Example #1
0
void magmaf_dstedx_m(
    magma_int_t *nrgpu, magma_range_t *range, magma_int_t *n, double *vl, double *vu, magma_int_t *il, magma_int_t *iu,
    double *D,
    double *E,
    double *Z, magma_int_t *ldz,
    double *rwork, magma_int_t *ldrwork,
    magma_int_t *iwork, magma_int_t *liwork,
    magma_int_t *info )
{
    magma_dstedx_m(
        *nrgpu, *range, *n, *vl, *vu, *il, *iu,
        D,
        E,
        Z, *ldz,
        rwork, *ldrwork,
        iwork, *liwork,
        info );
}
Example #2
0
/**
    Purpose
    -------
    DSYEVD computes all eigenvalues and, optionally, eigenvectors of a
    real symmetric matrix A.  If eigenvectors are desired, it uses a
    divide and conquer algorithm.

    The divide and conquer algorithm makes very mild assumptions about
    floating point arithmetic. It will work on machines with a guard
    digit in add/subtract, or on those binary machines without guard
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
    Cray-2. It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.

    Arguments
    ---------
    @param[in]
    nrgpu   INTEGER
            Number of GPUs to use.

    @param[in]
    jobz    magma_vec_t
      -     = MagmaNoVec:  Compute eigenvalues only;
      -     = MagmaVec:    Compute eigenvalues and eigenvectors.

    @param[in]
    uplo    magma_uplo_t
      -     = MagmaUpper:  Upper triangle of A is stored;
      -     = MagmaLower:  Lower triangle of A is stored.

    @param[in]
    n       INTEGER
            The order of the matrix A.  N >= 0.

    @param[in,out]
    A       DOUBLE_PRECISION array, dimension (LDA, N)
            On entry, the symmetric matrix A.  If UPLO = MagmaUpper, the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = MagmaLower,
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.
            On exit, if JOBZ = MagmaVec, then if INFO = 0, A contains the
            orthonormal eigenvectors of the matrix A.
            If JOBZ = MagmaNoVec, then on exit the lower triangle (if UPLO=MagmaLower)
            or the upper triangle (if UPLO=MagmaUpper) of A, including the
            diagonal, is destroyed.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    @param[out]
    w       DOUBLE PRECISION array, dimension (N)
            If INFO = 0, the eigenvalues in ascending order.

    @param[out]
    work    (workspace) DOUBLE_PRECISION array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The length of the array WORK.
            If N <= 1,                      LWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LWORK >= 2*N + N*NB.
            If JOBZ = MagmaVec   and N > 1, LWORK >= max( 2*N + N*NB, 1 + 6*N + 2*N**2 ).
            NB can be obtained through magma_get_dsytrd_nb(N).
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal sizes of the WORK, RWORK and
            IWORK arrays, returns these values as the first entries of
            the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    iwork   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK.

    @param[in]
    liwork  INTEGER
            The dimension of the array IWORK.
            If N <= 1,                      LIWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1.
            If JOBZ = MagmaVec   and N > 1, LIWORK >= 3 + 5*N.
    \n
            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value
      -     > 0:  if INFO = i and JOBZ = MagmaNoVec, then the algorithm failed
                  to converge; i off-diagonal elements of an intermediate
                  tridiagonal form did not converge to zero;
                  if INFO = i and JOBZ = MagmaVec, then the algorithm failed
                  to compute an eigenvalue while working on the submatrix
                  lying in rows and columns INFO/(N+1) through
                  mod(INFO,N+1).

    Further Details
    ---------------
    Based on contributions by
       Jeff Rutter, Computer Science Division, University of California
       at Berkeley, USA

    Modified description of INFO. Sven, 16 Feb 05.

    @ingroup magma_dsyev_driver
    ********************************************************************/
extern "C" magma_int_t
magma_dsyevd_m(magma_int_t nrgpu, magma_vec_t jobz, magma_uplo_t uplo,
               magma_int_t n,
               double *A, magma_int_t lda,
               double *w,
               double *work, magma_int_t lwork,
               magma_int_t *iwork, magma_int_t liwork,
               magma_int_t *info)
{
    const char* uplo_ = lapack_uplo_const( uplo );
    const char* jobz_ = lapack_vec_const( jobz );
    magma_int_t ione = 1;
    magma_int_t izero = 0;
    double d_one = 1.;

    double d__1;

    double eps;
    magma_int_t inde;
    double anrm;
    double rmin, rmax;
    double sigma;
    magma_int_t iinfo, lwmin;
    magma_int_t lower;
    magma_int_t wantz;
    magma_int_t indwk2, llwrk2;
    magma_int_t iscale;
    double safmin;
    double bignum;
    magma_int_t indtau;
    magma_int_t indwrk, liwmin;
    magma_int_t llwork;
    double smlnum;
    magma_int_t lquery;

    wantz = (jobz == MagmaVec);
    lower = (uplo == MagmaLower);
    lquery = (lwork == -1 || liwork == -1);

    *info = 0;
    if (! (wantz || (jobz == MagmaNoVec))) {
        *info = -1;
    } else if (! (lower || (uplo == MagmaUpper))) {
        *info = -2;
    } else if (n < 0) {
        *info = -3;
    } else if (lda < max(1,n)) {
        *info = -5;
    }

    magma_int_t nb = magma_get_dsytrd_nb( n );
    if ( n <= 1 ) {
        lwmin  = 1;
        liwmin = 1;
    }
    else if ( wantz ) {
        lwmin  = max( 2*n + n*nb, 1 + 6*n + 2*n*n );
        liwmin = 3 + 5*n;
    }
    else {
        lwmin  = 2*n + n*nb;
        liwmin = 1;
    }
    
    // multiply by 1+eps (in Double!) to ensure length gets rounded up,
    // if it cannot be exactly represented in floating point.
    real_Double_t one_eps = 1. + lapackf77_dlamch("Epsilon");
    work[0]  = lwmin * one_eps;
    iwork[0] = liwmin;

    if ((lwork < lwmin) && !lquery) {
        *info = -8;
    } else if ((liwork < liwmin) && ! lquery) {
        *info = -10;
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /* Quick return if possible */
    if (n == 0) {
        return *info;
    }

    if (n == 1) {
        w[0] = A[0];
        if (wantz) {
            A[0] = 1.;
        }
        return *info;
    }
    /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */
    if (n <= 128) {
        #ifdef ENABLE_DEBUG
        printf("--------------------------------------------------------------\n");
        printf("  warning matrix too small N=%d NB=%d, calling lapack on CPU  \n", (int) n, (int) nb);
        printf("--------------------------------------------------------------\n");
        #endif
        lapackf77_dsyevd(jobz_, uplo_,
                         &n, A, &lda,
                         w, work, &lwork,
                         iwork, &liwork, info);
        return *info;
    }

    /* Get machine constants. */
    safmin = lapackf77_dlamch("Safe minimum");
    eps = lapackf77_dlamch("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = magma_dsqrt(smlnum);
    rmax = magma_dsqrt(bignum);

    /* Scale matrix to allowable range, if necessary. */
    anrm = lapackf77_dlansy("M", uplo_, &n, A, &lda, work);
    iscale = 0;
    if (anrm > 0. && anrm < rmin) {
        iscale = 1;
        sigma = rmin / anrm;
    } else if (anrm > rmax) {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1) {
        lapackf77_dlascl(uplo_, &izero, &izero, &d_one, &sigma, &n, &n, A,
                &lda, info);
    }

    /* Call DSYTRD to reduce symmetric matrix to tridiagonal form. */
    // dsytrd work: e (n) + tau (n) + llwork (n*nb)  ==>  2n + n*nb
    // dstedx work: e (n) + tau (n) + z (n*n) + llwrk2 (1 + 4*n + n^2)  ==>  1 + 6n + 2n^2
    inde   = 0;
    indtau = inde   + n;
    indwrk = indtau + n;
    indwk2 = indwrk + n*n;
    llwork = lwork - indwrk;
    llwrk2 = lwork - indwk2;

    magma_timer_t time=0;
    timer_start( time );

    magma_dsytrd_mgpu(nrgpu, 1, uplo, n, A, lda, w, &work[inde],
                      &work[indtau], &work[indwrk], llwork, &iinfo);

    timer_stop( time );
    timer_printf( "time dsytrd = %6.2f\n", time );

    /* For eigenvalues only, call DSTERF.  For eigenvectors, first call
       DSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
       tridiagonal matrix, then call DORMTR to multiply it to the Householder
       transformations represented as Householder vectors in A. */
    if (! wantz) {
        lapackf77_dsterf(&n, w, &work[inde], info);
    }
    else {
        timer_start( time );

#ifdef USE_SINGLE_GPU
        if (MAGMA_SUCCESS != magma_dmalloc( &dwork, 3*n*(n/2 + 1) )) {
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }

        magma_dstedx(MagmaRangeAll, n, 0., 0., 0, 0, w, &work[inde],
                     &work[indwrk], n, &work[indwk2],
                     llwrk2, iwork, liwork, dwork, info);

        magma_free( dwork );
#else
        magma_dstedx_m(nrgpu, MagmaRangeAll, n, 0., 0., 0, 0, w, &work[inde],
                       &work[indwrk], n, &work[indwk2],
                       llwrk2, iwork, liwork, info);
#endif

        timer_stop( time );
        timer_printf( "time dstedc = %6.2f\n", time );
        timer_start( time );

        magma_dormtr_m(nrgpu, MagmaLeft, uplo, MagmaNoTrans, n, n, A, lda, &work[indtau],
                       &work[indwrk], n, &work[indwk2], llwrk2, &iinfo);

        lapackf77_dlacpy("A", &n, &n, &work[indwrk], &n, A, &lda);

        timer_stop( time );
        timer_printf( "time dormtr + copy = %6.2f\n", time );
    }

    /* If matrix was scaled, then rescale eigenvalues appropriately. */
    if (iscale == 1) {
        d__1 = 1. / sigma;
        blasf77_dscal(&n, &d__1, w, &ione);
    }

    work[0]  = lwmin * one_eps;  // round up
    iwork[0] = liwmin;

    return *info;
} /* magma_dsyevd_m */
Example #3
0
extern "C" magma_int_t
magma_dsyevd_m(magma_int_t nrgpu, char jobz, char uplo,
               magma_int_t n,
               double *a, magma_int_t lda,
               double *w,
               double *work, magma_int_t lwork,
               magma_int_t *iwork, magma_int_t liwork,
               magma_int_t *info)
{
/*  -- MAGMA (version 1.4.1) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       December 2013

    Purpose
    =======
    DSYEVD computes all eigenvalues and, optionally, eigenvectors of a
    real symmetric matrix A.  If eigenvectors are desired, it uses a
    divide and conquer algorithm.

    The divide and conquer algorithm makes very mild assumptions about
    floating point arithmetic. It will work on machines with a guard
    digit in add/subtract, or on those binary machines without guard
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
    Cray-2. It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.

    Arguments
    =========
    JOBZ    (input) CHARACTER*1
            = 'N':  Compute eigenvalues only;
            = 'V':  Compute eigenvalues and eigenvectors.

    UPLO    (input) CHARACTER*1
            = 'U':  Upper triangle of A is stored;
            = 'L':  Lower triangle of A is stored.

    N       (input) INTEGER
            The order of the matrix A.  N >= 0.

    A       (input/output) DOUBLE_PRECISION array, dimension (LDA, N)
            On entry, the symmetric matrix A.  If UPLO = 'U', the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = 'L',
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.
            On exit, if JOBZ = 'V', then if INFO = 0, A contains the
            orthonormal eigenvectors of the matrix A.
            If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
            or the upper triangle (if UPLO='U') of A, including the
            diagonal, is destroyed.

    LDA     (input) INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    W       (output) DOUBLE PRECISION array, dimension (N)
            If INFO = 0, the eigenvalues in ascending order.

    WORK    (workspace/output) DOUBLE_PRECISION array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

    LWORK   (input) INTEGER
            The length of the array WORK.
            If N <= 1,                LWORK >= 1.
            If JOBZ  = 'N' and N > 1, LWORK >= N * (NB + 1).
            If JOBZ  = 'V' and N > 1, LWORK >= 2*N + N**2.

            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal sizes of the WORK, RWORK and
            IWORK arrays, returns these values as the first entries of
            the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    RWORK   (workspace/output) DOUBLE PRECISION array,
                                           dimension (LRWORK)
            On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.

    LRWORK  (input) INTEGER
            The dimension of the array RWORK.
            If N <= 1,                LRWORK >= 1.
            If JOBZ  = 'N' and N > 1, LRWORK >= N.
            If JOBZ  = 'V' and N > 1, LRWORK >=
                           1 + 5*N + 2*N**2.

            If LRWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.

    LIWORK  (input) INTEGER
            The dimension of the array IWORK.
            If N <= 1,                LIWORK >= 1.
            If JOBZ  = 'N' and N > 1, LIWORK >= 1.
            If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.

            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    INFO    (output) INTEGER
            = 0:  successful exit
            < 0:  if INFO = -i, the i-th argument had an illegal value
            > 0:  if INFO = i and JOBZ = 'N', then the algorithm failed
                  to converge; i off-diagonal elements of an intermediate
                  tridiagonal form did not converge to zero;
                  if INFO = i and JOBZ = 'V', then the algorithm failed
                  to compute an eigenvalue while working on the submatrix
                  lying in rows and columns INFO/(N+1) through
                  mod(INFO,N+1).

    Further Details
    ===============
    Based on contributions by
       Jeff Rutter, Computer Science Division, University of California
       at Berkeley, USA

    Modified description of INFO. Sven, 16 Feb 05.
    =====================================================================   */

    char uplo_[2] = {uplo, 0};
    char jobz_[2] = {jobz, 0};
    magma_int_t ione = 1;
    magma_int_t izero = 0;
    double d_one = 1.;

    double d__1;

    double eps;
    magma_int_t inde;
    double anrm;
    double rmin, rmax;
    double sigma;
    magma_int_t iinfo, lwmin;
    magma_int_t lower;
    magma_int_t wantz;
    magma_int_t indwk2, llwrk2;
    magma_int_t iscale;
    double safmin;
    double bignum;
    magma_int_t indtau;
    magma_int_t indwrk, liwmin;
    magma_int_t llwork;
    double smlnum;
    magma_int_t lquery;

    wantz = lapackf77_lsame(jobz_, MagmaVecStr);
    lower = lapackf77_lsame(uplo_, MagmaLowerStr);
    lquery = lwork == -1 || liwork == -1;

    *info = 0;
    if (! (wantz || lapackf77_lsame(jobz_, MagmaNoVecStr))) {
        *info = -1;
    } else if (! (lower || lapackf77_lsame(uplo_, MagmaUpperStr))) {
        *info = -2;
    } else if (n < 0) {
        *info = -3;
    } else if (lda < max(1,n)) {
        *info = -5;
    }

    magma_int_t nb = magma_get_dsytrd_nb( n );
    if ( n <= 1 ) {
        lwmin  = 1;
        liwmin = 1;
    }
    else if ( wantz ) {
        lwmin  = 1 + 6*n + 2*n*n;
        liwmin = 3 + 5*n;
    }
    else {
        lwmin  = 2*n + n*nb;
        liwmin = 1;
    }
    // multiply by 1+eps to ensure length gets rounded up,
    // if it cannot be exactly represented in floating point.
    work[0]  = lwmin * (1. + lapackf77_dlamch("Epsilon"));
    iwork[0] = liwmin;

    if ((lwork < lwmin) && !lquery) {
        *info = -8;
    } else if ((liwork < liwmin) && ! lquery) {
        *info = -10;
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /* Quick return if possible */
    if (n == 0) {
        return *info;
    }

    if (n == 1) {
        w[0] = a[0];
        if (wantz) {
            a[0] = 1.;
        }
        return *info;
    }
    /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */
    if (n <= 128){
        #ifdef ENABLE_DEBUG
        printf("--------------------------------------------------------------\n");
        printf("  warning matrix too small N=%d NB=%d, calling lapack on CPU  \n", (int) n, (int) nb);
        printf("--------------------------------------------------------------\n");
        #endif
        lapackf77_dsyevd(jobz_, uplo_,
                         &n, a, &lda,
                         w, work, &lwork,
                         iwork, &liwork, info);
        return *info;
    }

    /* Get machine constants. */
    safmin = lapackf77_dlamch("Safe minimum");
    eps = lapackf77_dlamch("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = magma_dsqrt(smlnum);
    rmax = magma_dsqrt(bignum);

    /* Scale matrix to allowable range, if necessary. */
    anrm = lapackf77_dlansy("M", uplo_, &n, a, &lda, work);
    iscale = 0;
    if (anrm > 0. && anrm < rmin) {
        iscale = 1;
        sigma = rmin / anrm;
    } else if (anrm > rmax) {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1) {
        lapackf77_dlascl(uplo_, &izero, &izero, &d_one, &sigma, &n, &n, a,
                &lda, info);
    }

    /* Call DSYTRD to reduce symmetric matrix to tridiagonal form. */
    // dsytrd work: e (n) + tau (n) + llwork (n*nb)  ==>  2n + n*nb
    // dstedx work: e (n) + tau (n) + z (n*n) + llwrk2 (1 + 4*n + n^2)  ==>  1 + 6n + 2n^2
    inde   = 0;
    indtau = inde   + n;
    indwrk = indtau + n;
    indwk2 = indwrk + n*n;
    llwork = lwork - indwrk;
    llwrk2 = lwork - indwk2;

//
#ifdef ENABLE_TIMER
    magma_timestr_t start, end;
    start = get_current_time();
#endif

    magma_dsytrd_mgpu(nrgpu, 1, uplo, n, a, lda, w, &work[inde],
                      &work[indtau], &work[indwrk], llwork, &iinfo);

#ifdef ENABLE_TIMER
    end = get_current_time();
    printf("time dsytrd = %6.2f\n", GetTimerValue(start,end)/1000.);
#endif

    /* For eigenvalues only, call DSTERF.  For eigenvectors, first call
       DSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
       tridiagonal matrix, then call DORMTR to multiply it to the Householder
       transformations represented as Householder vectors in A. */
    if (! wantz) {
        lapackf77_dsterf(&n, w, &work[inde], info);
    } else {

#ifdef ENABLE_TIMER
        start = get_current_time();
#endif

#ifdef USE_SINGLE_GPU
        if (MAGMA_SUCCESS != magma_dmalloc( &dwork, 3*n*(n/2 + 1) )) {
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }

        magma_dstedx('A', n, 0., 0., 0, 0, w, &work[inde],
                     &work[indwrk], n, &work[indwk2],
                     llwrk2, iwork, liwork, dwork, info);

        magma_free( dwork );
#else
        magma_dstedx_m(nrgpu, 'A', n, 0., 0., 0, 0, w, &work[inde],
                       &work[indwrk], n, &work[indwk2],
                       llwrk2, iwork, liwork, info);
#endif

#ifdef ENABLE_TIMER
        end = get_current_time();
        printf("time dstedc = %6.2f\n", GetTimerValue(start,end)/1000.);
        start = get_current_time();
#endif

        magma_dormtr_m(nrgpu, MagmaLeft, uplo, MagmaNoTrans, n, n, a, lda, &work[indtau],
                       &work[indwrk], n, &work[indwk2], llwrk2, &iinfo);

        lapackf77_dlacpy("A", &n, &n, &work[indwrk], &n, a, &lda);

#ifdef ENABLE_TIMER
        end = get_current_time();
        printf("time dormtr + copy = %6.2f\n", GetTimerValue(start,end)/1000.);
#endif

    }

    /* If matrix was scaled, then rescale eigenvalues appropriately. */
    if (iscale == 1) {
        d__1 = 1. / sigma;
        blasf77_dscal(&n, &d__1, w, &ione);
    }

    work[0]  = lwmin * (1. + lapackf77_dlamch("Epsilon"));  // round up
    iwork[0] = liwmin;

    return *info;
} /* magma_dsyevd_m */
Example #4
0
/**
    Purpose
    -------
    ZSTEDX computes some eigenvalues and eigenvectors of a
    symmetric tridiagonal matrix using the divide and conquer method.

    This code makes very mild assumptions about floating point
    arithmetic. It will work on machines with a guard digit in
    add/subtract, or on those binary machines without guard digits
    which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
    It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none. See DLAEX3 for details.

    Arguments
    ---------
    @param[in]
    ngpu    INTEGER
            Number of GPUs to use. ngpu > 0.

    @param[in]
    range   magma_range_t
      -     = MagmaRangeAll: all eigenvalues will be found.
      -     = MagmaRangeV:   all eigenvalues in the half-open interval (VL,VU]
                             will be found.
      -     = MagmaRangeI:   the IL-th through IU-th eigenvalues will be found.

    @param[in]
    n       INTEGER
            The dimension of the symmetric tridiagonal matrix.  N >= 0.

    @param[in]
    vl      DOUBLE PRECISION
    @param[in]
    vu      DOUBLE PRECISION
            If RANGE=MagmaRangeV, the lower and upper bounds of the interval to
            be searched for eigenvalues. VL < VU.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeI.

    @param[in]
    il      INTEGER
    @param[in]
    iu      INTEGER
            If RANGE=MagmaRangeI, the indices (in ascending order) of the
            smallest and largest eigenvalues to be returned.
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeV.

    @param[in,out]
    d       DOUBLE PRECISION array, dimension (N)
            On entry, the diagonal elements of the tridiagonal matrix.
            On exit, if INFO = 0, the eigenvalues in ascending order.

    @param[in,out]
    e       DOUBLE PRECISION array, dimension (N-1)
            On entry, the subdiagonal elements of the tridiagonal matrix.
            On exit, E has been destroyed.

    @param[out]
    Z       COMPLEX_16 array, dimension (LDZ,N)
            On exit, if INFO = 0, Z contains the orthonormal eigenvectors
            of the symmetric tridiagonal matrix.

    @param[in]
    ldz     INTEGER
            The leading dimension of the array Z. LDZ >= max(1,N).

    @param[out]
    rwork   (workspace) DOUBLE PRECISION array, dimension (LRWORK)
            On exit, if INFO = 0, RWORK[0] returns the optimal LRWORK.

    @param[in]
    lrwork  INTEGER
            The dimension of the array RWORK.
            LRWORK >= 1 + 4*N + 2*N**2 .
            Note that if N is less than or
            equal to the minimum divide size, usually 25, then LRWORK
            need only be max(1,2*(N-1)).
    \n
            If LRWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    iwork   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK.

    @param[in]
    liwork  INTEGER
            The dimension of the array IWORK.
            LIWORK >= 3 + 5*N .
            Note that if N is less than or
            equal to the minimum divide size, usually 25, then LIWORK
            need only be 1.
    \n
            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit.
      -     < 0:  if INFO = -i, the i-th argument had an illegal value.
      -     > 0:  The algorithm failed to compute an eigenvalue while
                  working on the submatrix lying in rows and columns
                  INFO/(N+1) through mod(INFO,N+1).

    Further Details
    ---------------
    Based on contributions by
       Jeff Rutter, Computer Science Division, University of California
       at Berkeley, USA

    @ingroup magma_zheev_comp
    ********************************************************************/
extern "C" magma_int_t
magma_zstedx_m(
    magma_int_t ngpu,
    magma_range_t range, magma_int_t n, double vl, double vu,
    magma_int_t il, magma_int_t iu, double *d, double *e,
    magmaDoubleComplex *Z, magma_int_t ldz,
    double *rwork, magma_int_t lrwork,
    magma_int_t *iwork, magma_int_t liwork,
    magma_int_t *info)
{
    magma_int_t alleig, indeig, valeig, lquery;
    magma_int_t i, j, smlsiz;
    magma_int_t liwmin, lrwmin;

    alleig = (range == MagmaRangeAll);
    valeig = (range == MagmaRangeV);
    indeig = (range == MagmaRangeI);
    lquery = (lrwork == -1 || liwork == -1);

    *info = 0;

    if (! (alleig || valeig || indeig)) {
        *info = -1;
    } else if (n < 0) {
        *info = -2;
    } else if (ldz < max(1,n)) {
        *info = -10;
    } else {
        if (valeig) {
            if (n > 0 && vu <= vl) {
                *info = -4;
            }
        } else if (indeig) {
            if (il < 1 || il > max(1,n)) {
                *info = -5;
            } else if (iu < min(n,il) || iu > n) {
                *info = -6;
            }
        }
    }

    if (*info == 0) {
        // Compute the workspace requirements

        smlsiz = magma_get_smlsize_divideconquer();
        if ( n <= 1 ) {
            lrwmin = 1;
            liwmin = 1;
        } else {
            lrwmin = 1 + 4*n + 2*n*n;
            liwmin = 3 + 5*n;
        }

        rwork[0] = magma_dmake_lwork( lrwmin );
        iwork[0] = liwmin;

        if (lrwork < lrwmin && ! lquery) {
            *info = -12;
        } else if (liwork < liwmin && ! lquery) {
            *info = -14;
        }
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info));
        return *info;
    } else if (lquery) {
        return *info;
    }

    // Quick return if possible
    if (n == 0)
        return *info;
    if (n == 1) {
        *Z = MAGMA_Z_MAKE( 1, 0 );
        return *info;
    }

    // If N is smaller than the minimum divide size (SMLSIZ+1), then
    // solve the problem with another solver.

    if (n < smlsiz) {
        lapackf77_zsteqr("I", &n, d, e, Z, &ldz, rwork, info);
    } else {
        // We simply call DSTEDX instead.
        magma_dstedx_m(ngpu, range, n, vl, vu, il, iu, d, e, rwork, n,
                       rwork+n*n, lrwork-n*n, iwork, liwork, info);

        for (j=0; j < n; ++j)
            for (i=0; i < n; ++i) {
                *(Z+i+ldz*j) = MAGMA_Z_MAKE( *(rwork+i+n*j), 0 );
            }
    }

    rwork[0] = magma_dmake_lwork( lrwmin );
    iwork[0] = liwmin;

    return *info;
} /* magma_zstedx_m */
Example #5
0
/***************************************************************************//**
    Purpose
    -------
    DSYEVD computes all eigenvalues and, optionally, eigenvectors of a
    real symmetric matrix A.  If eigenvectors are desired, it uses a
    divide and conquer algorithm.

    The divide and conquer algorithm makes very mild assumptions about
    floating point arithmetic. It will work on machines with a guard
    digit in add/subtract, or on those binary machines without guard
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
    Cray-2. It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.

    Arguments
    ---------
    @param[in]
    ngpu    INTEGER
            Number of GPUs to use. ngpu > 0.

    @param[in]
    jobz    magma_vec_t
      -     = MagmaNoVec:  Compute eigenvalues only;
      -     = MagmaVec:    Compute eigenvalues and eigenvectors.

    @param[in]
    range   magma_range_t
      -     = MagmaRangeAll: all eigenvalues will be found.
      -     = MagmaRangeV:   all eigenvalues in the half-open interval (VL,VU]
                             will be found.
      -     = MagmaRangeI:   the IL-th through IU-th eigenvalues will be found.

    @param[in]
    uplo    magma_uplo_t
      -     = MagmaUpper:  Upper triangle of A is stored;
      -     = MagmaLower:  Lower triangle of A is stored.

    @param[in]
    n       INTEGER
            The order of the matrix A.  N >= 0.

    @param[in,out]
    A       DOUBLE PRECISION array, dimension (LDA, N)
            On entry, the symmetric matrix A.  If UPLO = MagmaUpper, the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = MagmaLower,
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.
            On exit, if JOBZ = MagmaVec, then if INFO = 0, A contains the
            orthonormal eigenvectors of the matrix A.
            If JOBZ = MagmaNoVec, then on exit the lower triangle (if UPLO=MagmaLower)
            or the upper triangle (if UPLO=MagmaUpper) of A, including the
            diagonal, is destroyed.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    @param[in]
    vl      DOUBLE PRECISION
    @param[in]
    vu      DOUBLE PRECISION
            If RANGE=MagmaRangeV, the lower and upper bounds of the interval to
            be searched for eigenvalues. VL < VU.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeI.

    @param[in]
    il      INTEGER
    @param[in]
    iu      INTEGER
            If RANGE=MagmaRangeI, the indices (in ascending order) of the
            smallest and largest eigenvalues to be returned.
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeV.

    @param[out]
    m       INTEGER
            The total number of eigenvalues found.  0 <= M <= N.
            If RANGE = MagmaRangeAll, M = N, and if RANGE = MagmaRangeI, M = IU-IL+1.

    @param[out]
    w       DOUBLE PRECISION array, dimension (N)
            If INFO = 0, the eigenvalues in ascending order.

    @param[out]
    work    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The length of the array WORK.
     -      If N <= 1,                      LWORK >= 1.
     -      If JOBZ = MagmaNoVec and N > 1, LWORK >= 2*N + N*NB.
     -      If JOBZ = MagmaVec   and N > 1, LWORK >= max( 2*N + N*NB, 1 + 6*N + 2*N**2 ).
            NB can be obtained through magma_get_dsytrd_nb(N).
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal sizes of the WORK, RWORK and
            IWORK arrays, returns these values as the first entries of
            the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    iwork   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK.

    @param[in]
    liwork  INTEGER
            The dimension of the array IWORK.
     -      If N <= 1,                      LIWORK >= 1.
     -      If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1.
     -      If JOBZ = MagmaVec   and N > 1, LIWORK >= 3 + 5*N.
    \n
            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value
      -     > 0:  if INFO = i and JOBZ = MagmaNoVec, then the algorithm failed
                  to converge; i off-diagonal elements of an intermediate
                  tridiagonal form did not converge to zero;
                  if INFO = i and JOBZ = MagmaVec, then the algorithm failed
                  to compute an eigenvalue while working on the submatrix
                  lying in rows and columns INFO/(N+1) through
                  mod(INFO,N+1).

    Further Details
    ---------------
    Based on contributions by
       Jeff Rutter, Computer Science Division, University of California
       at Berkeley, USA

    Modified description of INFO. Sven, 16 Feb 05.

    @ingroup magma_heevdx
*******************************************************************************/
extern "C" magma_int_t
magma_dsyevdx_m(
    magma_int_t ngpu,
    magma_vec_t jobz, magma_range_t range, magma_uplo_t uplo,
    magma_int_t n,
    double *A, magma_int_t lda,
    double vl, double vu, magma_int_t il, magma_int_t iu,
    magma_int_t *m, double *w,
    double *work, magma_int_t lwork,
    #ifdef COMPLEX
    double *rwork, magma_int_t lrwork,
    #endif
    magma_int_t *iwork, magma_int_t liwork,
    magma_int_t *info)
{
    const char* uplo_  = lapack_uplo_const( uplo  );
    const char* jobz_  = lapack_vec_const( jobz  );
    magma_int_t ione = 1;
    magma_int_t izero = 0;
    double d_one = 1.;
    
    double d__1;
    
    double eps;
    magma_int_t inde;
    double anrm;
    double rmin, rmax;
    double sigma;
    magma_int_t iinfo, lwmin;
    magma_int_t lower;
    magma_int_t wantz;
    magma_int_t indwk2, llwrk2;
    magma_int_t iscale;
    double safmin;
    double bignum;
    magma_int_t indtau;
    magma_int_t indwrk, liwmin;
    magma_int_t llwork;
    double smlnum;
    magma_int_t lquery;
    magma_int_t alleig, valeig, indeig;
    
    wantz = (jobz == MagmaVec);
    lower = (uplo == MagmaLower);
    
    alleig = (range == MagmaRangeAll);
    valeig = (range == MagmaRangeV);
    indeig = (range == MagmaRangeI);
    
    lquery = (lwork == -1 || liwork == -1);

    *info = 0;
    if (! (wantz || (jobz == MagmaNoVec))) {
        *info = -1;
    } else if (! (alleig || valeig || indeig)) {
        *info = -2;
    } else if (! (lower || (uplo == MagmaUpper))) {
        *info = -3;
    } else if (n < 0) {
        *info = -4;
    } else if (lda < max(1,n)) {
        *info = -6;
    } else {
        if (valeig) {
            if (n > 0 && vu <= vl) {
                *info = -8;
            }
        } else if (indeig) {
            if (il < 1 || il > max(1,n)) {
                *info = -9;
            } else if (iu < min(n,il) || iu > n) {
                *info = -10;
            }
        }
    }
    
    magma_int_t nb = magma_get_dsytrd_nb( n );
    if ( n <= 1 ) {
        lwmin  = 1;
        liwmin = 1;
    }
    else if ( wantz ) {
        lwmin  = max( 2*n + n*nb, 1 + 6*n + 2*n*n );
        liwmin = 3 + 5*n;
    }
    else {
        lwmin  = 2*n + n*nb;
        liwmin = 1;
    }
    
    work[0]  = magma_dmake_lwork( lwmin );
    iwork[0] = liwmin;
    
    if ((lwork < lwmin) && !lquery) {
        *info = -14;
    } else if ((liwork < liwmin) && ! lquery) {
        *info = -16;
    }
    
    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }
    
    /* Quick return if possible */
    if (n == 0) {
        return *info;
    }
    
    if (n == 1) {
        w[0] = A[0];
        if (wantz) {
            A[0] = 1.;
        }
        return *info;
    }
    /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */
    if (n <= 128) {
        #ifdef ENABLE_DEBUG
        printf("--------------------------------------------------------------\n");
        printf("  warning matrix too small N=%lld NB=%lld, calling lapack on CPU\n", (long long) n, (long long) nb );
        printf("--------------------------------------------------------------\n");
        #endif
        lapackf77_dsyevd(jobz_, uplo_,
                         &n, A, &lda,
                         w, work, &lwork,
                         iwork, &liwork, info);
        return *info;
    }

    /* Get machine constants. */
    safmin = lapackf77_dlamch("Safe minimum");
    eps = lapackf77_dlamch("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = magma_dsqrt(smlnum);
    rmax = magma_dsqrt(bignum);

    /* Scale matrix to allowable range, if necessary. */
    anrm = lapackf77_dlansy("M", uplo_, &n, A, &lda, work);
    iscale = 0;
    if (anrm > 0. && anrm < rmin) {
        iscale = 1;
        sigma = rmin / anrm;
    } else if (anrm > rmax) {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1) {
        lapackf77_dlascl(uplo_, &izero, &izero, &d_one, &sigma, &n, &n, A,
                         &lda, info);
    }

    /* Call DSYTRD to reduce symmetric matrix to tridiagonal form. */
    // dsytrd work: e (n) + tau (n) + llwork (n*nb)  ==>  2n + n*nb
    // dstedx work: e (n) + tau (n) + z (n*n) + llwrk2 (1 + 4*n + n^2)  ==>  1 + 6n + 2n^2
    inde   = 0;
    indtau = inde   + n;
    indwrk = indtau + n;
    indwk2 = indwrk + n*n;
    llwork = lwork - indwrk;
    llwrk2 = lwork - indwk2;

    magma_timer_t time=0;
    timer_start( time );

    magma_dsytrd_mgpu(ngpu, 1, uplo, n, A, lda, w, &work[inde],
                      &work[indtau], &work[indwrk], llwork, &iinfo);

    timer_stop( time );
    timer_printf( "time dsytrd = %6.2f\n", time );

    /* For eigenvalues only, call DSTERF.  For eigenvectors, first call
       DSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
       tridiagonal matrix, then call DORMTR to multiply it to the Householder
       transformations represented as Householder vectors in A. */
    if (! wantz) {
        lapackf77_dsterf(&n, w, &work[inde], info);
        magma_dmove_eig(range, n, w, &il, &iu, vl, vu, m);
    }
    else {
        timer_start( time );

        magma_dstedx_m(ngpu, range, n, vl, vu, il, iu, w, &work[inde],
                       &work[indwrk], n, &work[indwk2],
                       llwrk2, iwork, liwork, info);

        timer_stop( time );
        timer_printf( "time dstedc = %6.2f\n", time );
        timer_start( time );

        magma_dmove_eig(range, n, w, &il, &iu, vl, vu, m);

        magma_dormtr_m(ngpu, MagmaLeft, uplo, MagmaNoTrans, n, *m, A, lda, &work[indtau],
                       &work[indwrk + n * (il-1)], n, &work[indwk2], llwrk2, &iinfo);

        lapackf77_dlacpy("A", &n, m, &work[indwrk + n * (il-1)], &n, A, &lda);

        timer_stop( time );
        timer_printf( "time dormtr + copy = %6.2f\n", time );
    }

    /* If matrix was scaled, then rescale eigenvalues appropriately. */
    if (iscale == 1) {
        d__1 = 1. / sigma;
        blasf77_dscal(&n, &d__1, w, &ione);
    }
    
    work[0]  = magma_dmake_lwork( lwmin );
    iwork[0] = liwmin;

    return *info;
} /* magma_dsyevd_m */