decide if we 
       *    have a lead in 0n or 00.
       */

      if ((k = 2 - M_div_worka->m_apm_exponent) > 0)
        {
	 while (TRUE)
	   {
	    j /= 10;
	    if (--k == 0)
	      break;
	   }
	}

      if (j == 100)     /* qhat == base ??      */
        j = 99;         /* if so, decrease by 1 */

      m_apm_set_long(M_div_tmp8, (long)j);
      m_apm_multiply(M_div_tmp7, M_div_tmp8, M_div_workb);

      /*
       *    Compare our q-hat (j) against the desired number.
       *    j is either correct, 1 too large, or 2 too large
       *    per Theorem B on pg 272 of Art of Compter Programming,
       *    Volume 2, 3rd Edition.
       *    
       *    The above statement is only true if using the 2 leading
       *    digits of the numerator and the leading digit of the 
       *    denominator. Since we are using the (3) leading digits
       *    of the numerator and the (2) leading digits of the 
       *    denominator, we eliminate the case where our q-hat is 
       *    2 too large, (and q-hat being 1 too large is quite remote).
       */

      if (m_apm_compare(M_div_tmp7, M_div_worka) == 1)
        {
	 j--;
         m_apm_subtract(M_div_tmp8, M_div_tmp7, M_div_workb);
         m_apm_copy(M_div_tmp7, M_div_tmp8);
	}

      /* 
       *  Since we know q-hat is correct, step D6 is unnecessary.
       *
       *  Store q-hat, step D5. Since D6 is unnecessary, we can 
       *  do D5 before D4 and decide if we are done.
       */

      r->m_apm_data[indexr++] = (UCHAR)j;    /* j == 'qhat' */
      m += 2;

      if (m >= iterations)
        break;

      /* step D4 */

      m_apm_subtract(M_div_tmp9, M_div_worka, M_div_tmp7);

      /*
       *  if the subtraction yields zero, the division is exact
       *  and we are done early.
       */

      if (M_div_tmp9->m_apm_sign == 0)
        {
	 iterations = m;
	 break;
	}

      /* multiply by 100 and re-save */
      M_div_tmp9->m_apm_exponent += 2;
      m_apm_copy(M_div_worka, M_div_tmp9);
     }
  }

r->m_apm_sign       = sign;
r->m_apm_exponent   = nexp;
r->m_apm_datalength = iterations;

M_apm_normalize(r);
}