Example #1
0
float magma_cblas_snrm2(
    magma_int_t n,
    const float *x, magma_int_t incx )
{
    if (n <= 0 || incx <= 0) {
        return 0;
    }
    else {
        float scale = 0;
        float ssq   = 1;
        // the following loop is equivalent to this call to the lapack
        // auxiliary routine:
        // call zlassq( n, x, incx, scale, ssq )
        for( magma_int_t ix=0; ix < 1 + (n-1)*incx; ix += incx ) {
            if ( real( x[ix] ) != 0 ) {
                float temp = fabs( real( x[ix] ));
                if (scale < temp) {
                    ssq = 1 + ssq * sqr(scale/temp);
                    scale = temp;
                }
                else {
                    ssq += sqr(temp/scale);
                }
            }
            #ifdef COMPLEX
            if ( imag( x[ix] ) != 0 ) {
                float temp = fabs( imag( x[ix] ));
                if (scale < temp) {
                    ssq = 1 + ssq * sqr(scale/temp);
                    scale = temp;
                }
                else {
                    ssq += sqr(temp/scale);
                }
            }
            #endif
        }
        return scale*magma_ssqrt(ssq);
    }
}
Example #2
0
/* ////////////////////////////////////////////////////////////////////////////
   -- Testing sormbr
*/
int main( int argc, char** argv )
{
    TESTING_INIT();
    
    real_Double_t   gflops, gpu_perf, gpu_time, cpu_perf, cpu_time;
    float Cnorm, error, dwork[1];
    float c_neg_one = MAGMA_S_NEG_ONE;
    magma_int_t ione = 1;
    magma_int_t m, n, k, mi, ni, mm, nn, nq, size, info;
    magma_int_t ISEED[4] = {0,0,0,1};
    magma_int_t nb, ldc, lda, lwork, lwork_max;
    float *C, *R, *A, *work, *tau, *tauq, *taup;
    float *d, *e;
    magma_int_t status = 0;
    
    magma_opts opts;
    opts.parse_opts( argc, argv );
    
    // need slightly looser bound (60*eps instead of 30*eps) for some tests
    opts.tolerance = max( 60., opts.tolerance );
    float tol = opts.tolerance * lapackf77_slamch("E");
    
    // test all combinations of input parameters
    magma_vect_t  vect [] = { MagmaQ,          MagmaP       };
    magma_side_t  side [] = { MagmaLeft,       MagmaRight   };
    magma_trans_t trans[] = { MagmaTrans, MagmaNoTrans };

    printf("%%   M     N     K   vect side   trans   CPU Gflop/s (sec)   GPU Gflop/s (sec)   ||R||_F / ||QC||_F\n");
    printf("%%==============================================================================================\n");
    for( int itest = 0; itest < opts.ntest; ++itest ) {
      for( int ivect = 0; ivect < 2; ++ivect ) {
      for( int iside = 0; iside < 2; ++iside ) {
      for( int itran = 0; itran < 2; ++itran ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {
            m = opts.msize[itest];
            n = opts.nsize[itest];
            k = opts.ksize[itest];
            nb  = magma_get_sgebrd_nb( m, n );
            ldc = m;
            // A is nq x k (vect=Q) or k x nq (vect=P)
            // where nq=m (left) or nq=n (right)
            nq  = (side[iside] == MagmaLeft ? m  : n );
            mm  = (vect[ivect] == MagmaQ    ? nq : k );
            nn  = (vect[ivect] == MagmaQ    ? k  : nq);
            lda = mm;
            
            // MBR calls either MQR or MLQ in various ways
            if ( vect[ivect] == MagmaQ ) {
                if ( nq >= k ) {
                    gflops = FLOPS_SORMQR( m, n, k, side[iside] ) / 1e9;
                }
                else {
                    if ( side[iside] == MagmaLeft ) {
                        mi = m - 1;
                        ni = n;
                    }
                    else {
                        mi = m;
                        ni = n - 1;
                    }
                    gflops = FLOPS_SORMQR( mi, ni, nq-1, side[iside] ) / 1e9;
                }
            }
            else {
                if ( nq > k ) {
                    gflops = FLOPS_SORMLQ( m, n, k, side[iside] ) / 1e9;
                }
                else {
                    if ( side[iside] == MagmaLeft ) {
                        mi = m - 1;
                        ni = n;
                    }
                    else {
                        mi = m;
                        ni = n - 1;
                    }
                    gflops = FLOPS_SORMLQ( mi, ni, nq-1, side[iside] ) / 1e9;
                }
            }
            
            // workspace for gebrd is (mm + nn)*nb
            // workspace for unmbr is m*nb or n*nb, depending on side
            lwork_max = max( (mm + nn)*nb, max( m*nb, n*nb ));
            // this rounds it up slightly if needed to agree with lwork query below
            lwork_max = int( real( magma_smake_lwork( lwork_max )));
            
            TESTING_MALLOC_CPU( C,    float, ldc*n );
            TESTING_MALLOC_CPU( R,    float, ldc*n );
            TESTING_MALLOC_CPU( A,    float, lda*nn );
            TESTING_MALLOC_CPU( work, float, lwork_max );
            TESTING_MALLOC_CPU( d,    float,             min(mm,nn) );
            TESTING_MALLOC_CPU( e,    float,             min(mm,nn) );
            TESTING_MALLOC_CPU( tauq, float, min(mm,nn) );
            TESTING_MALLOC_CPU( taup, float, min(mm,nn) );
            
            // C is full, m x n
            size = ldc*n;
            lapackf77_slarnv( &ione, ISEED, &size, C );
            lapackf77_slacpy( "Full", &m, &n, C, &ldc, R, &ldc );
            
            size = lda*nn;
            lapackf77_slarnv( &ione, ISEED, &size, A );
            
            // compute BRD factorization to get Householder vectors in A, tauq, taup
            //lapackf77_sgebrd( &mm, &nn, A, &lda, d, e, tauq, taup, work, &lwork_max, &info );
            magma_sgebrd( mm, nn, A, lda, d, e, tauq, taup, work, lwork_max, &info );
            if (info != 0) {
                printf("magma_sgebrd returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            }
            
            if ( vect[ivect] == MagmaQ ) {
                tau = tauq;
            } else {
                tau = taup;
            }
            
            /* =====================================================================
               Performs operation using LAPACK
               =================================================================== */
            cpu_time = magma_wtime();
            lapackf77_sormbr( lapack_vect_const( vect[ivect] ),
                              lapack_side_const( side[iside] ),
                              lapack_trans_const( trans[itran] ),
                              &m, &n, &k,
                              A, &lda, tau, C, &ldc, work, &lwork_max, &info );
            cpu_time = magma_wtime() - cpu_time;
            cpu_perf = gflops / cpu_time;
            if (info != 0) {
                printf("lapackf77_sormbr returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            }
            
            /* ====================================================================
               Performs operation using MAGMA
               =================================================================== */
            // query for workspace size
            lwork = -1;
            magma_sormbr( vect[ivect], side[iside], trans[itran],
                          m, n, k,
                          A, lda, tau, R, ldc, work, lwork, &info );
            if (info != 0) {
                printf("magma_sormbr (lwork query) returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            }
            lwork = (magma_int_t) MAGMA_S_REAL( work[0] );
            if ( lwork < 0 || lwork > lwork_max ) {
                printf("Warning: optimal lwork %d > allocated lwork_max %d\n", (int) lwork, (int) lwork_max );
                lwork = lwork_max;
            }
            
            gpu_time = magma_wtime();
            magma_sormbr( vect[ivect], side[iside], trans[itran],
                          m, n, k,
                          A, lda, tau, R, ldc, work, lwork, &info );
            gpu_time = magma_wtime() - gpu_time;
            gpu_perf = gflops / gpu_time;
            if (info != 0) {
                printf("magma_sormbr returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            }
            
            /* =====================================================================
               compute relative error |QC_magma - QC_lapack| / |QC_lapack|
               =================================================================== */
            size = ldc*n;
            blasf77_saxpy( &size, &c_neg_one, C, &ione, R, &ione );
            Cnorm = lapackf77_slange( "Fro", &m, &n, C, &ldc, dwork );
            error = lapackf77_slange( "Fro", &m, &n, R, &ldc, dwork ) / (magma_ssqrt(m*n) * Cnorm);
            
            printf( "%5d %5d %5d   %c   %4c   %5c   %7.2f (%7.2f)   %7.2f (%7.2f)   %8.2e   %s\n",
                    (int) m, (int) n, (int) k,
                    lapacke_vect_const( vect[ivect] ),
                    lapacke_side_const( side[iside] ),
                    lapacke_trans_const( trans[itran] ),
                    cpu_perf, cpu_time, gpu_perf, gpu_time,
                    error, (error < tol ? "ok" : "failed") );
            status += ! (error < tol);
            
            TESTING_FREE_CPU( C );
            TESTING_FREE_CPU( R );
            TESTING_FREE_CPU( A );
            TESTING_FREE_CPU( work );
            TESTING_FREE_CPU( d );
            TESTING_FREE_CPU( e );
            TESTING_FREE_CPU( taup );
            TESTING_FREE_CPU( tauq );
            fflush( stdout );
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
      }}}  // end ivect, iside, itran
      printf( "\n" );
    }
    
    opts.cleanup();
    TESTING_FINALIZE();
    return status;
}
Example #3
0
extern "C" magma_int_t
magma_cheevx(char jobz, char range, char uplo, magma_int_t n,
             magmaFloatComplex *a, magma_int_t lda, float vl, float vu,
             magma_int_t il, magma_int_t iu, float abstol, magma_int_t *m,
             float *w, magmaFloatComplex *z, magma_int_t ldz, magmaFloatComplex *work, magma_int_t lwork,
             float *rwork, magma_int_t *iwork, magma_int_t *ifail, magma_int_t *info)
{
/*  -- MAGMA (version 1.4.1) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       December 2013

    Purpose
    =======
    CHEEVX computes selected eigenvalues and, optionally, eigenvectors
    of a complex Hermitian matrix A.  Eigenvalues and eigenvectors can
    be selected by specifying either a range of values or a range of
    indices for the desired eigenvalues.

    Arguments
    =========
    JOBZ    (input) CHARACTER*1
            = 'N':  Compute eigenvalues only;
            = 'V':  Compute eigenvalues and eigenvectors.

    RANGE   (input) CHARACTER*1
            = 'A': all eigenvalues will be found.
            = 'V': all eigenvalues in the half-open interval (VL,VU]
                   will be found.
            = 'I': the IL-th through IU-th eigenvalues will be found.

    UPLO    (input) CHARACTER*1
            = 'U':  Upper triangle of A is stored;
            = 'L':  Lower triangle of A is stored.

    N       (input) INTEGER
            The order of the matrix A.  N >= 0.

    A       (input/output) COMPLEX array, dimension (LDA, N)
            On entry, the Hermitian matrix A.  If UPLO = 'U', the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = 'L',
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.
            On exit, the lower triangle (if UPLO='L') or the upper
            triangle (if UPLO='U') of A, including the diagonal, is
            destroyed.

    LDA     (input) INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    VL      (input) REAL
    VU      (input) REAL
            If RANGE='V', the lower and upper bounds of the interval to
            be searched for eigenvalues. VL < VU.
            Not referenced if RANGE = 'A' or 'I'.

    IL      (input) INTEGER
    IU      (input) INTEGER
            If RANGE='I', the indices (in ascending order) of the
            smallest and largest eigenvalues to be returned.
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
            Not referenced if RANGE = 'A' or 'V'.

    ABSTOL  (input) REAL
            The absolute error tolerance for the eigenvalues.
            An approximate eigenvalue is accepted as converged
            when it is determined to lie in an interval [a,b]
            of width less than or equal to

                    ABSTOL + EPS *   max( |a|,|b| ) ,

            where EPS is the machine precision.  If ABSTOL is less than
            or equal to zero, then  EPS*|T|  will be used in its place,
            where |T| is the 1-norm of the tridiagonal matrix obtained
            by reducing A to tridiagonal form.

            Eigenvalues will be computed most accurately when ABSTOL is
            set to twice the underflow threshold 2*SLAMCH('S'), not zero.
            If this routine returns with INFO>0, indicating that some
            eigenvectors did not converge, try setting ABSTOL to
            2*SLAMCH('S').

            See "Computing Small Singular Values of Bidiagonal Matrices
            with Guaranteed High Relative Accuracy," by Demmel and
            Kahan, LAPACK Working Note #3.

    M       (output) INTEGER
            The total number of eigenvalues found.  0 <= M <= N.
            If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.

    W       (output) REAL array, dimension (N)
            On normal exit, the first M elements contain the selected
            eigenvalues in ascending order.

    Z       (output) COMPLEX array, dimension (LDZ, max(1,M))
            If JOBZ = 'V', then if INFO = 0, the first M columns of Z
            contain the orthonormal eigenvectors of the matrix A
            corresponding to the selected eigenvalues, with the i-th
            column of Z holding the eigenvector associated with W(i).
            If an eigenvector fails to converge, then that column of Z
            contains the latest approximation to the eigenvector, and the
            index of the eigenvector is returned in IFAIL.
            If JOBZ = 'N', then Z is not referenced.
            Note: the user must ensure that at least max(1,M) columns are
            supplied in the array Z; if RANGE = 'V', the exact value of M
            is not known in advance and an upper bound must be used.

    LDZ     (input) INTEGER
            The leading dimension of the array Z.  LDZ >= 1, and if
            JOBZ = 'V', LDZ >= max(1,N).

    WORK    (workspace/output) COMPLEX array, dimension (LWORK)
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

    LWORK   (input) INTEGER
            The length of the array WORK.  LWORK >= max(1,2*N-1).
            For optimal efficiency, LWORK >= (NB+1)*N,
            where NB is the max of the blocksize for CHETRD and for
            CUNMTR as returned by ILAENV.

            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal size of the WORK array, returns
            this value as the first entry of the WORK array, and no error
            message related to LWORK is issued by XERBLA.

    RWORK   (workspace) REAL array, dimension (7*N)

    IWORK   (workspace) INTEGER array, dimension (5*N)

    IFAIL   (output) INTEGER array, dimension (N)
            If JOBZ = 'V', then if INFO = 0, the first M elements of
            IFAIL are zero.  If INFO > 0, then IFAIL contains the
            indices of the eigenvectors that failed to converge.
            If JOBZ = 'N', then IFAIL is not referenced.

    INFO    (output) INTEGER
            = 0:  successful exit
            < 0:  if INFO = -i, the i-th argument had an illegal value
            > 0:  if INFO = i, then i eigenvectors failed to converge.
                  Their indices are stored in array IFAIL.
    =====================================================================     */
    
    char uplo_[2] = {uplo, 0};
    char jobz_[2] = {jobz, 0};
    char range_[2] = {range, 0};
    
    magma_int_t izero = 0;
    magma_int_t ione = 1;
    
    char order[1];
    magma_int_t indd, inde;
    magma_int_t imax;
    magma_int_t lopt, itmp1, indee;
    magma_int_t lower, wantz;
    magma_int_t i, j, jj, i__1;
    magma_int_t alleig, valeig, indeig;
    magma_int_t iscale, indibl;
    magma_int_t indiwk, indisp, indtau;
    magma_int_t indrwk, indwrk;
    magma_int_t llwork, nsplit;
    magma_int_t lquery;
    magma_int_t iinfo;
    float safmin;
    float bignum;
    float smlnum;
    float eps, tmp1;
    float anrm;
    float sigma, d__1;
    float rmin, rmax;
    
    /* Function Body */
    lower = lapackf77_lsame(uplo_, MagmaLowerStr);
    wantz = lapackf77_lsame(jobz_, MagmaVecStr);
    alleig = lapackf77_lsame(range_, "A");
    valeig = lapackf77_lsame(range_, "V");
    indeig = lapackf77_lsame(range_, "I");
    lquery = lwork == -1;
    
    *info = 0;
    if (! (wantz || lapackf77_lsame(jobz_, MagmaNoVecStr))) {
        *info = -1;
    } else if (! (alleig || valeig || indeig)) {
        *info = -2;
    } else if (! (lower || lapackf77_lsame(uplo_, MagmaUpperStr))) {
        *info = -3;
    } else if (n < 0) {
        *info = -4;
    } else if (lda < max(1,n)) {
        *info = -6;
    } else if (ldz < 1 || (wantz && ldz < n)) {
        *info = -15;
    } else {
        if (valeig) {
            if (n > 0 && vu <= vl) {
                *info = -8;
            }
        } else if (indeig) {
            if (il < 1 || il > max(1,n)) {
                *info = -9;
            } else if (iu < min(n,il) || iu > n) {
                *info = -10;
            }
        }
    }
    
    magma_int_t nb = magma_get_chetrd_nb(n);
    
    lopt = n * (nb + 1);
    
    work[0] = MAGMA_C_MAKE( lopt, 0 );
    
    if (lwork < lopt && ! lquery) {
        *info = -17;
    }
    
    if (*info != 0) {
        magma_xerbla( __func__, -(*info));
        return *info;
    } else if (lquery) {
        return *info;
    }
    
    *m = 0;
    /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */
    if (n <= 128) {
        #ifdef ENABLE_DEBUG
        printf("--------------------------------------------------------------\n");
        printf("  warning matrix too small N=%d NB=%d, calling lapack on CPU  \n", (int) n, (int) nb);
        printf("--------------------------------------------------------------\n");
        #endif
        lapackf77_cheevx(jobz_, range_, uplo_,
                         &n, a, &lda, &vl, &vu, &il, &iu, &abstol, m,
                         w, z, &ldz, work, &lwork,
                         rwork, iwork, ifail, info);
        return *info;
    }
    
    --w;
    --work;
    --rwork;
    --iwork;
    --ifail;
    
    /* Get machine constants. */
    safmin = lapackf77_slamch("Safe minimum");
    eps = lapackf77_slamch("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = magma_ssqrt(smlnum);
    rmax = magma_ssqrt(bignum);
    
    /* Scale matrix to allowable range, if necessary. */
    anrm = lapackf77_clanhe("M", uplo_, &n, a, &lda, &rwork[1]);
    iscale = 0;
    if (anrm > 0. && anrm < rmin) {
        iscale = 1;
        sigma = rmin / anrm;
    } else if (anrm > rmax) {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1) {
        d__1 = 1.;
        lapackf77_clascl(uplo_, &izero, &izero, &d__1, &sigma, &n, &n, a,
                         &lda, info);
        
        if (abstol > 0.) {
            abstol *= sigma;
        }
        if (valeig) {
            vl *= sigma;
            vu *= sigma;
        }
    }
    
    /* Call CHETRD to reduce Hermitian matrix to tridiagonal form. */
    indd = 1;
    inde = indd + n;
    indrwk = inde + n;
    indtau = 1;
    indwrk = indtau + n;
    llwork = lwork - indwrk + 1;
    
    magma_chetrd(uplo, n, a, lda, &rwork[indd], &rwork[inde], &work[indtau], &work[indwrk], llwork, &iinfo);
    
    lopt = n + (magma_int_t)MAGMA_C_REAL(work[indwrk]);
    
    /* If all eigenvalues are desired and ABSTOL is less than or equal to
       zero, then call SSTERF or CUNGTR and CSTEQR.  If this fails for
       some eigenvalue, then try SSTEBZ. */
    if ((alleig || (indeig && il == 1 && iu == n)) && abstol <= 0.) {
        blasf77_scopy(&n, &rwork[indd], &ione, &w[1], &ione);
        indee = indrwk + 2*n;
        if (! wantz) {
            i__1 = n - 1;
            blasf77_scopy(&i__1, &rwork[inde], &ione, &rwork[indee], &ione);
            lapackf77_ssterf(&n, &w[1], &rwork[indee], info);
        }
        else {
            lapackf77_clacpy("A", &n, &n, a, &lda, z, &ldz);
            lapackf77_cungtr(uplo_, &n, z, &ldz, &work[indtau], &work[indwrk], &llwork, &iinfo);
            i__1 = n - 1;
            blasf77_scopy(&i__1, &rwork[inde], &ione, &rwork[indee], &ione);
            lapackf77_csteqr(jobz_, &n, &w[1], &rwork[indee], z, &ldz, &rwork[indrwk], info);
            if (*info == 0) {
                for (i = 1; i <= n; ++i) {
                    ifail[i] = 0;
                }
            }
        }
        if (*info == 0) {
            *m = n;
        }
    }
    
    /* Otherwise, call SSTEBZ and, if eigenvectors are desired, CSTEIN. */
    if (*m == 0) {
        *info = 0;
        if (wantz) {
            *(unsigned char *)order = 'B';
        } else {
            *(unsigned char *)order = 'E';
        }
        indibl = 1;
        indisp = indibl + n;
        indiwk = indisp + n;
        lapackf77_sstebz(range_, order, &n, &vl, &vu, &il, &iu, &abstol, &rwork[indd], &rwork[inde], m,
                         &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &rwork[indrwk], &iwork[indiwk], info);
        
        if (wantz) {
            lapackf77_cstein(&n, &rwork[indd], &rwork[inde], m, &w[1], &iwork[indibl], &iwork[indisp],
                             z, &ldz, &rwork[indrwk], &iwork[indiwk], &ifail[1], info);
            
            /* Apply unitary matrix used in reduction to tridiagonal
               form to eigenvectors returned by CSTEIN. */
            magma_cunmtr(MagmaLeft, uplo, MagmaNoTrans, n, *m, a, lda, &work[indtau],
                         z, ldz, &work[indwrk], llwork, &iinfo);
        }
    }
    /* If matrix was scaled, then rescale eigenvalues appropriately. */
    if (iscale == 1) {
        if (*info == 0) {
            imax = *m;
        } else {
            imax = *info - 1;
        }
        d__1 = 1. / sigma;
        blasf77_sscal(&imax, &d__1, &w[1], &ione);
    }
    
    /* If eigenvalues are not in order, then sort them, along with
       eigenvectors. */
    if (wantz) {
        for (j = 1; j <= *m-1; ++j) {
            i = 0;
            tmp1 = w[j];
            for (jj = j + 1; jj <= *m; ++jj) {
                if (w[jj] < tmp1) {
                    i = jj;
                    tmp1 = w[jj];
                }
            }
            
            if (i != 0) {
                itmp1 = iwork[indibl + i - 1];
                w[i] = w[j];
                iwork[indibl + i - 1] = iwork[indibl + j - 1];
                w[j] = tmp1;
                iwork[indibl + j - 1] = itmp1;
                blasf77_cswap(&n, z + (i-1)*ldz, &ione, z + (j-1)*ldz, &ione);
                if (*info != 0) {
                    itmp1 = ifail[i];
                    ifail[i] = ifail[j];
                    ifail[j] = itmp1;
                }
            }
        }
    }
    
    /* Set WORK(1) to optimal complex workspace size. */
    work[1] = MAGMA_C_MAKE( lopt, 0 );
    
    return *info;
    
} /* magma_cheevx */
Example #4
0
/**
    Purpose
    -------
    SSYEVDX computes selected eigenvalues and, optionally, eigenvectors
    of a real symmetric matrix A. Eigenvalues and eigenvectors can
    be selected by specifying either a range of values or a range of
    indices for the desired eigenvalues.
    If eigenvectors are desired, it uses a divide and conquer algorithm.

    The divide and conquer algorithm makes very mild assumptions about
    floating point arithmetic. It will work on machines with a guard
    digit in add/subtract, or on those binary machines without guard
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
    Cray-2. It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.

    Arguments
    ---------
    @param[in]
    jobz    magma_vec_t
      -     = MagmaNoVec:  Compute eigenvalues only;
      -     = MagmaVec:    Compute eigenvalues and eigenvectors.

    @param[in]
    range   magma_range_t
      -     = MagmaRangeAll: all eigenvalues will be found.
      -     = MagmaRangeV:   all eigenvalues in the half-open interval (VL,VU]
                   will be found.
      -     = MagmaRangeI:   the IL-th through IU-th eigenvalues will be found.

    @param[in]
    uplo    magma_uplo_t
      -     = MagmaUpper:  Upper triangle of A is stored;
      -     = MagmaLower:  Lower triangle of A is stored.

    @param[in]
    n       INTEGER
            The order of the matrix A.  N >= 0.

    @param[in,out]
    dA      REAL array on the GPU,
            dimension (LDDA, N).
            On entry, the symmetric matrix A.  If UPLO = MagmaUpper, the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = MagmaLower,
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.
            On exit, if JOBZ = MagmaVec, then if INFO = 0, the first m columns
            of A contains the required
            orthonormal eigenvectors of the matrix A.
            If JOBZ = MagmaNoVec, then on exit the lower triangle (if UPLO=MagmaLower)
            or the upper triangle (if UPLO=MagmaUpper) of A, including the
            diagonal, is destroyed.

    @param[in]
    ldda    INTEGER
            The leading dimension of the array DA.  LDDA >= max(1,N).

    @param[in]
    vl      REAL
    @param[in]
    vu      REAL
            If RANGE=MagmaRangeV, the lower and upper bounds of the interval to
            be searched for eigenvalues. VL < VU.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeI.

    @param[in]
    il      INTEGER
    @param[in]
    iu      INTEGER
            If RANGE=MagmaRangeI, the indices (in ascending order) of the
            smallest and largest eigenvalues to be returned.
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeV.

    @param[out]
    m       INTEGER
            The total number of eigenvalues found.  0 <= M <= N.
            If RANGE = MagmaRangeAll, M = N, and if RANGE = MagmaRangeI, M = IU-IL+1.

    @param[out]
    w       REAL array, dimension (N)
            If INFO = 0, the required m eigenvalues in ascending order.

    @param
    wA      (workspace) REAL array, dimension (LDWA, N)

    @param[in]
    ldwa    INTEGER
            The leading dimension of the array wA.  LDWA >= max(1,N).

    @param[out]
    work    (workspace) REAL array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The length of the array WORK.
            If N <= 1,                      LWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LWORK >= 2*N + N*NB.
            If JOBZ = MagmaVec   and N > 1, LWORK >= max( 2*N + N*NB, 1 + 6*N + 2*N**2 ).
            NB can be obtained through magma_get_ssytrd_nb(N).
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal sizes of the WORK and IWORK
            arrays, returns these values as the first entries of the WORK
            and IWORK arrays, and no error message related to LWORK or
            LIWORK is issued by XERBLA.

    @param[out]
    iwork   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK.

    @param[in]
    liwork  INTEGER
            The dimension of the array IWORK.
            If N <= 1,                      LIWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1.
            If JOBZ = MagmaVec   and N > 1, LIWORK >= 3 + 5*N.
    \n
            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK and
            IWORK arrays, returns these values as the first entries of
            the WORK and IWORK arrays, and no error message related to
            LWORK or LIWORK is issued by XERBLA.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value
      -     > 0:  if INFO = i and JOBZ = MagmaNoVec, then the algorithm failed
                  to converge; i off-diagonal elements of an intermediate
                  tridiagonal form did not converge to zero;
                  if INFO = i and JOBZ = MagmaVec, then the algorithm failed
                  to compute an eigenvalue while working on the submatrix
                  lying in rows and columns INFO/(N+1) through
                  mod(INFO,N+1).

    Further Details
    ---------------
    Based on contributions by
       Jeff Rutter, Computer Science Division, University of California
       at Berkeley, USA

    Modified description of INFO. Sven, 16 Feb 05.

    @ingroup magma_ssyev_driver
    ********************************************************************/
extern "C" magma_int_t
magma_ssyevdx_gpu(magma_vec_t jobz, magma_range_t range, magma_uplo_t uplo,
                  magma_int_t n,
                  float *dA, magma_int_t ldda,
                  float vl, float vu, magma_int_t il, magma_int_t iu,
                  magma_int_t *m, float *w,
                  float *wA,  magma_int_t ldwa,
                  float *work, magma_int_t lwork,
                  magma_int_t *iwork, magma_int_t liwork,
                  magma_int_t *info)
{
    magma_int_t ione = 1;

    float d__1;

    float eps;
    magma_int_t inde;
    float anrm;
    float rmin, rmax;
    float sigma;
    magma_int_t iinfo, lwmin;
    magma_int_t lower;
    magma_int_t wantz;
    magma_int_t indwk2, llwrk2;
    magma_int_t iscale;
    float safmin;
    float bignum;
    magma_int_t indtau;
    magma_int_t indwrk, liwmin;
    magma_int_t llwork;
    float smlnum;
    magma_int_t lquery;
    magma_int_t alleig, valeig, indeig;

    float *dwork;
    magma_int_t lddc = ldda;

    wantz = (jobz == MagmaVec);
    lower = (uplo == MagmaLower);

    alleig = (range == MagmaRangeAll);
    valeig = (range == MagmaRangeV);
    indeig = (range == MagmaRangeI);

    lquery = (lwork == -1 || liwork == -1);

    *info = 0;
    if (! (wantz || (jobz == MagmaNoVec))) {
        *info = -1;
    } else if (! (alleig || valeig || indeig)) {
        *info = -2;
    } else if (! (lower || (uplo == MagmaUpper))) {
        *info = -3;
    } else if (n < 0) {
        *info = -4;
    } else if (ldda < max(1,n)) {
        *info = -6;
    } else if (ldwa < max(1,n)) {
        *info = -14;
    } else {
        if (valeig) {
            if (n > 0 && vu <= vl) {
                *info = -8;
            }
        } else if (indeig) {
            if (il < 1 || il > max(1,n)) {
                *info = -9;
            } else if (iu < min(n,il) || iu > n) {
                *info = -10;
            }
        }
    }

    magma_int_t nb = magma_get_ssytrd_nb( n );
    if ( n <= 1 ) {
        lwmin  = 1;
        liwmin = 1;
    }
    else if ( wantz ) {
        lwmin  = max( 2*n + n*nb, 1 + 6*n + 2*n*n );
        liwmin = 3 + 5*n;
    }
    else {
        lwmin  = 2*n + n*nb;
        liwmin = 1;
    }
    
    // multiply by 1+eps (in Double!) to ensure length gets rounded up,
    // if it cannot be exactly represented in floating point.
    real_Double_t one_eps = 1. + lapackf77_slamch("Epsilon");
    work[0]  = lwmin * one_eps;
    iwork[0] = liwmin;

    if ((lwork < lwmin) && !lquery) {
        *info = -16;
    } else if ((liwork < liwmin) && ! lquery) {
        *info = -18;
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */
    if (n <= 128) {
        #ifdef ENABLE_DEBUG
        printf("--------------------------------------------------------------\n");
        printf("  warning matrix too small N=%d NB=%d, calling lapack on CPU  \n", (int) n, (int) nb);
        printf("--------------------------------------------------------------\n");
        #endif
        const char* jobz_ = lapack_vec_const( jobz );
        const char* uplo_ = lapack_uplo_const( uplo );
        float *A;
        magma_smalloc_cpu( &A, n*n );
        magma_sgetmatrix(n, n, dA, ldda, A, n);
        lapackf77_ssyevd(jobz_, uplo_,
                         &n, A, &n,
                         w, work, &lwork,
                         iwork, &liwork, info);
        magma_ssetmatrix( n, n, A, n, dA, ldda);
        magma_free_cpu(A);
        return *info;
    }

    magma_queue_t stream;
    magma_queue_create( &stream );

    // n*lddc for ssytrd2_gpu
    // n for slansy
    magma_int_t ldwork = n*lddc;
    if ( wantz ) {
        // need 3n^2/2 for sstedx
        ldwork = max( ldwork, 3*n*(n/2 + 1));
    }
    if (MAGMA_SUCCESS != magma_smalloc( &dwork, ldwork )) {
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }

    /* Get machine constants. */
    safmin = lapackf77_slamch("Safe minimum");
    eps    = lapackf77_slamch("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = magma_ssqrt(smlnum);
    rmax = magma_ssqrt(bignum);

    /* Scale matrix to allowable range, if necessary. */
    anrm = magmablas_slansy(MagmaMaxNorm, uplo, n, dA, ldda, dwork);
    iscale = 0;
    sigma  = 1;
    if (anrm > 0. && anrm < rmin) {
        iscale = 1;
        sigma = rmin / anrm;
    } else if (anrm > rmax) {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1) {
        magmablas_slascl(uplo, 0, 0, 1., sigma, n, n, dA, ldda, info);
    }

    /* Call SSYTRD to reduce symmetric matrix to tridiagonal form. */
    // ssytrd work: e (n) + tau (n) + llwork (n*nb)  ==>  2n + n*nb
    // sstedx work: e (n) + tau (n) + z (n*n) + llwrk2 (1 + 4*n + n^2)  ==>  1 + 6n + 2n^2
    inde   = 0;
    indtau = inde   + n;
    indwrk = indtau + n;
    indwk2 = indwrk + n*n;
    llwork = lwork - indwrk;
    llwrk2 = lwork - indwk2;

    magma_timer_t time=0;
    timer_start( time );

#ifdef FAST_SYMV
    magma_ssytrd2_gpu(uplo, n, dA, ldda, w, &work[inde],
                      &work[indtau], wA, ldwa, &work[indwrk], llwork,
                      dwork, n*lddc, &iinfo);
#else
    magma_ssytrd_gpu(uplo, n, dA, ldda, w, &work[inde],
                     &work[indtau], wA, ldwa, &work[indwrk], llwork,
                     &iinfo);
#endif

    timer_stop( time );
    timer_printf( "time ssytrd = %6.2f\n", time );

    /* For eigenvalues only, call SSTERF.  For eigenvectors, first call
       SSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
       tridiagonal matrix, then call SORMTR to multiply it to the Householder
       transformations represented as Householder vectors in A. */

    if (! wantz) {
        lapackf77_ssterf(&n, w, &work[inde], info);

        magma_smove_eig(range, n, w, &il, &iu, vl, vu, m);
    }
    else {
        timer_start( time );

        magma_sstedx(range, n, vl, vu, il, iu, w, &work[inde],
                     &work[indwrk], n, &work[indwk2],
                     llwrk2, iwork, liwork, dwork, info);

        timer_stop( time );
        timer_printf( "time sstedx = %6.2f\n", time );
        timer_start( time );

        magma_smove_eig(range, n, w, &il, &iu, vl, vu, m);

        magma_ssetmatrix( n, *m, &work[indwrk + n* (il-1) ], n, dwork, lddc );

        magma_sormtr_gpu(MagmaLeft, uplo, MagmaNoTrans, n, *m, dA, ldda, &work[indtau],
                         dwork, lddc, wA, ldwa, &iinfo);

        magma_scopymatrix( n, *m, dwork, lddc, dA, ldda );

        timer_stop( time );
        timer_printf( "time sormtr + copy = %6.2f\n", time );
    }

    /* If matrix was scaled, then rescale eigenvalues appropriately. */
    if (iscale == 1) {
        d__1 = 1. / sigma;
        blasf77_sscal(&n, &d__1, w, &ione);
    }

    work[0]  = lwmin * one_eps;  // round up
    iwork[0] = liwmin;

    magma_queue_destroy( stream );
    magma_free( dwork );

    return *info;
} /* magma_ssyevd_gpu */
Example #5
0
/**
    Purpose
    -------
    CHEEVX computes selected eigenvalues and, optionally, eigenvectors
    of a complex Hermitian matrix A.  Eigenvalues and eigenvectors can
    be selected by specifying either a range of values or a range of
    indices for the desired eigenvalues.

    Arguments
    ---------
    @param[in]
    jobz    magma_vec_t
      -     = MagmaNoVec:  Compute eigenvalues only;
      -     = MagmaVec:    Compute eigenvalues and eigenvectors.

    @param[in]
    range   magma_range_t
      -     = MagmaRangeAll: all eigenvalues will be found.
      -     = MagmaRangeV:   all eigenvalues in the half-open interval (VL,VU]
                   will be found.
      -     = MagmaRangeI:   the IL-th through IU-th eigenvalues will be found.

    @param[in]
    uplo    magma_uplo_t
      -     = MagmaUpper:  Upper triangle of A is stored;
      -     = MagmaLower:  Lower triangle of A is stored.

    @param[in]
    n       INTEGER
            The order of the matrix A.  N >= 0.

    @param[in,out]
    dA      COMPLEX array, dimension (LDDA, N)
            On entry, the Hermitian matrix A.  If UPLO = MagmaUpper, the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = MagmaLower,
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.
            On exit, the lower triangle (if UPLO=MagmaLower) or the upper
            triangle (if UPLO=MagmaUpper) of A, including the diagonal, is
            destroyed.

    @param[in]
    ldda    INTEGER
            The leading dimension of the array DA.  LDDA >= max(1,N).

    @param[in]
    vl      REAL
    @param[in]
    vu      REAL
            If RANGE=MagmaRangeV, the lower and upper bounds of the interval to
            be searched for eigenvalues. VL < VU.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeI.

    @param[in]
    il      INTEGER
    @param[in]
    iu      INTEGER
            If RANGE=MagmaRangeI, the indices (in ascending order) of the
            smallest and largest eigenvalues to be returned.
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeV.

    @param[in]
    abstol  REAL
            The absolute error tolerance for the eigenvalues.
            An approximate eigenvalue is accepted as converged
            when it is determined to lie in an interval [a,b]
            of width less than or equal to

                    ABSTOL + EPS * max( |a|,|b| ),
    \n
            where EPS is the machine precision.  If ABSTOL is less than
            or equal to zero, then  EPS*|T|  will be used in its place,
            where |T| is the 1-norm of the tridiagonal matrix obtained
            by reducing A to tridiagonal form.
    \n
            Eigenvalues will be computed most accurately when ABSTOL is
            set to twice the underflow threshold 2*SLAMCH('S'), not zero.
            If this routine returns with INFO > 0, indicating that some
            eigenvectors did not converge, try setting ABSTOL to
            2*SLAMCH('S').
    \n
            See "Computing Small Singular Values of Bidiagonal Matrices
            with Guaranteed High Relative Accuracy," by Demmel and
            Kahan, LAPACK Working Note #3.

    @param[out]
    m       INTEGER
            The total number of eigenvalues found.  0 <= M <= N.
            If RANGE = MagmaRangeAll, M = N, and if RANGE = MagmaRangeI, M = IU-IL+1.

    @param[out]
    w       REAL array, dimension (N)
            On normal exit, the first M elements contain the selected
            eigenvalues in ascending order.

    @param[out]
    dZ      COMPLEX array, dimension (LDDZ, max(1,M))
            If JOBZ = MagmaVec, then if INFO = 0, the first M columns of Z
            contain the orthonormal eigenvectors of the matrix A
            corresponding to the selected eigenvalues, with the i-th
            column of Z holding the eigenvector associated with W(i).
            If an eigenvector fails to converge, then that column of Z
            contains the latest approximation to the eigenvector, and the
            index of the eigenvector is returned in IFAIL.
            If JOBZ = MagmaNoVec, then Z is not referenced.
            Note: the user must ensure that at least max(1,M) columns are
            supplied in the array Z; if RANGE = MagmaRangeV, the exact value of M
            is not known in advance and an upper bound must be used.
*********   (workspace) If FAST_HEMV is defined DZ should be (LDDZ, max(1,N)) in both cases.

    @param[in]
    lddz    INTEGER
            The leading dimension of the array DZ.  LDDZ >= 1, and if
            JOBZ = MagmaVec, LDDZ >= max(1,N).

    @param
    wA      (workspace) COMPLEX array, dimension (LDWA, N)

    @param[in]
    ldwa    INTEGER
            The leading dimension of the array wA.  LDWA >= max(1,N).

    @param
    wZ      (workspace) COMPLEX array, dimension (LDWZ, max(1,M))

    @param[in]
    ldwz    INTEGER
            The leading dimension of the array wZ.  LDWZ >= 1, and if
            JOBZ = MagmaVec, LDWZ >= max(1,N).

    @param[out]
    work    (workspace) COMPLEX array, dimension (LWORK)
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The length of the array WORK.  LWORK >= (NB+1)*N,
            where NB is the max of the blocksize for CHETRD.
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal size of the WORK array, returns
            this value as the first entry of the WORK array, and no error
            message related to LWORK is issued by XERBLA.

    @param
    rwork   (workspace) REAL array, dimension (7*N)

    @param
    iwork   (workspace) INTEGER array, dimension (5*N)

    @param[out]
    ifail   INTEGER array, dimension (N)
            If JOBZ = MagmaVec, then if INFO = 0, the first M elements of
            IFAIL are zero.  If INFO > 0, then IFAIL contains the
            indices of the eigenvectors that failed to converge.
            If JOBZ = MagmaNoVec, then IFAIL is not referenced.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value
      -     > 0:  if INFO = i, then i eigenvectors failed to converge.
                  Their indices are stored in array IFAIL.

    @ingroup magma_cheev_driver
    ********************************************************************/
extern "C" magma_int_t
magma_cheevx_gpu(
    magma_vec_t jobz, magma_range_t range, magma_uplo_t uplo, magma_int_t n,
    magmaFloatComplex_ptr dA, magma_int_t ldda,
    float vl, float vu,
    magma_int_t il, magma_int_t iu, float abstol, magma_int_t *m,
    float *w,
    magmaFloatComplex_ptr dZ, magma_int_t lddz,
    magmaFloatComplex *wA,    magma_int_t ldwa,
    magmaFloatComplex *wZ,    magma_int_t ldwz,
    magmaFloatComplex *work,  magma_int_t lwork,
    float *rwork, magma_int_t *iwork, magma_int_t *ifail,
    magma_int_t *info)
{
    const char* uplo_  = lapack_uplo_const( uplo  );
    const char* jobz_  = lapack_vec_const( jobz  );
    const char* range_ = lapack_range_const( range );
    
    magma_int_t ione = 1;
    
    const char* order_;
    magma_int_t indd, inde;
    magma_int_t imax;
    magma_int_t lopt, itmp1, indee;
    magma_int_t lower, wantz;
    magma_int_t i, j, jj, i__1;
    magma_int_t alleig, valeig, indeig;
    magma_int_t iscale, indibl;
    magma_int_t indiwk, indisp, indtau;
    magma_int_t indrwk, indwrk;
    magma_int_t llwork, nsplit;
    magma_int_t lquery;
    magma_int_t iinfo;
    float safmin;
    float bignum;
    float smlnum;
    float eps, tmp1;
    float anrm;
    float sigma, d__1;
    float rmin, rmax;
    
    magmaFloat_ptr dwork;
    
    /* Function Body */
    lower  = (uplo  == MagmaLower);
    wantz  = (jobz  == MagmaVec);
    alleig = (range == MagmaRangeAll);
    valeig = (range == MagmaRangeV);
    indeig = (range == MagmaRangeI);
    lquery = (lwork == -1);
    
    *info = 0;
    if (! (wantz || (jobz == MagmaNoVec))) {
        *info = -1;
    } else if (! (alleig || valeig || indeig)) {
        *info = -2;
    } else if (! (lower || (uplo == MagmaUpper))) {
        *info = -3;
    } else if (n < 0) {
        *info = -4;
    } else if (ldda < max(1,n)) {
        *info = -6;
    } else if (lddz < 1 || (wantz && lddz < n)) {
        *info = -15;
    } else if (ldwa < max(1,n)) {
        *info = -17;
    } else if (ldwz < 1 || (wantz && ldwz < n)) {
        *info = -19;
    } else {
        if (valeig) {
            if (n > 0 && vu <= vl) {
                *info = -8;
            }
        } else if (indeig) {
            if (il < 1 || il > max(1,n)) {
                *info = -9;
            } else if (iu < min(n,il) || iu > n) {
                *info = -10;
            }
        }
    }
    
    magma_int_t nb = magma_get_chetrd_nb(n);
    
    lopt = n * (nb + 1);
    
    work[0] = MAGMA_C_MAKE( lopt, 0 );
    
    if (lwork < lopt && ! lquery) {
        *info = -21;
    }
    
    if (*info != 0) {
        magma_xerbla( __func__, -(*info));
        return *info;
    } else if (lquery) {
        return *info;
    }
    
    *m = 0;
    /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */
    if (n <= 128) {
        #ifdef ENABLE_DEBUG
        printf("--------------------------------------------------------------\n");
        printf("  warning matrix too small N=%d NB=%d, calling lapack on CPU  \n", (int) n, (int) nb);
        printf("--------------------------------------------------------------\n");
        #endif
        magmaFloatComplex *a;
        magma_cmalloc_cpu( &a, n*n );
        magma_cgetmatrix(n, n, dA, ldda, a, n);
        lapackf77_cheevx(jobz_, range_, uplo_,
                         &n, a, &n, &vl, &vu, &il, &iu, &abstol, m,
                         w, wZ, &ldwz, work, &lwork,
                         rwork, iwork, ifail, info);
        magma_csetmatrix( n,  n,  a,    n, dA, ldda);
        magma_csetmatrix( n, *m, wZ, ldwz, dZ, lddz);
        magma_free_cpu(a);
        return *info;
    }

    if (MAGMA_SUCCESS != magma_smalloc( &dwork, n )) {
        fprintf (stderr, "!!!! device memory allocation error (magma_cheevx_gpu)\n");
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }
    
    --w;
    --work;
    --rwork;
    --iwork;
    --ifail;
    
    /* Get machine constants. */
    safmin = lapackf77_slamch("Safe minimum");
    eps = lapackf77_slamch("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = magma_ssqrt(smlnum);
    rmax = magma_ssqrt(bignum);
    
    /* Scale matrix to allowable range, if necessary. */
    anrm = magmablas_clanhe(MagmaMaxNorm, uplo, n, dA, ldda, dwork);
    iscale = 0;
    sigma  = 1;
    if (anrm > 0. && anrm < rmin) {
        iscale = 1;
        sigma = rmin / anrm;
    } else if (anrm > rmax) {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1) {
        d__1 = 1.;
        magmablas_clascl(uplo, 0, 0, 1., sigma, n, n, dA,
                         ldda, info);
        
        if (abstol > 0.) {
            abstol *= sigma;
        }
        if (valeig) {
            vl *= sigma;
            vu *= sigma;
        }
    }
    
    /* Call CHETRD to reduce Hermitian matrix to tridiagonal form. */
    indd = 1;
    inde = indd + n;
    indrwk = inde + n;
    indtau = 1;
    indwrk = indtau + n;
    llwork = lwork - indwrk + 1;
    
#ifdef FAST_HEMV
    magma_chetrd2_gpu(uplo, n, dA, ldda, &rwork[indd], &rwork[inde],
                      &work[indtau], wA, ldwa, &work[indwrk], llwork, dZ, lddz*n, &iinfo);
#else
    magma_chetrd_gpu (uplo, n, dA, ldda, &rwork[indd], &rwork[inde],
                      &work[indtau], wA, ldwa, &work[indwrk], llwork, &iinfo);
#endif

    lopt = n + (magma_int_t)MAGMA_C_REAL(work[indwrk]);
    
    /* If all eigenvalues are desired and ABSTOL is less than or equal to
       zero, then call SSTERF or CUNGTR and CSTEQR.  If this fails for
       some eigenvalue, then try SSTEBZ. */
    if ((alleig || (indeig && il == 1 && iu == n)) && abstol <= 0.) {
        blasf77_scopy(&n, &rwork[indd], &ione, &w[1], &ione);
        indee = indrwk + 2*n;
        if (! wantz) {
            i__1 = n - 1;
            blasf77_scopy(&i__1, &rwork[inde], &ione, &rwork[indee], &ione);
            lapackf77_ssterf(&n, &w[1], &rwork[indee], info);
        }
        else {
            lapackf77_clacpy("A", &n, &n, wA, &ldwa, wZ, &ldwz);
            lapackf77_cungtr(uplo_, &n, wZ, &ldwz, &work[indtau], &work[indwrk], &llwork, &iinfo);
            i__1 = n - 1;
            blasf77_scopy(&i__1, &rwork[inde], &ione, &rwork[indee], &ione);
            lapackf77_csteqr(jobz_, &n, &w[1], &rwork[indee], wZ, &ldwz, &rwork[indrwk], info);
            if (*info == 0) {
                for (i = 1; i <= n; ++i) {
                    ifail[i] = 0;
                }
                magma_csetmatrix( n, n, wZ, ldwz, dZ, lddz );
            }
        }
        if (*info == 0) {
            *m = n;
        }
    }
    
    /* Otherwise, call SSTEBZ and, if eigenvectors are desired, CSTEIN. */
    if (*m == 0) {
        *info = 0;
        if (wantz) {
            order_ = "B";
        } else {
            order_ = "E";
        }
        indibl = 1;
        indisp = indibl + n;
        indiwk = indisp + n;

        lapackf77_sstebz(range_, order_, &n, &vl, &vu, &il, &iu, &abstol, &rwork[indd], &rwork[inde], m,
                         &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &rwork[indrwk], &iwork[indiwk], info);
        
        if (wantz) {
            
            lapackf77_cstein(&n, &rwork[indd], &rwork[inde], m, &w[1], &iwork[indibl], &iwork[indisp],
                             wZ, &ldwz, &rwork[indrwk], &iwork[indiwk], &ifail[1], info);
            
            magma_csetmatrix( n, *m, wZ, ldwz, dZ, lddz );
            
            /* Apply unitary matrix used in reduction to tridiagonal
               form to eigenvectors returned by CSTEIN. */
            magma_cunmtr_gpu(MagmaLeft, uplo, MagmaNoTrans, n, *m, dA, ldda, &work[indtau],
                             dZ, lddz, wA, ldwa, &iinfo);
        }
    }
    /* If matrix was scaled, then rescale eigenvalues appropriately. */
    if (iscale == 1) {
        if (*info == 0) {
            imax = *m;
        } else {
            imax = *info - 1;
        }
        d__1 = 1. / sigma;
        blasf77_sscal(&imax, &d__1, &w[1], &ione);
    }
    
    /* If eigenvalues are not in order, then sort them, along with
       eigenvectors. */
    if (wantz) {
        for (j = 1; j <= *m-1; ++j) {
            i = 0;
            tmp1 = w[j];
            for (jj = j + 1; jj <= *m; ++jj) {
                if (w[jj] < tmp1) {
                    i = jj;
                    tmp1 = w[jj];
                }
            }
            
            if (i != 0) {
                itmp1 = iwork[indibl + i - 1];
                w[i] = w[j];
                iwork[indibl + i - 1] = iwork[indibl + j - 1];
                w[j] = tmp1;
                iwork[indibl + j - 1] = itmp1;
                magma_cswap(n, dZ + (i-1)*lddz, ione, dZ + (j-1)*lddz, ione);
                if (*info != 0) {
                    itmp1 = ifail[i];
                    ifail[i] = ifail[j];
                    ifail[j] = itmp1;
                }
            }
        }
    }
    
    /* Set WORK[0] to optimal complex workspace size. */
    work[1] = MAGMA_C_MAKE( lopt, 0 );
    
    return *info;
    
} /* magma_cheevx_gpu */
Example #6
0
extern "C" magma_int_t
magma_ssyevdx_2stage(char jobz, char range, char uplo,
                     magma_int_t n,
                     float *a, magma_int_t lda,
                     float vl, float vu, magma_int_t il, magma_int_t iu,
                     magma_int_t *m, float *w,
                     float *work, magma_int_t lwork,
                     magma_int_t *iwork, magma_int_t liwork,
                     magma_int_t *info)
{
/*  -- MAGMA (version 1.4.1) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       December 2013

    Purpose
    =======
    ZHEEVD_2STAGE computes all eigenvalues and, optionally, eigenvectors of a
    complex Hermitian matrix A. It uses a two-stage algorithm for the tridiagonalization.
    If eigenvectors are desired, it uses a divide and conquer algorithm.

    The divide and conquer algorithm makes very mild assumptions about
    floating point arithmetic. It will work on machines with a guard
    digit in add/subtract, or on those binary machines without guard
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
    Cray-2. It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.

    Arguments
    =========
    JOBZ    (input) CHARACTER*1
            = 'N':  Compute eigenvalues only;
            = 'V':  Compute eigenvalues and eigenvectors.

    RANGE   (input) CHARACTER*1
            = 'A': all eigenvalues will be found.
            = 'V': all eigenvalues in the half-open interval (VL,VU]
                   will be found.
            = 'I': the IL-th through IU-th eigenvalues will be found.

    UPLO    (input) CHARACTER*1
            = 'U':  Upper triangle of A is stored;
            = 'L':  Lower triangle of A is stored.

    N       (input) INTEGER
            The order of the matrix A.  N >= 0.

    A       (input/output) COMPLEX_16 array, dimension (LDA, N)
            On entry, the Hermitian matrix A.  If UPLO = 'U', the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = 'L',
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.
            On exit, if JOBZ = 'V', then if INFO = 0, the first m columns
            of A contains the required
            orthonormal eigenvectors of the matrix A.
            If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
            or the upper triangle (if UPLO='U') of A, including the
            diagonal, is destroyed.

    LDA     (input) INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    VL      (input) REAL
    VU      (input) REAL
            If RANGE='V', the lower and upper bounds of the interval to
            be searched for eigenvalues. VL < VU.
            Not referenced if RANGE = 'A' or 'I'.

    IL      (input) INTEGER
    IU      (input) INTEGER
            If RANGE='I', the indices (in ascending order) of the
            smallest and largest eigenvalues to be returned.
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
            Not referenced if RANGE = 'A' or 'V'.

    M       (output) INTEGER
            The total number of eigenvalues found.  0 <= M <= N.
            If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.

    W       (output) REAL array, dimension (N)
            If INFO = 0, the required m eigenvalues in ascending order.

    WORK    (workspace/output) COMPLEX_16 array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

    LWORK   (input) INTEGER
            The length of the array WORK.
            If N <= 1,                LWORK >= 1.
            If JOBZ  = 'N' and N > 1, LWORK >= LQ2 + N * (NB + 2).
            If JOBZ  = 'V' and N > 1, LWORK >= LQ2 + 1 + 6*N + 2*N**2.
                                      where LQ2 is the size needed to store
                                      the Q2 matrix and is returned by
                                      MAGMA_BULGE_GET_LQ2.

            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal sizes of the WORK, RWORK and
            IWORK arrays, returns these values as the first entries of
            the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.

    LIWORK  (input) INTEGER
            The dimension of the array IWORK.
            If N <= 1,                LIWORK >= 1.
            If JOBZ  = 'N' and N > 1, LIWORK >= 1.
            If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.

            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    INFO    (output) INTEGER
            = 0:  successful exit
            < 0:  if INFO = -i, the i-th argument had an illegal value
            > 0:  if INFO = i and JOBZ = 'N', then the algorithm failed
                  to converge; i off-diagonal elements of an intermediate
                  tridiagonal form did not converge to zero;
                  if INFO = i and JOBZ = 'V', then the algorithm failed
                  to compute an eigenvalue while working on the submatrix
                  lying in rows and columns INFO/(N+1) through
                  mod(INFO,N+1).

    Further Details
    ===============
    Based on contributions by
       Jeff Rutter, Computer Science Division, University of California
       at Berkeley, USA

    Modified description of INFO. Sven, 16 Feb 05.
    =====================================================================   */

    char uplo_[2] = {uplo, 0};
    char jobz_[2] = {jobz, 0};
    char range_[2] = {range, 0};
    float d_one  = 1.;
    magma_int_t ione = 1;
    magma_int_t izero = 0;

    float d__1;

    float eps;
    float anrm;
    magma_int_t imax;
    float rmin, rmax;
    float sigma;
    magma_int_t lwmin, liwmin;
    magma_int_t lower;
    magma_int_t wantz;
    magma_int_t iscale;
    float safmin;
    float bignum;
    float smlnum;
    magma_int_t lquery;
    magma_int_t alleig, valeig, indeig;

    float* dwork;

    /* determine the number of threads */
    magma_int_t threads = magma_get_numthreads();
    magma_setlapack_numthreads(threads);

    wantz = lapackf77_lsame(jobz_, MagmaVecStr);
    lower = lapackf77_lsame(uplo_, MagmaLowerStr);

    alleig = lapackf77_lsame( range_, "A" );
    valeig = lapackf77_lsame( range_, "V" );
    indeig = lapackf77_lsame( range_, "I" );

    lquery = lwork == -1 || liwork == -1;

    *info = 0;
    if (! (wantz || lapackf77_lsame(jobz_, MagmaNoVecStr))) {
        *info = -1;
    } else if (! (alleig || valeig || indeig)) {
        *info = -2;
    } else if (! (lower || lapackf77_lsame(uplo_, MagmaUpperStr))) {
        *info = -3;
    } else if (n < 0) {
        *info = -4;
    } else if (lda < max(1,n)) {
        *info = -6;
    } else {
        if (valeig) {
            if (n > 0 && vu <= vl) {
                *info = -8;
            }
        } else if (indeig) {
            if (il < 1 || il > max(1,n)) {
                *info = -9;
            } else if (iu < min(n,il) || iu > n) {
                *info = -10;
            }
        }
    }

    magma_int_t nb = magma_get_sbulge_nb(n, threads);
    magma_int_t Vblksiz = magma_sbulge_get_Vblksiz(n, nb, threads);

    magma_int_t ldt = Vblksiz;
    magma_int_t ldv = nb + Vblksiz;
    magma_int_t blkcnt = magma_bulge_get_blkcnt(n, nb, Vblksiz);
    magma_int_t lq2 = magma_sbulge_get_lq2(n, threads);

    if (wantz) {
        lwmin = lq2 + 1 + 6 * n + 2 * n * n;
        liwmin = 5 * n + 3;
    } else {
        lwmin = lq2 + n * (nb + 1);
        liwmin = 1;
    }

    work[0] = lwmin * (1. + lapackf77_slamch("Epsilon"));
    iwork[0] = liwmin;

    if ((lwork < lwmin) && !lquery) {
        *info = -14;
    } else if ((liwork < liwmin) && ! lquery) {
        *info = -16;
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }
    /* Quick return if possible */
    if (n == 0) {
        return *info;
    }

    if (n == 1) {
        w[0] = a[0];
        if (wantz) {
            a[0] = MAGMA_S_ONE;
        }
        return *info;
    }

#ifdef ENABLE_TIMER
    printf("using %d threads\n", threads);
#endif
    /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */
    magma_int_t ntiles = n/nb;
    if( ( ntiles < 2 ) || ( n <= 128 ) ){
        #ifdef ENABLE_DEBUG
        printf("--------------------------------------------------------------\n");
        printf("  warning matrix too small N=%d NB=%d, calling lapack on CPU  \n", (int) n, (int ) nb);
        printf("--------------------------------------------------------------\n");
        #endif
        lapackf77_ssyevd(jobz_, uplo_, &n, 
                        a, &lda, w, 
                        work, &lwork, 
                        iwork, &liwork, 
                        info);
        *m = n; 
        return *info;
    }

    /* Get machine constants. */
    safmin = lapackf77_slamch("Safe minimum");
    eps = lapackf77_slamch("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = magma_ssqrt(smlnum);
    rmax = magma_ssqrt(bignum);

    /* Scale matrix to allowable range, if necessary. */
    anrm = lapackf77_slansy("M", uplo_, &n, a, &lda, work);
    iscale = 0;
    if (anrm > 0. && anrm < rmin) {
        iscale = 1;
        sigma = rmin / anrm;
    } else if (anrm > rmax) {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1) {
        lapackf77_slascl(uplo_, &izero, &izero, &d_one, &sigma, &n, &n, a,
                         &lda, info);
    }

    magma_int_t inde    = 0;
    magma_int_t indT2   = inde + n;
    magma_int_t indTAU2 = indT2  + blkcnt*ldt*Vblksiz;
    magma_int_t indV2   = indTAU2+ blkcnt*Vblksiz;
    magma_int_t indtau1 = indV2  + blkcnt*ldv*Vblksiz;
    magma_int_t indwrk  = indtau1+ n;
    magma_int_t indwk2  = indwrk + n * n;

    magma_int_t llwork = lwork - indwrk;
    magma_int_t llwrk2 = lwork - indwk2;

#ifdef ENABLE_TIMER
    magma_timestr_t start, st1, st2, end;
    start = get_current_time();
#endif

    float *dT1;

    if (MAGMA_SUCCESS != magma_smalloc( &dT1, n*nb)) {
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }

    magma_ssytrd_sy2sb(uplo, n, nb, a, lda, &work[indtau1], &work[indwrk], llwork, dT1, threads, info);

#ifdef ENABLE_TIMER
    st1 = get_current_time();
    printf("  time ssytrd_sy2sb = %6.2f\n" , GetTimerValue(start,st1)/1000.);
#endif

    /* copy the input matrix into WORK(INDWRK) with band storage */
    /* PAY ATTENTION THAT work[indwrk] should be able to be of size lda2*n which it should be checked in any future modification of lwork.*/
    magma_int_t lda2 = 2*nb; //nb+1+(nb-1);
    float* A2 = &work[indwrk];
    memset(A2 , 0, n*lda2*sizeof(float));

    for (magma_int_t j = 0; j < n-nb; j++)
    {
        cblas_scopy(nb+1, &a[j*(lda+1)], 1, &A2[j*lda2], 1);
        memset(&a[j*(lda+1)], 0, (nb+1)*sizeof(float));
        a[nb + j*(lda+1)] = d_one;
    }
    for (magma_int_t j = 0; j < nb; j++)
    {
        cblas_scopy(nb-j, &a[(j+n-nb)*(lda+1)], 1, &A2[(j+n-nb)*lda2], 1);
        memset(&a[(j+n-nb)*(lda+1)], 0, (nb-j)*sizeof(float));
    }

#ifdef ENABLE_TIMER
    st2 = get_current_time();
    printf("  time ssytrd_convert = %6.2f\n" , GetTimerValue(st1,st2)/1000.);
#endif

    magma_ssytrd_sb2st(threads, uplo, n, nb, Vblksiz, A2, lda2, w, &work[inde], &work[indV2], ldv, &work[indTAU2], wantz, &work[indT2], ldt);

#ifdef ENABLE_TIMER
    end = get_current_time();
    printf("  time ssytrd_sy2st = %6.2f\n" , GetTimerValue(st2,end)/1000.);
    printf("  time ssytrd = %6.2f\n", GetTimerValue(start,end)/1000.);
#endif

    /* For eigenvalues only, call SSTERF.  For eigenvectors, first call
     ZSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
     tridiagonal matrix, then call ZUNMTR to multiply it to the Householder
     transformations represented as Householder vectors in A. */
    if (! wantz) {
#ifdef ENABLE_TIMER
        start = get_current_time();
#endif

        lapackf77_ssterf(&n, w, &work[inde], info);
        magma_smove_eig(range, n, w, &il, &iu, vl, vu, m);

#ifdef ENABLE_TIMER
        end = get_current_time();
        printf("  time sstedc = %6.2f\n", GetTimerValue(start,end)/1000.);
#endif
    } else {

#ifdef ENABLE_TIMER
        start = get_current_time();
#endif

        if (MAGMA_SUCCESS != magma_smalloc( &dwork, 3*n*(n/2 + 1) )) {
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }

        magma_sstedx(range, n, vl, vu, il, iu, w, &work[inde],
                     &work[indwrk], n, &work[indwk2],
                     llwrk2, iwork, liwork, dwork, info);

        magma_free( dwork );

#ifdef ENABLE_TIMER
        end = get_current_time();
        printf("  time sstedx = %6.2f\n", GetTimerValue(start,end)/1000.);
        start = get_current_time();
#endif
        float *dZ;
        magma_int_t lddz = n;

        float *da;
        magma_int_t ldda = n;

        magma_smove_eig(range, n, w, &il, &iu, vl, vu, m);

        if (MAGMA_SUCCESS != magma_smalloc( &dZ, *m*lddz)) {
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }
        if (MAGMA_SUCCESS != magma_smalloc( &da, n*ldda )) {
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }

        magma_sbulge_back(threads, uplo, n, nb, *m, Vblksiz, &work[indwrk + n * (il-1)], n, dZ, lddz,
                          &work[indV2], ldv, &work[indTAU2], &work[indT2], ldt, info);

#ifdef ENABLE_TIMER
        st1 = get_current_time();

        printf("  time sbulge_back = %6.2f\n" , GetTimerValue(start,st1)/1000.);
#endif

        magma_ssetmatrix( n, n, a, lda, da, ldda );

        magma_sormqr_gpu_2stages(MagmaLeft, MagmaNoTrans, n-nb, *m, n-nb, da+nb, ldda,
                                 dZ+nb, n, dT1, nb, info);

        magma_sgetmatrix( n, *m, dZ, lddz, a, lda );
        magma_free(dT1);
        magma_free(dZ);
        magma_free(da);

#ifdef ENABLE_TIMER
        end = get_current_time();
        printf("  time sormqr + copy = %6.2f\n", GetTimerValue(st1,end)/1000.);

        printf("  time eigenvectors backtransf. = %6.2f\n" , GetTimerValue(start,end)/1000.);
#endif

    }

    /* If matrix was scaled, then rescale eigenvalues appropriately. */
    if (iscale == 1) {
        if (*info == 0) {
            imax = n;
        } else {
            imax = *info - 1;
        }
        d__1 = 1. / sigma;
        blasf77_sscal(&imax, &d__1, w, &ione);
    }

    work[0] = lwmin * (1. + lapackf77_slamch("Epsilon"));
    iwork[0] = liwmin;

    return *info;
} /* magma_zheevdx_2stage */
Example #7
0
extern "C" magma_int_t
magma_claqps_gpu(magma_int_t m, magma_int_t n, magma_int_t offset,
             magma_int_t nb, magma_int_t *kb,
             magmaFloatComplex *A,  magma_int_t lda,
             magma_int_t *jpvt, magmaFloatComplex *tau,
             float *vn1, float *vn2,
             magmaFloatComplex *auxv,
             magmaFloatComplex *F,  magma_int_t ldf)
{
/*  -- MAGMA (version 1.4.0) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       August 2013

    Purpose
    =======
    CLAQPS computes a step of QR factorization with column pivoting
    of a complex M-by-N matrix A by using Blas-3.  It tries to factorize
    NB columns from A starting from the row OFFSET+1, and updates all
    of the matrix with Blas-3 xGEMM.

    In some cases, due to catastrophic cancellations, it cannot
    factorize NB columns.  Hence, the actual number of factorized
    columns is returned in KB.

    Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.

    Arguments
    =========
    M       (input) INTEGER
            The number of rows of the matrix A. M >= 0.

    N       (input) INTEGER
            The number of columns of the matrix A. N >= 0

    OFFSET  (input) INTEGER
            The number of rows of A that have been factorized in
            previous steps.

    NB      (input) INTEGER
            The number of columns to factorize.

    KB      (output) INTEGER
            The number of columns actually factorized.

    A       (input/output) COMPLEX*16 array, dimension (LDA,N)
            On entry, the M-by-N matrix A.
            On exit, block A(OFFSET+1:M,1:KB) is the triangular
            factor obtained and block A(1:OFFSET,1:N) has been
            accordingly pivoted, but no factorized.
            The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has
            been updated.

    LDA     (input) INTEGER
            The leading dimension of the array A. LDA >= max(1,M).

    JPVT    (input/output) INTEGER array, dimension (N)
            JPVT(I) = K <==> Column K of the full matrix A has been
            permuted into position I in AP.

    TAU     (output) COMPLEX*16 array, dimension (KB)
            The scalar factors of the elementary reflectors.

    VN1     (input/output) DOUBLE PRECISION array, dimension (N)
            The vector with the partial column norms.

    VN2     (input/output) DOUBLE PRECISION array, dimension (N)
            The vector with the exact column norms.

    AUXV    (input/output) COMPLEX*16 array, dimension (NB)
            Auxiliar vector.

    F       (input/output) COMPLEX*16 array, dimension (LDF,NB)
            Matrix F' = L*Y'*A.

    LDF     (input) INTEGER
            The leading dimension of the array F. LDF >= max(1,N).

    =====================================================================    */
    
#define  A(i, j) (A  + (i) + (j)*(lda ))
#define  F(i, j) (F  + (i) + (j)*(ldf ))

    magmaFloatComplex c_zero    = MAGMA_C_MAKE( 0.,0.);
    magmaFloatComplex c_one     = MAGMA_C_MAKE( 1.,0.);
    magmaFloatComplex c_neg_one = MAGMA_C_MAKE(-1.,0.);
    magma_int_t ione = 1;
    
    magma_int_t i__1, i__2;
    //float d__1;
    magmaFloatComplex z__1;
    
    //magma_int_t j;
    magma_int_t k, rk;
    //magmaFloatComplex Akk;
    magmaFloatComplex *Aks;
    magmaFloatComplex tauk;
    magma_int_t pvt;
    //float temp, temp2;
    float tol3z;
    magma_int_t itemp;

    float lsticc, *lsticcs;
    magma_int_t lastrk;
    magma_smalloc( &lsticcs, 1+256*(n+255)/256 );

    lastrk = min( m, n + offset );
    tol3z = magma_ssqrt( lapackf77_slamch("Epsilon"));

    lsticc = 0;
    k = 0;
    magma_cmalloc( &Aks, nb );

    while( k < nb && lsticc == 0 ) {
        rk = offset + k;
        
        /* Determine ith pivot column and swap if necessary */
        // Fortran: pvt, k, isamax are all 1-based; subtract 1 from k.
        // C:       pvt, k, isamax are all 0-based; don't subtract 1.
        pvt = k - 1 + magma_isamax( n-k, &vn1[k], ione );
        
        if (pvt != k) {

            /*if (pvt >= nb) {
                // 1. Start copy from GPU
                magma_cgetmatrix_async( m - offset - nb, 1,
                                        dA(offset + nb, pvt), ldda,
                                        A (offset + nb, pvt), lda, stream );
            }*/

            /* F gets swapped so F must be sent at the end to GPU   */
            i__1 = k;
            /*if (pvt < nb){
                // no need of transfer if pivot is within the panel
                blasf77_cswap( &m, A(0, pvt), &ione, A(0, k), &ione );
            }
            else {
                // 1. Finish copy from GPU
                magma_queue_sync( stream );

                // 2. Swap as usual on CPU
                blasf77_cswap(&m, A(0, pvt), &ione, A(0, k), &ione);

                // 3. Restore the GPU
                magma_csetmatrix_async( m - offset - nb, 1,
                                        A (offset + nb, pvt), lda,
                                        dA(offset + nb, pvt), ldda, stream);
            }*/
            magmablas_cswap( m, A(0, pvt), ione, A(0, k), ione );

            //blasf77_cswap( &i__1, F(pvt,0), &ldf, F(k,0), &ldf );
            magmablas_cswap( i__1, F(pvt, 0), ldf, F(k, 0), ldf);
            itemp     = jpvt[pvt];
            jpvt[pvt] = jpvt[k];
            jpvt[k]   = itemp;
            //vn1[pvt] = vn1[k];
            //vn2[pvt] = vn2[k];
            #if defined(PRECISION_d) || defined(PRECISION_z)
                //magma_dswap( 1, &vn1[pvt], 1, &vn1[k], 1 );
                //magma_dswap( 1, &vn2[pvt], 1, &vn2[k], 1 );
                magma_dswap( 2, &vn1[pvt], n+offset, &vn1[k], n+offset );
            #else
                //magma_sswap( 1, &vn1[pvt], 1, &vn1[k], 1 );
                //magma_sswap( 1, &vn2[pvt], 1, &vn2[k], 1 );
                magma_sswap(2, &vn1[pvt], n+offset, &vn1[k], n+offset);
            #endif

        }

        /* Apply previous Householder reflectors to column K:
           A(RK:M,K) := A(RK:M,K) - A(RK:M,1:K-1)*F(K,1:K-1)'.
           Optimization: multiply with beta=0; wait for vector and subtract */
        if (k > 0) {
            /*#if (defined(PRECISION_c) || defined(PRECISION_z))
            for (j = 0; j < k; ++j){
                *F(k,j) = MAGMA_C_CNJG( *F(k,j) );
            }
            #endif*/

//#define RIGHT_UPDATE
#ifdef RIGHT_UPDATE
            i__1 = m - offset - nb;
            i__2 = k;
            magma_cgemv( MagmaNoTrans, i__1, i__2,
                         c_neg_one, A(offset+nb, 0), lda,
                                    F(k,         0), ldf,
                         c_one,     A(offset+nb, k), ione );
#else
            i__1 = m - rk;
            i__2 = k;
            /*blasf77_cgemv( MagmaNoTransStr, &i__1, &i__2,
                           &c_neg_one, A(rk, 0), &lda,
                                       F(k,  0), &ldf,
                           &c_one,     A(rk, k), &ione );*/
            magma_cgemv( MagmaNoTrans, i__1, i__2,
                         c_neg_one, A(rk, 0), lda,
                                    F(k,  0), ldf,
                         c_one,     A(rk, k), ione );
#endif

            /*#if (defined(PRECISION_c) || defined(PRECISION_z))
            for (j = 0; j < k; ++j) {
                *F(k,j) = MAGMA_C_CNJG( *F(k,j) );
            }
            #endif*/
        }
        
        /*  Generate elementary reflector H(k). */
        magma_clarfg_gpu(m-rk, A(rk, k), A(rk + 1, k), &tau[k], &vn1[k], &Aks[k]);

        //Akk = *A(rk, k);
        //*A(rk, k) = c_one;
        //magma_cgetvector( 1, &Aks[k],  1, &Akk,     1 );

        /* needed to avoid the race condition */
        if (k == 0) magma_csetvector(  1,    &c_one,       1, A(rk, k), 1 );
        else        magma_ccopymatrix( 1, 1, A(offset, 0), 1, A(rk, k), 1 );

        /* Compute Kth column of F:
           Compute  F(K+1:N,K) := tau(K)*A(RK:M,K+1:N)'*A(RK:M,K) on the GPU */
        if (k < n-1 || k > 0) magma_cgetvector( 1, &tau[k], 1, &tauk, 1 );
        if (k < n-1) {
            i__1 = m - rk;
            i__2 = n - k - 1;

            /* Send the vector to the GPU */
            //magma_csetmatrix( i__1, 1, A(rk, k), lda, dA(rk,k), ldda );

            /* Multiply on GPU */
            // was CALL CGEMV( 'Conjugate transpose', M-RK+1, N-K,
            //                 TAU( K ), A( RK,  K+1 ), LDA,
            //                           A( RK,  K   ), 1,
            //                 CZERO,    F( K+1, K   ), 1 )
            //magma_cgetvector( 1, &tau[k], 1, &tauk, 1 );
            magma_cgemv( MagmaConjTrans, m-rk, n-k-1,
                         tauk,   A( rk,  k+1 ), lda,
                                 A( rk,  k   ), 1,
                         c_zero, F( k+1, k   ), 1 );
            //magma_cscal( m-rk, tau[k], F( k+1, k), 1 );
            //magma_int_t i__3 = nb-k-1;
            //magma_int_t i__4 = i__2 - i__3;
            //magma_int_t i__5 = nb-k;
            //magma_cgemv( MagmaConjTrans, i__1 - i__5, i__2 - i__3,
            //             tau[k], dA(rk +i__5, k+1+i__3), ldda,
            //                     dA(rk +i__5, k       ), ione,
            //             c_zero, dF(k+1+i__3, k       ), ione );
            
            //magma_cgetmatrix_async( i__2-i__3, 1,
            //                        dF(k + 1 +i__3, k), i__2,
            //                        F (k + 1 +i__3, k), i__2, stream );
            
            //blasf77_cgemv( MagmaConjTransStr, &i__1, &i__3,
            //               &tau[k], A(rk,  k+1), &lda,
            //                        A(rk,  k  ), &ione,
            //               &c_zero, F(k+1, k  ), &ione );
            
            //magma_queue_sync( stream );
            //blasf77_cgemv( MagmaConjTransStr, &i__5, &i__4,
            //               &tau[k], A(rk, k+1+i__3), &lda,
            //                        A(rk, k       ), &ione,
            //               &c_one,  F(k+1+i__3, k ), &ione );
        }
        
        /* Padding F(1:K,K) with zeros.
        for (j = 0; j <= k; ++j) {
            magma_csetvector( 1, &c_zero, 1, F(j, k), 1 );
        }*/
        
        /* Incremental updating of F:
           F(1:N,K) := F(1:N,K)                        - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)'*A(RK:M,K).
           F(1:N,K) := tau(K)*A(RK:M,K+1:N)'*A(RK:M,K) - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)'*A(RK:M,K)
                    := tau(K)(A(RK:M,K+1:N)' - F(1:N,1:K-1)*A(RK:M,1:K-1)') A(RK:M,K)
           so, F is (updated A)*V */
        //if (k > 0 && k<n-1) {
        if (k > 0) {
            //magma_cgetvector( 1, &tau[k], 1, &tauk, 1 );
            z__1 = MAGMA_C_NEGATE( tauk );
#ifdef RIGHT_UPDATE
            i__1 = m - offset - nb;
            i__2 = k;
            magma_cgemv( MagmaConjTrans, i__1, i__2,
                         z__1,   A(offset+nb, 0), lda,
                                 A(offset+nb, k), ione,
                         c_zero, auxv, ione );
            
            i__1 = k;
            magma_cgemv( MagmaNoTrans, n-k-1, i__1,
                         c_one, F(k+1,0), ldf,
                                auxv,     ione,
                         c_one, F(k+1,k), ione );
#else
            i__1 = m - rk;
            i__2 = k;
            //blasf77_cgemv( MagmaConjTransStr, &i__1, &i__2,
            //               &z__1,   A(rk, 0), &lda,
            //                        A(rk, k), &ione,
            //               &c_zero, auxv, &ione );

            magma_cgemv( MagmaConjTrans, i__1, i__2,
                         z__1,   A(rk, 0), lda,
                                 A(rk, k), ione,
                         c_zero, auxv, ione );
            
            //i__1 = k;
            //blasf77_cgemv( MagmaNoTransStr, &n, &i__1,
            //               &c_one, F(0,0), &ldf,
            //                       auxv,   &ione,
            //               &c_one, F(0,k), &ione );
            /*magma_cgemv( MagmaNoTrans, n, i__1,
                           c_one, F(0,0), ldf,
                                  auxv,   ione,
                           c_one, F(0,k), ione );*/
            /* I think we only need stricly lower-triangular part :) */
            magma_cgemv( MagmaNoTrans, n-k-1, i__2,
                         c_one, F(k+1,0), ldf,
                                auxv,     ione,
                         c_one, F(k+1,k), ione );
#endif
        }
        
        /* Optimization: On the last iteration start sending F back to the GPU */
        
        /* Update the current row of A:
           A(RK,K+1:N) := A(RK,K+1:N) - A(RK,1:K)*F(K+1:N,1:K)'.               */
        if (k < n-1) {
            i__1 = n - k - 1;
            i__2 = k + 1;
            //blasf77_cgemm( MagmaNoTransStr, MagmaConjTransStr, &ione, &i__1, &i__2,
            //               &c_neg_one, A(rk, 0  ), &lda,
            //                           F(k+1,0  ), &ldf,
            //               &c_one,     A(rk, k+1), &lda );
#ifdef RIGHT_UPDATE
            /* right-looking update of rows,                     */
            magma_cgemm( MagmaNoTrans, MagmaConjTrans, nb-k, i__1, ione,
                         c_neg_one, A(rk,  k  ), lda,
                                    F(k+1, k  ), ldf,
                         c_one,     A(rk,  k+1), lda );
#else
            /* left-looking update of rows,                     *
             * since F=A'v with original A, so no right-looking */
            magma_cgemm( MagmaNoTrans, MagmaConjTrans, ione, i__1, i__2,
                         c_neg_one, A(rk, 0  ), lda,
                                    F(k+1,0  ), ldf,
                         c_one,     A(rk, k+1), lda );
#endif
        }
        
        /* Update partial column norms. */
        if (rk < min(m, n+offset)-1 ){
            magmablas_scnrm2_row_check_adjust(n-k-1, tol3z, &vn1[k+1], &vn2[k+1], A(rk,k+1), lda, lsticcs);

            magma_device_sync();
            #if defined(PRECISION_d) || defined(PRECISION_z)
            magma_dgetvector( 1, &lsticcs[0], 1, &lsticc, 1 );
            #else
            magma_sgetvector( 1, &lsticcs[0], 1, &lsticc, 1 );
            #endif
        }


        /*if (rk < lastrk) {
            for (j = k + 1; j < n; ++j) {
                if (vn1[j] != 0.) {
                    // NOTE: The following 4 lines follow from the analysis in
                    //   Lapack Working Note 176.
                    temp = MAGMA_C_ABS( *A(rk,j) ) / vn1[j];
                    temp = max( 0., ((1. + temp) * (1. - temp)) );

                    d__1 = vn1[j] / vn2[j];
                    temp2 = temp * (d__1 * d__1);

                    if (temp2 <= tol3z) {
                        vn2[j] = (float) lsticc;
                        lsticc = j;
                    } else {
                        vn1[j] *= magma_ssqrt(temp);
                    }
                }
            }
        }*/
        
        //*A(rk, k) = Akk;
        //magma_csetvector( 1, &Akk, 1, A(rk, k), 1 );
        //magma_cswap( 1, &Aks[k], 1, A(rk, k), 1 );
        
        ++k;
    }
    magma_ccopymatrix( 1, k, Aks, 1, A(offset, 0), lda+1 );

    // leave k as the last column done
    --k;
    *kb = k + 1;
    rk = offset + *kb - 1;

    /* Apply the block reflector to the rest of the matrix:
       A(OFFSET+KB+1:M,KB+1:N) := A(OFFSET+KB+1:M,KB+1:N) - A(OFFSET+KB+1:M,1:KB)*F(KB+1:N,1:KB)'  */
    if (*kb < min(n, m - offset)) {
        i__1 = m - rk - 1;
        i__2 = n - *kb;
        
        /* Send F to the GPU
        magma_csetmatrix( i__2, *kb,
                          F (*kb, 0), ldf,
                          dF(*kb, 0), i__2 );*/

        magma_cgemm( MagmaNoTrans, MagmaConjTrans, i__1, i__2, *kb,
                     c_neg_one, A(rk+1, 0  ), lda,
                                F(*kb,  0  ), ldf,
                     c_one,     A(rk+1, *kb), lda );
    }
    /* Recomputation of difficult columns. */
    if( lsticc > 0 ) {
        printf( " -- recompute dnorms --\n" );
        magmablas_scnrm2_check(m-rk-1, n-*kb, A(rk+1,*kb), lda,
                               &vn1[*kb], lsticcs);
#if defined(PRECISION_d) || defined(PRECISION_z)
        magma_dcopymatrix( n-*kb, 1, &vn1[*kb], *kb, &vn2[*kb], *kb);
#else
        magma_scopymatrix( n-*kb, 1, &vn1[*kb], *kb, &vn2[*kb], *kb);
#endif
    /*while( lsticc > 0 ) {
        itemp = (magma_int_t)(vn2[lsticc] >= 0. ? floor(vn2[lsticc] + .5) : -floor(.5 - vn2[lsticc]));
        i__1 = m - rk - 1;
        if (lsticc <= nb)
            vn1[lsticc] = cblas_scnrm2(i__1, A(rk + 1, lsticc), ione);
        else {
            // Where is the data, CPU or GPU ?
            float r1, r2;
            
            r1 = cblas_scnrm2(nb-k, A(rk + 1, lsticc), ione);
            r2 = magma_scnrm2(m-offset-nb, dA(offset + nb + 1, lsticc), ione);
            
            vn1[lsticc] = magma_ssqrt(r1*r1+r2*r2);
        }
        
        // NOTE: The computation of VN1( LSTICC ) relies on the fact that
        //   SNRM2 does not fail on vectors with norm below the value of SQRT(SLAMCH('S'))
        vn2[lsticc] = vn1[lsticc];
        lsticc = itemp;*/
    }
    magma_free(Aks);
    magma_free(lsticcs);

    return MAGMA_SUCCESS;
} /* magma_claqps */
Example #8
0
/**
    @deprecated
    
    Purpose
    -------
    SLAQPS computes a step of QR factorization with column pivoting
    of a real M-by-N matrix A by using Blas-3.  It tries to factorize
    NB columns from A starting from the row OFFSET+1, and updates all
    of the matrix with Blas-3 xGEMM.

    In some cases, due to catastrophic cancellations, it cannot
    factorize NB columns.  Hence, the actual number of factorized
    columns is returned in KB.

    Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.

    Arguments
    ---------
    @param[in]
    m       INTEGER
            The number of rows of the matrix A. M >= 0.

    @param[in]
    n       INTEGER
            The number of columns of the matrix A. N >= 0

    @param[in]
    offset  INTEGER
            The number of rows of A that have been factorized in
            previous steps.

    @param[in]
    nb      INTEGER
            The number of columns to factorize.

    @param[out]
    kb      INTEGER
            The number of columns actually factorized.

    @param[in,out]
    dA      REAL array, dimension (LDDA,N), on the GPU.
            On entry, the M-by-N matrix A.
            On exit, block A(OFFSET+1:M,1:KB) is the triangular
            factor obtained and block A(1:OFFSET,1:N) has been
            accordingly pivoted, but no factorized.
            The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has
            been updated.

    @param[in]
    ldda    INTEGER
            The leading dimension of the array A. LDDA >= max(1,M).

    @param[in,out]
    jpvt    INTEGER array, dimension (N)
            JPVT(I) = K <==> Column K of the full matrix A has been
            permuted into position I in AP.

    @param[out]
    tau     REAL array, dimension (KB)
            The scalar factors of the elementary reflectors.

    @param[in,out]
    vn1     REAL array, dimension (N)
            The vector with the partial column norms.

    @param[in,out]
    vn2     REAL array, dimension (N)
            The vector with the exact column norms.

    @param[in,out]
    dauxv   REAL array, dimension (NB), on the GPU
            Auxiliary vector.

    @param[in,out]
    dF      REAL array, dimension (LDDF,NB), on the GPU
            Matrix F' = L*Y'*A.

    @param[in]
    lddf    INTEGER
            The leading dimension of the array F. LDDF >= max(1,N).

    @ingroup magma_sgeqp3_aux
    ********************************************************************/
extern "C" magma_int_t
magma_slaqps_gpu(
    magma_int_t m, magma_int_t n, magma_int_t offset,
    magma_int_t nb, magma_int_t *kb,
    magmaFloat_ptr dA,  magma_int_t ldda,
    magma_int_t *jpvt, float *tau,
    float *vn1, float *vn2,
    magmaFloat_ptr dauxv,
    magmaFloat_ptr dF,  magma_int_t lddf)
{
#define  dA(i, j) (dA  + (i) + (j)*(ldda))
#define  dF(i, j) (dF  + (i) + (j)*(lddf))

    float c_zero    = MAGMA_S_MAKE( 0.,0.);
    float c_one     = MAGMA_S_MAKE( 1.,0.);
    float c_neg_one = MAGMA_S_MAKE(-1.,0.);
    magma_int_t ione = 1;
    
    magma_int_t i__1, i__2;
    float z__1;
    
    magma_int_t k, rk;
    magmaFloat_ptr dAks;
    float tauk = MAGMA_S_ZERO;
    magma_int_t pvt;
    float tol3z;
    magma_int_t itemp;

    float lsticc;
    magmaFloat_ptr dlsticcs;
    magma_smalloc( &dlsticcs, 1+256*(n+255)/256 );

    tol3z = magma_ssqrt( lapackf77_slamch("Epsilon"));

    lsticc = 0;
    k = 0;
    magma_smalloc( &dAks, nb );

    magma_queue_t queue;
    magma_device_t cdev;
    magma_getdevice( &cdev );
    magma_queue_create( cdev, &queue );

    while( k < nb && lsticc == 0 ) {
        rk = offset + k;
        
        /* Determine ith pivot column and swap if necessary */
        // subtract 1 from Fortran/CUBLAS isamax; pvt, k are 0-based.
        pvt = k + magma_isamax( n-k, &vn1[k], ione, queue ) - 1;
        
        if (pvt != k) {
            /* F gets swapped so F must be sent at the end to GPU   */
            i__1 = k;
            magmablas_sswap( m, dA(0, pvt), ione, dA(0, k), ione, queue );

            magmablas_sswap( i__1, dF(pvt, 0), lddf, dF(k, 0), lddf, queue );
            itemp     = jpvt[pvt];
            jpvt[pvt] = jpvt[k];
            jpvt[k]   = itemp;
            magma_sswap( 2, &vn1[pvt], n+offset, &vn1[k], n+offset, queue );
        }

        /* Apply previous Householder reflectors to column K:
           A(RK:M,K) := A(RK:M,K) - A(RK:M,1:K-1)*F(K,1:K-1)'.
           Optimization: multiply with beta=0; wait for vector and subtract */
        if (k > 0) {
            //#define RIGHT_UPDATE
            #ifdef RIGHT_UPDATE
                i__1 = m - offset - nb;
                i__2 = k;
                magma_sgemv( MagmaNoTrans, i__1, i__2,
                             c_neg_one, A(offset+nb, 0), lda,
                                        F(k,         0), ldf,
                             c_one,     A(offset+nb, k), ione, queue );
            #else
                i__1 = m - rk;
                i__2 = k;
                magma_sgemv( MagmaNoTrans, i__1, i__2,
                             c_neg_one, dA(rk, 0), ldda,
                                        dF(k,  0), lddf,
                             c_one,     dA(rk, k), ione, queue );
            #endif
        }
        
        /*  Generate elementary reflector H(k). */
        magma_slarfg_gpu( m-rk, dA(rk, k), dA(rk + 1, k), &tau[k], &vn1[k], &dAks[k], queue );

        /* needed to avoid the race condition */
        if (k == 0) magma_ssetvector(  1,    &c_one,        1, dA(rk, k), 1, queue );
        else        magma_scopymatrix( 1, 1, dA(offset, 0), 1, dA(rk, k), 1, queue );

        /* Compute Kth column of F:
           Compute  F(K+1:N,K) := tau(K)*A(RK:M,K+1:N)'*A(RK:M,K) on the GPU */
        if (k < n-1 || k > 0) magma_sgetvector( 1, &tau[k], 1, &tauk, 1, queue );
        if (k < n-1) {
            i__1 = m - rk;
            i__2 = n - k - 1;

            /* Multiply on GPU */
            magma_sgemv( MagmaConjTrans, m-rk, n-k-1,
                         tauk,   dA( rk,  k+1 ), ldda,
                                 dA( rk,  k   ), 1,
                         c_zero, dF( k+1, k   ), 1, queue );
        }
        
        /* Incremental updating of F:
           F(1:N,K) := F(1:N,K)                        - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)'*A(RK:M,K).
           F(1:N,K) := tau(K)*A(RK:M,K+1:N)'*A(RK:M,K) - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)'*A(RK:M,K)
                    := tau(K)(A(RK:M,K+1:N)' - F(1:N,1:K-1)*A(RK:M,1:K-1)') A(RK:M,K)
           so, F is (updated A)*V */
        if (k > 0) {
            z__1 = MAGMA_S_NEGATE( tauk );
            #ifdef RIGHT_UPDATE
                i__1 = m - offset - nb;
                i__2 = k;
                magma_sgemv( MagmaConjTrans, i__1, i__2,
                             z__1,   dA(offset+nb, 0), lda,
                                     dA(offset+nb, k), ione,
                             c_zero, dauxv, ione, queue );
                
                i__1 = k;
                magma_sgemv( MagmaNoTrans, n-k-1, i__1,
                             c_one, F(k+1,0), ldf,
                                    dauxv,     ione,
                             c_one, F(k+1,k), ione, queue );
            #else
                i__1 = m - rk;
                i__2 = k;
                magma_sgemv( MagmaConjTrans, i__1, i__2,
                             z__1,   dA(rk, 0), ldda,
                                     dA(rk, k), ione,
                             c_zero, dauxv, ione, queue );
                
                /* I think we only need stricly lower-triangular part :) */
                magma_sgemv( MagmaNoTrans, n-k-1, i__2,
                             c_one, dF(k+1,0), lddf,
                                    dauxv,     ione,
                             c_one, dF(k+1,k), ione, queue );
            #endif
        }
        
        /* Optimization: On the last iteration start sending F back to the GPU */
        
        /* Update the current row of A:
           A(RK,K+1:N) := A(RK,K+1:N) - A(RK,1:K)*F(K+1:N,1:K)'.               */
        if (k < n-1) {
            i__1 = n - k - 1;
            i__2 = k + 1;
            #ifdef RIGHT_UPDATE
                /* right-looking update of rows,                     */
                magma_sgemm( MagmaNoTrans, MagmaConjTrans, nb-k, i__1, ione,
                             c_neg_one, dA(rk,  k  ), ldda,
                                        dF(k+1, k  ), lddf,
                             c_one,     dA(rk,  k+1), ldda, queue );
            #else
                /* left-looking update of rows,                     *
                 * since F=A'v with original A, so no right-looking */
                magma_sgemm( MagmaNoTrans, MagmaConjTrans, ione, i__1, i__2,
                             c_neg_one, dA(rk, 0  ), ldda,
                                        dF(k+1,0  ), lddf,
                             c_one,     dA(rk, k+1), ldda, queue );
            #endif
        }
        
        /* Update partial column norms. */
        if (rk < min(m, n+offset)-1 ) {
            magmablas_snrm2_row_check_adjust( n-k-1, tol3z, &vn1[k+1], &vn2[k+1], 
                                               dA(rk,k+1), ldda, dlsticcs, queue );

            //magma_device_sync();
            magma_sgetvector( 1, &dlsticcs[0], 1, &lsticc, 1, queue );
        }
        
        ++k;
    }
    magma_scopymatrix( 1, k, dAks, 1, dA(offset, 0), ldda+1, queue );

    // leave k as the last column done
    --k;
    *kb = k + 1;
    rk = offset + *kb - 1;

    /* Apply the block reflector to the rest of the matrix:
       A(OFFSET+KB+1:M,KB+1:N) := A(OFFSET+KB+1:M,KB+1:N) - A(OFFSET+KB+1:M,1:KB)*F(KB+1:N,1:KB)'  */
    if (*kb < min(n, m - offset)) {
        i__1 = m - rk - 1;
        i__2 = n - *kb;
        
        magma_sgemm( MagmaNoTrans, MagmaConjTrans, i__1, i__2, *kb,
                     c_neg_one, dA(rk+1, 0  ), ldda,
                                dF(*kb,  0  ), lddf,
                     c_one,     dA(rk+1, *kb), ldda, queue );
    }
    /* Recomputation of difficult columns. */
    if ( lsticc > 0 ) {
        // printf( " -- recompute dnorms --\n" );
        magmablas_snrm2_check( m-rk-1, n-*kb, dA(rk+1,*kb), ldda,
                                &vn1[*kb], dlsticcs, queue );
        magma_scopymatrix( n-*kb, 1, &vn1[*kb], *kb, &vn2[*kb], *kb, queue );
    }
    magma_free( dAks );
    magma_free( dlsticcs );

    magma_queue_destroy( queue );

    return MAGMA_SUCCESS;
} /* magma_slaqps */
Example #9
0
/**
    Purpose
    -------
    CHEEVD computes all eigenvalues and, optionally, eigenvectors of a
    complex Hermitian matrix A.  If eigenvectors are desired, it uses a
    divide and conquer algorithm.

    The divide and conquer algorithm makes very mild assumptions about
    floating point arithmetic. It will work on machines with a guard
    digit in add/subtract, or on those binary machines without guard
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
    Cray-2. It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.

    Arguments
    ---------
    @param[in]
    jobz    magma_vec_t
      -     = MagmaNoVec:  Compute eigenvalues only;
      -     = MagmaVec:    Compute eigenvalues and eigenvectors.

    @param[in]
    uplo    magma_uplo_t
      -     = MagmaUpper:  Upper triangle of A is stored;
      -     = MagmaLower:  Lower triangle of A is stored.

    @param[in]
    n       INTEGER
            The order of the matrix A.  N >= 0.

    @param[in,out]
    A       COMPLEX array, dimension (LDA, N)
            On entry, the Hermitian matrix A.  If UPLO = MagmaUpper, the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = MagmaLower,
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.
            On exit, if JOBZ = MagmaVec, then if INFO = 0, A contains the
            orthonormal eigenvectors of the matrix A.
            If JOBZ = MagmaNoVec, then on exit the lower triangle (if UPLO=MagmaLower)
            or the upper triangle (if UPLO=MagmaUpper) of A, including the
            diagonal, is destroyed.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    @param[out]
    w       REAL array, dimension (N)
            If INFO = 0, the eigenvalues in ascending order.

    @param[out]
    work    (workspace) COMPLEX array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The length of the array WORK.
            If N <= 1,                      LWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LWORK >= N + N*NB.
            If JOBZ = MagmaVec   and N > 1, LWORK >= max( N + N*NB, 2*N + N**2 ).
            NB can be obtained through magma_get_chetrd_nb(N).
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal sizes of the WORK, RWORK and
            IWORK arrays, returns these values as the first entries of
            the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    rwork   (workspace) REAL array, dimension (LRWORK)
            On exit, if INFO = 0, RWORK[0] returns the optimal LRWORK.

    @param[in]
    lrwork  INTEGER
            The dimension of the array RWORK.
            If N <= 1,                      LRWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LRWORK >= N.
            If JOBZ = MagmaVec   and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
    \n
            If LRWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    iwork   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK.

    @param[in]
    liwork  INTEGER
            The dimension of the array IWORK.
            If N <= 1,                      LIWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1.
            If JOBZ = MagmaVec   and N > 1, LIWORK >= 3 + 5*N.
    \n
            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value
      -     > 0:  if INFO = i and JOBZ = MagmaNoVec, then the algorithm failed
                  to converge; i off-diagonal elements of an intermediate
                  tridiagonal form did not converge to zero;
                  if INFO = i and JOBZ = MagmaVec, then the algorithm failed
                  to compute an eigenvalue while working on the submatrix
                  lying in rows and columns INFO/(N+1) through
                  mod(INFO,N+1).

    Further Details
    ---------------
    Based on contributions by
       Jeff Rutter, Computer Science Division, University of California
       at Berkeley, USA

    Modified description of INFO. Sven, 16 Feb 05.

    @ingroup magma_cheev_driver
    ********************************************************************/
extern "C" magma_int_t
magma_cheevd(
    magma_vec_t jobz, magma_uplo_t uplo,
    magma_int_t n,
    magmaFloatComplex *A, magma_int_t lda,
    float *w,
    magmaFloatComplex *work, magma_int_t lwork,
    #ifdef COMPLEX
    float *rwork, magma_int_t lrwork,
    #endif
    magma_int_t *iwork, magma_int_t liwork,
    magma_int_t *info)
{
    const char* uplo_ = lapack_uplo_const( uplo );
    const char* jobz_ = lapack_vec_const( jobz );
    magma_int_t ione = 1;
    magma_int_t izero = 0;
    float d_one = 1.;

    float d__1;

    float eps;
    magma_int_t inde;
    float anrm;
    magma_int_t imax;
    float rmin, rmax;
    float sigma;
    magma_int_t iinfo, lwmin;
    magma_int_t lower;
    magma_int_t llrwk;
    magma_int_t wantz;
    magma_int_t indwk2, llwrk2;
    magma_int_t iscale;
    float safmin;
    float bignum;
    magma_int_t indtau;
    magma_int_t indrwk, indwrk, liwmin;
    magma_int_t lrwmin, llwork;
    float smlnum;
    magma_int_t lquery;

    float* dwork;

    wantz = (jobz == MagmaVec);
    lower = (uplo == MagmaLower);
    lquery = (lwork == -1 || lrwork == -1 || liwork == -1);

    *info = 0;

    if (! (wantz || (jobz == MagmaNoVec))) {
        *info = -1;
    } else if (! (lower || (uplo == MagmaUpper))) {
        *info = -2;
    } else if (n < 0) {
        *info = -3;
    } else if (lda < max(1,n)) {
        *info = -5;
    }

    magma_int_t nb = magma_get_chetrd_nb( n );
    if ( n <= 1 ) {
        lwmin  = 1;
        lrwmin = 1;
        liwmin = 1;
    }
    else if ( wantz ) {
        lwmin  = max( n + n*nb, 2*n + n*n );
        lrwmin = 1 + 5*n + 2*n*n;
        liwmin = 3 + 5*n;
    }
    else {
        lwmin  = n + n*nb;
        lrwmin = n;
        liwmin = 1;
    }
    
    // multiply by 1+eps (in Double!) to ensure length gets rounded up,
    // if it cannot be exactly represented in floating point.
    real_Double_t one_eps = 1. + lapackf77_slamch("Epsilon");
    work[0]  = MAGMA_C_MAKE( lwmin * one_eps, 0 );
    rwork[0] = lrwmin * one_eps;
    iwork[0] = liwmin;

    if ((lwork < lwmin) && !lquery) {
        *info = -8;
    } else if ((lrwork < lrwmin) && ! lquery) {
        *info = -10;
    } else if ((liwork < liwmin) && ! lquery) {
        *info = -12;
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /* Quick return if possible */
    if (n == 0) {
        return *info;
    }

    if (n == 1) {
        w[0] = MAGMA_C_REAL( A[0] );
        if (wantz) {
            A[0] = MAGMA_C_ONE;
        }
        return *info;
    }

    /* If matrix is very small, then just call LAPACK on CPU, no need for GPU */
    if (n <= 128) {
        lapackf77_cheevd( jobz_, uplo_,
                          &n, A, &lda,
                          w, work, &lwork,
                          #ifdef COMPLEX
                          rwork, &lrwork,
                          #endif
                          iwork, &liwork, info );
        return *info;
    }

    /* Get machine constants. */
    safmin = lapackf77_slamch("Safe minimum");
    eps    = lapackf77_slamch("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = magma_ssqrt( smlnum );
    rmax = magma_ssqrt( bignum );

    /* Scale matrix to allowable range, if necessary. */
    anrm = lapackf77_clanhe( "M", uplo_, &n, A, &lda, rwork );
    iscale = 0;
    if (anrm > 0. && anrm < rmin) {
        iscale = 1;
        sigma = rmin / anrm;
    } else if (anrm > rmax) {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1) {
        lapackf77_clascl( uplo_, &izero, &izero, &d_one, &sigma, &n, &n, A, &lda, info );
    }

    /* Call CHETRD to reduce Hermitian matrix to tridiagonal form. */
    // chetrd rwork: e (n)
    // cstedx rwork: e (n) + llrwk (1 + 4*N + 2*N**2)  ==>  1 + 5n + 2n^2
    inde   = 0;
    indrwk = inde + n;
    llrwk  = lrwork - indrwk;

    // chetrd work: tau (n) + llwork (n*nb)  ==>  n + n*nb
    // cstedx work: tau (n) + z (n^2)
    // cunmtr work: tau (n) + z (n^2) + llwrk2 (n or n*nb)  ==>  2n + n^2, or n + n*nb + n^2
    indtau = 0;
    indwrk = indtau + n;
    indwk2 = indwrk + n*n;
    llwork = lwork - indwrk;
    llwrk2 = lwork - indwk2;

    magma_timer_t time=0;
    timer_start( time );

    magma_chetrd( uplo, n, A, lda, w, &rwork[inde],
                  &work[indtau], &work[indwrk], llwork, &iinfo );

    timer_stop( time );
    timer_printf( "time chetrd = %6.2f\n", time );

    /* For eigenvalues only, call SSTERF.  For eigenvectors, first call
     * CSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
     * tridiagonal matrix, then call CUNMTR to multiply it to the Householder
     * transformations represented as Householder vectors in A. */
    if (! wantz) {
        lapackf77_ssterf( &n, w, &rwork[inde], info );
    }
    else {
        timer_start( time );

        if (MAGMA_SUCCESS != magma_smalloc( &dwork, 3*n*(n/2 + 1) )) {
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }

        magma_cstedx( MagmaRangeAll, n, 0., 0., 0, 0, w, &rwork[inde],
                      &work[indwrk], n, &rwork[indrwk], llrwk,
                      iwork, liwork, dwork, info );

        magma_free( dwork );

        timer_stop( time );
        timer_printf( "time cstedx = %6.2f\n", time );
        timer_start( time );

        magma_cunmtr( MagmaLeft, uplo, MagmaNoTrans, n, n, A, lda, &work[indtau],
                      &work[indwrk], n, &work[indwk2], llwrk2, &iinfo );

        lapackf77_clacpy( "A", &n, &n, &work[indwrk], &n, A, &lda );

        timer_stop( time );
        timer_printf( "time cunmtr + copy = %6.2f\n", time );
    }

    /* If matrix was scaled, then rescale eigenvalues appropriately. */
    if (iscale == 1) {
        if (*info == 0) {
            imax = n;
        } else {
            imax = *info - 1;
        }
        d__1 = 1. / sigma;
        blasf77_sscal( &imax, &d__1, w, &ione );
    }

    work[0]  = MAGMA_C_MAKE( lwmin * one_eps, 0 );  // round up
    rwork[0] = lrwmin * one_eps;
    iwork[0] = liwmin;

    return *info;
} /* magma_cheevd */
Example #10
0
extern "C" magma_int_t
magma_cheevd(magma_vec_t jobz, magma_uplo_t uplo,
             magma_int_t n,
             magmaFloatComplex *a, magma_int_t lda,
             float *w,
             magmaFloatComplex *work, magma_int_t lwork,
             float *rwork, magma_int_t lrwork,
             magma_int_t *iwork, magma_int_t liwork,
             magma_int_t *info, magma_queue_t queue)
{
/*  -- clMAGMA (version 1.1.0) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       @date January 2014

    Purpose
    =======
    CHEEVD computes all eigenvalues and, optionally, eigenvectors of a
    complex Hermitian matrix A.  If eigenvectors are desired, it uses a
    divide and conquer algorithm.

    The divide and conquer algorithm makes very mild assumptions about
    floating point arithmetic. It will work on machines with a guard
    digit in add/subtract, or on those binary machines without guard
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
    Cray-2. It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.

    Arguments
    =========
    JOBZ    (input) CHARACTER*1
            = 'N':  Compute eigenvalues only;
            = 'V':  Compute eigenvalues and eigenvectors.

    UPLO    (input) CHARACTER*1
            = 'U':  Upper triangle of A is stored;
            = 'L':  Lower triangle of A is stored.

    N       (input) INTEGER
            The order of the matrix A.  N >= 0.

    A       (input/output) COMPLEX array, dimension (LDA, N)
            On entry, the Hermitian matrix A.  If UPLO = 'U', the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = 'L',
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.
            On exit, if JOBZ = 'V', then if INFO = 0, A contains the
            orthonormal eigenvectors of the matrix A.
            If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
            or the upper triangle (if UPLO='U') of A, including the
            diagonal, is destroyed.

    LDA     (input) INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    W       (output) REAL array, dimension (N)
            If INFO = 0, the eigenvalues in ascending order.

    WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    LWORK   (input) INTEGER
            The length of the array WORK.
            If N <= 1,                LWORK must be at least 1.
            If JOBZ  = 'N' and N > 1, LWORK must be at least N + N*NB.
            If JOBZ  = 'V' and N > 1, LWORK must be at least 2*N + N**2.
            NB can be obtained through magma_get_chetrd_nb(N).

            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal sizes of the WORK, RWORK and
            IWORK arrays, returns these values as the first entries of
            the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    RWORK   (workspace/output) REAL array, dimension (LRWORK)
            On exit, if INFO = 0, RWORK[0] returns the optimal LRWORK.

    LRWORK  (input) INTEGER
            The dimension of the array RWORK.
            If N <= 1,                LRWORK must be at least 1.
            If JOBZ  = 'N' and N > 1, LRWORK must be at least N.
            If JOBZ  = 'V' and N > 1, LRWORK must be at least 1 + 5*N + 2*N**2.

            If LRWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK.

    LIWORK  (input) INTEGER
            The dimension of the array IWORK.
            If N <= 1,                LIWORK must be at least 1.
            If JOBZ  = 'N' and N > 1, LIWORK must be at least 1.
            If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.

            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    INFO    (output) INTEGER
            = 0:  successful exit
            < 0:  if INFO = -i, the i-th argument had an illegal value
            > 0:  if INFO = i and JOBZ = 'N', then the algorithm failed
                  to converge; i off-diagonal elements of an intermediate
                  tridiagonal form did not converge to zero;
                  if INFO = i and JOBZ = 'V', then the algorithm failed
                  to compute an eigenvalue while working on the submatrix
                  lying in rows and columns INFO/(N+1) through
                  mod(INFO,N+1).

    Further Details
    ===============
    Based on contributions by
       Jeff Rutter, Computer Science Division, University of California
       at Berkeley, USA

    Modified description of INFO. Sven, 16 Feb 05.
    =====================================================================   */

    magma_uplo_t uplo_ = uplo;
    magma_vec_t jobz_ = jobz;
    magma_int_t ione = 1;
    magma_int_t izero = 0;
    float d_one = 1.;
    
    float d__1;
    
    float eps;
    magma_int_t inde;
    float anrm;
    magma_int_t imax;
    float rmin, rmax;
    float sigma;
    magma_int_t iinfo, lwmin;
    magma_int_t lower;
    magma_int_t llrwk;
    magma_int_t wantz;
    magma_int_t indwk2, llwrk2;
    magma_int_t iscale;
    float safmin;
    float bignum;
    magma_int_t indtau;
    magma_int_t indrwk, indwrk, liwmin;
    magma_int_t lrwmin, llwork;
    float smlnum;
    magma_int_t lquery;
    
    magmaFloat_ptr dwork;
    
    wantz = lapackf77_lsame(lapack_const(jobz_), MagmaVecStr);
    lower = lapackf77_lsame(lapack_const(uplo_), MagmaLowerStr);
    lquery = lwork == -1 || lrwork == -1 || liwork == -1;
    
    *info = 0;
    if (! (wantz || lapackf77_lsame(lapack_const(jobz_), MagmaNoVecStr))) {
        *info = -1;
    } else if (! (lower || lapackf77_lsame(lapack_const(uplo_), MagmaUpperStr))) {
        *info = -2;
    } else if (n < 0) {
        *info = -3;
    } else if (lda < max(1,n)) {
        *info = -5;
    }
    
    magma_int_t nb = magma_get_chetrd_nb( n );
    if ( n <= 1 ) {
        lwmin  = 1;
        lrwmin = 1;
        liwmin = 1;
    }
    else if ( wantz ) {
        lwmin  = 2*n + n*n;
        lrwmin = 1 + 5*n + 2*n*n;
        liwmin = 3 + 5*n;
    }
    else {
        lwmin  = n + n*nb;
        lrwmin = n;
        liwmin = 1;
    }
    // multiply by 1+eps to ensure length gets rounded up,
    // if it cannot be exactly represented in floating point.
    work[0]  = MAGMA_C_MAKE( lwmin * (1. + lapackf77_slamch("Epsilon")), 0.);
    rwork[0] = lrwmin * (1. + lapackf77_slamch("Epsilon"));
    iwork[0] = liwmin;
    
    if ((lwork < lwmin) && !lquery) {
        *info = -8;
    } else if ((lrwork < lrwmin) && ! lquery) {
        *info = -10;
    } else if ((liwork < liwmin) && ! lquery) {
        *info = -12;
    }
    
    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }
    
    /* Quick return if possible */
    if (n == 0) {
        return *info;
    }
    
    if (n == 1) {
        w[0] = MAGMA_C_REAL(a[0]);
        if (wantz) {
            a[0] = MAGMA_C_ONE;
        }
        return *info;
    }
    
    /* Get machine constants. */
    safmin = lapackf77_slamch("Safe minimum");
    eps    = lapackf77_slamch("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = magma_ssqrt(smlnum);
    rmax = magma_ssqrt(bignum);
    
    /* Scale matrix to allowable range, if necessary. */
    anrm = lapackf77_clanhe("M", lapack_const(uplo_), &n, a, &lda, rwork);
    iscale = 0;
    if (anrm > 0. && anrm < rmin) {
        iscale = 1;
        sigma = rmin / anrm;
    } else if (anrm > rmax) {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1) {
        lapackf77_clascl(lapack_const(uplo_), &izero, &izero, &d_one, &sigma, &n, &n, a,
                         &lda, info);
    }
    
    /* Call CHETRD to reduce Hermitian matrix to tridiagonal form. */
    // chetrd rwork: e (n)
    // cstedx rwork: e (n) + llrwk (1 + 4*N + 2*N**2)  ==>  1 + 5n + 2n^2
    inde   = 0;
    indrwk = inde + n;
    llrwk  = lrwork - indrwk;
    
    // chetrd work: tau (n) + llwork (n*nb)  ==>  n + n*nb
    // cstedx work: tau (n) + z (n^2)
    // cunmtr work: tau (n) + z (n^2) + llwrk2 (n or n*nb)  ==>  2n + n^2, or n + n*nb + n^2
    indtau = 0;
    indwrk = indtau + n;
    indwk2 = indwrk + n*n;
    llwork = lwork - indwrk;
    llwrk2 = lwork - indwk2;
    
//#define ENABLE_TIMER
#ifdef ENABLE_TIMER
    magma_timestr_t start, end;
    start = get_current_time();
#endif
    
    magma_chetrd(lapack_const(uplo)[0], n, a, lda, w, &rwork[inde],
                 &work[indtau], &work[indwrk], llwork, &iinfo, queue);
    
#ifdef ENABLE_TIMER
    end = get_current_time();
    printf("time chetrd = %6.2f\n", GetTimerValue(start,end)/1000.);
#endif
    
    /* For eigenvalues only, call SSTERF.  For eigenvectors, first call
     CSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
     tridiagonal matrix, then call CUNMTR to multiply it to the Householder
     transformations represented as Householder vectors in A. */
    if (! wantz) {
        lapackf77_ssterf(&n, w, &rwork[inde], info);
    } else {
        
#ifdef ENABLE_TIMER
        start = get_current_time();
#endif
        
        if (MAGMA_SUCCESS != magma_smalloc( &dwork, (3*n*(n/2 + 1) ) )) {
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }
        
        magma_cstedx(MagmaAllVec, n, 0., 0., 0, 0, w, &rwork[inde],
                     &work[indwrk], n, &rwork[indrwk],
                     llrwk, iwork, liwork, dwork, info, queue);
        
        magma_free( dwork );
        
#ifdef ENABLE_TIMER
        end = get_current_time();
        printf("time cstedx = %6.2f\n", GetTimerValue(start,end)/1000.);
        
        start = get_current_time();
#endif
        
        magma_cunmtr(MagmaLeft, uplo, MagmaNoTrans, n, n, a, lda, &work[indtau],
                     &work[indwrk], n, &work[indwk2], llwrk2, &iinfo, queue);
        
        lapackf77_clacpy("A", &n, &n, &work[indwrk], &n, a, &lda);
        
#ifdef ENABLE_TIMER
        end = get_current_time();
        printf("time cunmtr + copy = %6.2f\n", GetTimerValue(start,end)/1000.);
#endif
    }
    
    /* If matrix was scaled, then rescale eigenvalues appropriately. */
    if (iscale == 1) {
        if (*info == 0) {
            imax = n;
        } else {
            imax = *info - 1;
        }
        d__1 = 1. / sigma;
        blasf77_sscal(&imax, &d__1, w, &ione);
    }
    
    work[0]  = MAGMA_C_MAKE( lwmin * (1. + lapackf77_slamch("Epsilon")), 0.);  // round up
    rwork[0] = lrwmin * (1. + lapackf77_slamch("Epsilon"));
    iwork[0] = liwmin;
    
    return *info;
} /* magma_cheevd */
Example #11
0
/* ////////////////////////////////////////////////////////////////////////////
   -- Testing cunmqr_gpu
*/
int main( int argc, char** argv )
{
    TESTING_INIT();
    
    real_Double_t   gflops, gpu_perf, gpu_time, cpu_perf, cpu_time;
    float Cnorm, error, work[1];
    magmaFloatComplex c_neg_one = MAGMA_C_NEG_ONE;
    magma_int_t ione = 1;
    magma_int_t mm, m, n, k, size, info;
    magma_int_t ISEED[4] = {0,0,0,1};
    magma_int_t nb, ldc, lda, lwork, lwork_max, dt_size;
    magmaFloatComplex *C, *R, *A, *hwork, *tau;
    magmaFloatComplex_ptr dC, dA, dT;
    magma_int_t status = 0;
    
    magma_opts opts;
    opts.parse_opts( argc, argv );
    
    // need slightly looser bound (60*eps instead of 30*eps) for some tests
    opts.tolerance = max( 60., opts.tolerance );
    float tol = opts.tolerance * lapackf77_slamch("E");
    
    // test all combinations of input parameters
    magma_side_t  side [] = { MagmaLeft,       MagmaRight   };
    magma_trans_t trans[] = { Magma_ConjTrans, MagmaNoTrans };

    printf("%%   M     N     K   side   trans   CPU Gflop/s (sec)   GPU Gflop/s (sec)   ||R||_F / ||QC||_F\n");
    printf("%%==============================================================================================\n");
    for( int itest = 0; itest < opts.ntest; ++itest ) {
      for( int iside = 0; iside < 2; ++iside ) {
      for( int itran = 0; itran < 2; ++itran ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {
            m = opts.msize[itest];
            n = opts.nsize[itest];
            k = opts.ksize[itest];
            ldc = magma_roundup( m, opts.align );  // multiple of 32 by default
            // A is m x k (left) or n x k (right)
            mm = (side[iside] == MagmaLeft ? m : n);
            nb  = magma_get_cgeqrf_nb( mm, k );
            lda = magma_roundup( mm, opts.align );  // multiple of 32 by default
            gflops = FLOPS_CUNMQR( m, n, k, side[iside] ) / 1e9;
            
            if ( side[iside] == MagmaLeft && m < k ) {
                printf( "%5d %5d %5d   %4c   %5c   skipping because side=left  and m < k\n",
                        (int) m, (int) n, (int) k,
                        lapacke_side_const( side[iside] ),
                        lapacke_trans_const( trans[itran] ) );
                continue;
            }
            if ( side[iside] == MagmaRight && n < k ) {
                printf( "%5d %5d %5d   %4c   %5c   skipping because side=right and n < k\n",
                        (int) m, (int) n, (int) k,
                        lapacke_side_const( side[iside] ),
                        lapacke_trans_const( trans[itran] ) );
                continue;
            }
            
            if ( side[iside] == MagmaLeft ) {
                // side = left
                lwork_max = (m - k + nb)*(n + nb) + n*nb;
                dt_size = ( 2*min(m,k) + magma_roundup( max(m,n), 32) )*nb;
            }
            else {
                // side = right
                lwork_max = (n - k + nb)*(m + nb) + m*nb;
                dt_size = ( 2*min(n,k) + magma_roundup( max(m,n), 32 ) )*nb;
            }
            // this rounds it up slightly if needed to agree with lwork query below
            lwork_max = int( real( magma_cmake_lwork( lwork_max )));
            
            TESTING_MALLOC_CPU( C,     magmaFloatComplex, ldc*n );
            TESTING_MALLOC_CPU( R,     magmaFloatComplex, ldc*n );
            TESTING_MALLOC_CPU( A,     magmaFloatComplex, lda*k );
            TESTING_MALLOC_CPU( hwork, magmaFloatComplex, lwork_max );
            TESTING_MALLOC_CPU( tau,   magmaFloatComplex, k );
            
            TESTING_MALLOC_DEV( dC, magmaFloatComplex, ldc*n );
            TESTING_MALLOC_DEV( dA, magmaFloatComplex, lda*k );
            TESTING_MALLOC_DEV( dT, magmaFloatComplex, dt_size );
            
            // C is full, m x n
            size = ldc*n;
            lapackf77_clarnv( &ione, ISEED, &size, C );
            magma_csetmatrix( m, n, C, ldc, dC, ldc );
            
            // A is m x k (left) or n x k (right)
            size = lda*k;
            lapackf77_clarnv( &ione, ISEED, &size, A );
            
            // compute QR factorization to get Householder vectors in dA, tau, dT
            magma_csetmatrix( mm, k, A,  lda, dA, lda );
            magma_cgeqrf_gpu( mm, k, dA, lda, tau, dT, &info );
            magma_cgetmatrix( mm, k, dA, lda, A,  lda );
            if (info != 0) {
                printf("magma_cgeqrf_gpu returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            }
            
            /* =====================================================================
               Performs operation using LAPACK
               =================================================================== */
            cpu_time = magma_wtime();
            lapackf77_cunmqr( lapack_side_const( side[iside] ), lapack_trans_const( trans[itran] ),
                              &m, &n, &k,
                              A, &lda, tau, C, &ldc, hwork, &lwork_max, &info );
            cpu_time = magma_wtime() - cpu_time;
            cpu_perf = gflops / cpu_time;
            if (info != 0) {
                printf("lapackf77_cunmqr returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            }
            
            /* ====================================================================
               Performs operation using MAGMA
               =================================================================== */
            // query for workspace size
            lwork = -1;
            magma_cunmqr_gpu( side[iside], trans[itran],
                              m, n, k,
                              dA, lda, tau, dC, ldc, hwork, lwork, dT, nb, &info );
            if (info != 0) {
                printf("magma_cunmqr_gpu (lwork query) returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            }
            lwork = (magma_int_t) MAGMA_C_REAL( hwork[0] );
            if ( lwork < 0 || lwork > lwork_max  ) {
                printf("Warning: optimal lwork %d > allocated lwork_max %d\n", (int) lwork, (int) lwork_max );
                lwork = lwork_max;
            }
            
            // cunmqr2 takes a copy of dA in CPU memory
            if ( opts.version == 2 ) {
                magma_cgetmatrix( mm, k, dA, lda, A, lda );
            }
            
            magmablasSetKernelStream( opts.queue );
            gpu_time = magma_sync_wtime( opts.queue );  // sync needed for L,N and R,T cases
            if ( opts.version == 1 ) {
                magma_cunmqr_gpu( side[iside], trans[itran],
                                  m, n, k,
                                  dA, lda, tau, dC, ldc, hwork, lwork, dT, nb, &info );
            }
            else if ( opts.version == 2 ) {
                magma_cunmqr2_gpu( side[iside], trans[itran],
                                   m, n, k,
                                   dA, lda, tau, dC, ldc, A, lda, &info );
            }
            gpu_time = magma_sync_wtime( opts.queue ) - gpu_time;
            gpu_perf = gflops / gpu_time;
            if (info != 0) {
                printf("magma_cunmqr_gpu returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            }
            
            magma_cgetmatrix( m, n, dC, ldc, R, ldc );
            
            /* =====================================================================
               compute relative error |QC_magma - QC_lapack| / |QC_lapack|
               =================================================================== */
            size = ldc*n;
            blasf77_caxpy( &size, &c_neg_one, C, &ione, R, &ione );
            Cnorm = lapackf77_clange( "Fro", &m, &n, C, &ldc, work );
            error = lapackf77_clange( "Fro", &m, &n, R, &ldc, work ) / (magma_ssqrt(m*n) * Cnorm);
            
            printf( "%5d %5d %5d   %4c   %5c   %7.2f (%7.2f)   %7.2f (%7.2f)   %8.2e   %s\n",
                    (int) m, (int) n, (int) k,
                    lapacke_side_const( side[iside] ),
                    lapacke_trans_const( trans[itran] ),
                    cpu_perf, cpu_time, gpu_perf, gpu_time,
                    error, (error < tol ? "ok" : "failed") );
            status += ! (error < tol);
            
            TESTING_FREE_CPU( C );
            TESTING_FREE_CPU( R );
            TESTING_FREE_CPU( A );
            TESTING_FREE_CPU( hwork );
            TESTING_FREE_CPU( tau );
            
            TESTING_FREE_DEV( dC );
            TESTING_FREE_DEV( dA );
            TESTING_FREE_DEV( dT );
            fflush( stdout );
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
      }}  // end iside, itran
      printf( "\n" );
    }
    
    opts.cleanup();
    TESTING_FINALIZE();
    return status;
}
Example #12
0
extern "C" magma_int_t
magma_slaqps(magma_int_t m, magma_int_t n, magma_int_t offset,
             magma_int_t nb, magma_int_t *kb,
             float *A,  magma_int_t lda,
             float *dA, magma_int_t ldda,
             magma_int_t *jpvt, float *tau, float *vn1, float *vn2,
             float *auxv,
             float *F,  magma_int_t ldf,
             float *dF, magma_int_t lddf)
{
/*  -- MAGMA (version 1.4.0) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       August 2013

    Purpose
    =======
    SLAQPS computes a step of QR factorization with column pivoting
    of a real M-by-N matrix A by using Blas-3.  It tries to factorize
    NB columns from A starting from the row OFFSET+1, and updates all
    of the matrix with Blas-3 xGEMM.

    In some cases, due to catastrophic cancellations, it cannot
    factorize NB columns.  Hence, the actual number of factorized
    columns is returned in KB.

    Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.

    Arguments
    =========
    M       (input) INTEGER
            The number of rows of the matrix A. M >= 0.

    N       (input) INTEGER
            The number of columns of the matrix A. N >= 0

    OFFSET  (input) INTEGER
            The number of rows of A that have been factorized in
            previous steps.

    NB      (input) INTEGER
            The number of columns to factorize.

    KB      (output) INTEGER
            The number of columns actually factorized.

    A       (input/output) REAL array, dimension (LDA,N)
            On entry, the M-by-N matrix A.
            On exit, block A(OFFSET+1:M,1:KB) is the triangular
            factor obtained and block A(1:OFFSET,1:N) has been
            accordingly pivoted, but no factorized.
            The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has
            been updated.

    LDA     (input) INTEGER
            The leading dimension of the array A. LDA >= max(1,M).

    JPVT    (input/output) INTEGER array, dimension (N)
            JPVT(I) = K <==> Column K of the full matrix A has been
            permuted into position I in AP.

    TAU     (output) REAL array, dimension (KB)
            The scalar factors of the elementary reflectors.

    VN1     (input/output) DOUBLE PRECISION array, dimension (N)
            The vector with the partial column norms.

    VN2     (input/output) DOUBLE PRECISION array, dimension (N)
            The vector with the exact column norms.

    AUXV    (input/output) REAL array, dimension (NB)
            Auxiliar vector.

    F       (input/output) REAL array, dimension (LDF,NB)
            Matrix F' = L*Y'*A.

    LDF     (input) INTEGER
            The leading dimension of the array F. LDF >= max(1,N).

    =====================================================================    */
    
#define  A(i, j) (A  + (i) + (j)*(lda ))
#define dA(i, j) (dA + (i) + (j)*(ldda))
#define  F(i, j) (F  + (i) + (j)*(ldf ))
#define dF(i, j) (dF + (i) + (j)*(lddf))

    float c_zero    = MAGMA_S_MAKE( 0.,0.);
    float c_one     = MAGMA_S_MAKE( 1.,0.);
    float c_neg_one = MAGMA_S_MAKE(-1.,0.);
    magma_int_t ione = 1;
    
    magma_int_t i__1, i__2;
    float d__1;
    float z__1;
    
    magma_int_t j, k, rk;
    float Akk;
    magma_int_t pvt;
    float temp, temp2, tol3z;
    magma_int_t itemp;

    magma_int_t lsticc;
    magma_int_t lastrk;

    lastrk = min( m, n + offset );
    tol3z = magma_ssqrt( lapackf77_slamch("Epsilon"));

    magma_queue_t stream;
    magma_queue_create( &stream );

    lsticc = 0;
    k = 0;
    while( k < nb && lsticc == 0 ) {
        rk = offset + k;
        
        /* Determine ith pivot column and swap if necessary */
        // Fortran: pvt, k, isamax are all 1-based; subtract 1 from k.
        // C:       pvt, k, isamax are all 0-based; don't subtract 1.
        pvt = k + cblas_isamax( n-k, &vn1[k], ione );
        
        if (pvt != k) {

            if (pvt >= nb) {
                /* 1. Start copy from GPU                           */
                magma_sgetmatrix_async( m - offset - nb, 1,
                                        dA(offset + nb, pvt), ldda,
                                        A (offset + nb, pvt), lda, stream );
            }

            /* F gets swapped so F must be sent at the end to GPU   */
            i__1 = k;
            blasf77_sswap( &i__1, F(pvt,0), &ldf, F(k,0), &ldf );
            itemp     = jpvt[pvt];
            jpvt[pvt] = jpvt[k];
            jpvt[k]   = itemp;
            vn1[pvt] = vn1[k];
            vn2[pvt] = vn2[k];

            if (pvt < nb){
                /* no need of transfer if pivot is within the panel */
                blasf77_sswap( &m, A(0, pvt), &ione, A(0, k), &ione );
            }
            else {
                /* 1. Finish copy from GPU                          */
                magma_queue_sync( stream );

                /* 2. Swap as usual on CPU                          */
                blasf77_sswap(&m, A(0, pvt), &ione, A(0, k), &ione);

                /* 3. Restore the GPU                               */
                magma_ssetmatrix_async( m - offset - nb, 1,
                                        A (offset + nb, pvt), lda,
                                        dA(offset + nb, pvt), ldda, stream);
            }
        }

        /* Apply previous Householder reflectors to column K:
           A(RK:M,K) := A(RK:M,K) - A(RK:M,1:K-1)*F(K,1:K-1)'.
           Optimization: multiply with beta=0; wait for vector and subtract */
        if (k > 0) {
            #if defined(PRECISION_c) || defined(PRECISION_z)
            for (j = 0; j < k; ++j){
                *F(k,j) = MAGMA_S_CNJG( *F(k,j) );
            }
            #endif

            i__1 = m - rk;
            i__2 = k;
            blasf77_sgemv( MagmaNoTransStr, &i__1, &i__2,
                           &c_neg_one, A(rk, 0), &lda,
                                       F(k,  0), &ldf,
                           &c_one,     A(rk, k), &ione );

            #if defined(PRECISION_c) || defined(PRECISION_z)
            for (j = 0; j < k; ++j) {
                *F(k,j) = MAGMA_S_CNJG( *F(k,j) );
            }
            #endif
        }
        
        /*  Generate elementary reflector H(k). */
        if (rk < m-1) {
            i__1 = m - rk;
            lapackf77_slarfg( &i__1, A(rk, k), A(rk + 1, k), &ione, &tau[k] );
        } else {
            lapackf77_slarfg( &ione, A(rk, k), A(rk, k), &ione, &tau[k] );
        }
        
        Akk = *A(rk, k);
        *A(rk, k) = c_one;

        /* Compute Kth column of F:
           Compute  F(K+1:N,K) := tau(K)*A(RK:M,K+1:N)'*A(RK:M,K) on the GPU */
        if (k < n-1) {
            i__1 = m - rk;
            i__2 = n - k - 1;
        
            /* Send the vector to the GPU */
            magma_ssetmatrix( i__1, 1, A(rk, k), lda, dA(rk,k), ldda );
        
            /* Multiply on GPU */
            // was CALL SGEMV( 'Conjugate transpose', M-RK+1, N-K,
            //                 TAU( K ), A( RK,  K+1 ), LDA,
            //                           A( RK,  K   ), 1,
            //                 CZERO,    F( K+1, K   ), 1 )
            magma_int_t i__3 = nb-k-1;
            magma_int_t i__4 = i__2 - i__3;
            magma_int_t i__5 = nb-k;
            magma_sgemv( MagmaTrans, i__1 - i__5, i__2 - i__3,
                         tau[k], dA(rk +i__5, k+1+i__3), ldda,
                                 dA(rk +i__5, k       ), ione,
                         c_zero, dF(k+1+i__3, k       ), ione );
            
            magma_sgetmatrix_async( i__2-i__3, 1,
                                    dF(k + 1 +i__3, k), i__2,
                                    F (k + 1 +i__3, k), i__2, stream );
            
            blasf77_sgemv( MagmaTransStr, &i__1, &i__3,
                           &tau[k], A(rk,  k+1), &lda,
                                    A(rk,  k  ), &ione,
                           &c_zero, F(k+1, k  ), &ione );
            
            magma_queue_sync( stream );
            blasf77_sgemv( MagmaTransStr, &i__5, &i__4,
                           &tau[k], A(rk, k+1+i__3), &lda,
                                    A(rk, k       ), &ione,
                           &c_one,  F(k+1+i__3, k ), &ione );
        }
        
        /* Padding F(1:K,K) with zeros. */
        for (j = 0; j < k; ++j) {
            *F(j, k) = c_zero;
        }
        
        /* Incremental updating of F:
           F(1:N,K) := F(1:N,K) - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)'*A(RK:M,K). */
        if (k > 0) {
            i__1 = m - rk;
            i__2 = k;
            z__1 = MAGMA_S_NEGATE( tau[k] );
            blasf77_sgemv( MagmaTransStr, &i__1, &i__2,
                           &z__1,   A(rk, 0), &lda,
                                    A(rk, k), &ione,
                           &c_zero, auxv, &ione );
            
            i__1 = k;
            blasf77_sgemv( MagmaNoTransStr, &n, &i__1,
                           &c_one, F(0,0), &ldf,
                                   auxv,   &ione,
                           &c_one, F(0,k), &ione );
        }
        
        /* Optimization: On the last iteration start sending F back to the GPU */
        
        /* Update the current row of A:
           A(RK,K+1:N) := A(RK,K+1:N) - A(RK,1:K)*F(K+1:N,1:K)'.               */
        if (k < n-1) {
            i__1 = n - k - 1;
            i__2 = k + 1;
            blasf77_sgemm( MagmaNoTransStr, MagmaTransStr, &ione, &i__1, &i__2,
                           &c_neg_one, A(rk, 0  ), &lda,
                                       F(k+1,0  ), &ldf,
                           &c_one,     A(rk, k+1), &lda );
        }
        
        /* Update partial column norms. */
        if (rk < lastrk) {
            for (j = k + 1; j < n; ++j) {
                if (vn1[j] != 0.) {
                    /* NOTE: The following 4 lines follow from the analysis in
                       Lapack Working Note 176. */
                    temp = MAGMA_S_ABS( *A(rk,j) ) / vn1[j];
                    temp = max( 0., ((1. + temp) * (1. - temp)) );
        
                    d__1 = vn1[j] / vn2[j];
                    temp2 = temp * (d__1 * d__1);
        
                    if (temp2 <= tol3z) {
                        vn2[j] = (float) lsticc;
                        lsticc = j;
                    } else {
                        vn1[j] *= magma_ssqrt(temp);
                    }
                }
            }
        }
        
        *A(rk, k) = Akk;
        
        ++k;
    }
    // leave k as the last column done
    --k;
    *kb = k + 1;
    rk = offset + *kb - 1;

    /* Apply the block reflector to the rest of the matrix:
       A(OFFSET+KB+1:M,KB+1:N) := A(OFFSET+KB+1:M,KB+1:N) - A(OFFSET+KB+1:M,1:KB)*F(KB+1:N,1:KB)'  */
    if (*kb < min(n, m - offset)) {
        i__1 = m - rk - 1;
        i__2 = n - *kb;
        
        /* Send F to the GPU */
        magma_ssetmatrix( i__2, *kb,
                          F (*kb, 0), ldf,
                          dF(*kb, 0), i__2 );

        magma_sgemm( MagmaNoTrans, MagmaTrans, i__1, i__2, *kb,
                     c_neg_one, dA(rk+1, 0  ), ldda,
                                dF(*kb,  0  ), i__2,
                     c_one,     dA(rk+1, *kb), ldda );
    }
    
    /* Recomputation of difficult columns. */
    while( lsticc > 0 ) {
        itemp = (magma_int_t)(vn2[lsticc] >= 0. ? floor(vn2[lsticc] + .5) : -floor(.5 - vn2[lsticc]));
        i__1 = m - rk - 1;
        if (lsticc <= nb)
            vn1[lsticc] = cblas_snrm2(i__1, A(rk + 1, lsticc), ione);
        else {
            /* Where is the data, CPU or GPU ? */
            float r1, r2;
            
            r1 = cblas_snrm2(nb-k, A(rk + 1, lsticc), ione);
            r2 = magma_snrm2(m-offset-nb, dA(offset + nb + 1, lsticc), ione);
            
            //vn1[lsticc] = magma_snrm2(i__1, dA(rk + 1, lsticc), ione);
            vn1[lsticc] = magma_ssqrt(r1*r1+r2*r2);
        }
        
        /* NOTE: The computation of VN1( LSTICC ) relies on the fact that
           SNRM2 does not fail on vectors with norm below the value of SQRT(SLAMCH('S')) */
        vn2[lsticc] = vn1[lsticc];
        lsticc = itemp;
    }
    
    magma_queue_destroy( stream );

    return MAGMA_SUCCESS;
} /* magma_slaqps */
Example #13
0
/**
    Purpose
    -------
    CHEEVD_2STAGE computes all eigenvalues and, optionally, eigenvectors of a
    complex Hermitian matrix A. It uses a two-stage algorithm for the tridiagonalization.
    If eigenvectors are desired, it uses a divide and conquer algorithm.

    The divide and conquer algorithm makes very mild assumptions about
    floating point arithmetic. It will work on machines with a guard
    digit in add/subtract, or on those binary machines without guard
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
    Cray-2. It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.

    Arguments
    ---------
    @param[in]
    jobz    magma_vec_t
      -     = MagmaNoVec:  Compute eigenvalues only;
      -     = MagmaVec:    Compute eigenvalues and eigenvectors.

    @param[in]
    range   magma_range_t
      -     = MagmaRangeAll: all eigenvalues will be found.
      -     = MagmaRangeV:   all eigenvalues in the half-open interval (VL,VU]
                   will be found.
      -     = MagmaRangeI:   the IL-th through IU-th eigenvalues will be found.

    @param[in]
    uplo    magma_uplo_t
      -     = MagmaUpper:  Upper triangle of A is stored;
      -     = MagmaLower:  Lower triangle of A is stored.

    @param[in]
    n       INTEGER
            The order of the matrix A.  N >= 0.

    @param[in,out]
    A       COMPLEX array, dimension (LDA, N)
            On entry, the Hermitian matrix A.  If UPLO = MagmaUpper, the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = MagmaLower,
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.
            On exit, if JOBZ = MagmaVec, then if INFO = 0, the first m columns
            of A contains the required
            orthonormal eigenvectors of the matrix A.
            If JOBZ = MagmaNoVec, then on exit the lower triangle (if UPLO=MagmaLower)
            or the upper triangle (if UPLO=MagmaUpper) of A, including the
            diagonal, is destroyed.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    @param[in]
    vl      REAL
    @param[in]
    vu      REAL
            If RANGE=MagmaRangeV, the lower and upper bounds of the interval to
            be searched for eigenvalues. VL < VU.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeI.

    @param[in]
    il      INTEGER
    @param[in]
    iu      INTEGER
            If RANGE=MagmaRangeI, the indices (in ascending order) of the
            smallest and largest eigenvalues to be returned.
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeV.

    @param[out]
    m       INTEGER
            The total number of eigenvalues found.  0 <= M <= N.
            If RANGE = MagmaRangeAll, M = N, and if RANGE = MagmaRangeI, M = IU-IL+1.

    @param[out]
    w       REAL array, dimension (N)
            If INFO = 0, the required m eigenvalues in ascending order.

    @param[out]
    work    (workspace) COMPLEX array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The length of the array WORK.
            If N <= 1,                      LWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LWORK >= LQ2 + N + N*NB.
            If JOBZ = MagmaVec   and N > 1, LWORK >= LQ2 + 2*N + N**2.
            where LQ2 is the size needed to store the Q2 matrix
            and is returned by magma_bulge_get_lq2.
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal sizes of the WORK, RWORK and
            IWORK arrays, returns these values as the first entries of
            the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    rwork   (workspace) REAL array,
                                           dimension (LRWORK)
            On exit, if INFO = 0, RWORK[0] returns the optimal LRWORK.

    @param[in]
    lrwork  INTEGER
            The dimension of the array RWORK.
            If N <= 1,                      LRWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LRWORK >= N.
            If JOBZ = MagmaVec   and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
    \n
            If LRWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    iwork   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK.

    @param[in]
    liwork  INTEGER
            The dimension of the array IWORK.
            If N <= 1,                      LIWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1.
            If JOBZ = MagmaVec   and N > 1, LIWORK >= 3 + 5*N.
    \n
            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value
      -     > 0:  if INFO = i and JOBZ = MagmaNoVec, then the algorithm failed
                  to converge; i off-diagonal elements of an intermediate
                  tridiagonal form did not converge to zero;
                  if INFO = i and JOBZ = MagmaVec, then the algorithm failed
                  to compute an eigenvalue while working on the submatrix
                  lying in rows and columns INFO/(N+1) through
                  mod(INFO,N+1).

    Further Details
    ---------------
    Based on contributions by
       Jeff Rutter, Computer Science Division, University of California
       at Berkeley, USA

    Modified description of INFO. Sven, 16 Feb 05.

    @ingroup magma_cheev_driver
    ********************************************************************/
extern "C" magma_int_t
magma_cheevdx_2stage(
    magma_vec_t jobz, magma_range_t range, magma_uplo_t uplo,
    magma_int_t n,
    magmaFloatComplex *A, magma_int_t lda,
    float vl, float vu, magma_int_t il, magma_int_t iu,
    magma_int_t *m, float *w,
    magmaFloatComplex *work, magma_int_t lwork,
    #ifdef COMPLEX
    float *rwork, magma_int_t lrwork,
    #endif
    magma_int_t *iwork, magma_int_t liwork,
    magma_int_t *info)
{
    #define A( i_,j_) (A  + (i_) + (j_)*lda)
    #define A2(i_,j_) (A2 + (i_) + (j_)*lda2)
    
    const char* uplo_  = lapack_uplo_const( uplo  );
    const char* jobz_  = lapack_vec_const( jobz  );
    magmaFloatComplex c_one  = MAGMA_C_ONE;
    magma_int_t ione = 1;
    magma_int_t izero = 0;
    float d_one = 1.;

    float d__1;

    float eps;
    float anrm;
    magma_int_t imax;
    float rmin, rmax;
    float sigma;
    //magma_int_t iinfo;
    magma_int_t lwmin, lrwmin, liwmin;
    magma_int_t lower;
    magma_int_t wantz;
    magma_int_t iscale;
    float safmin;
    float bignum;
    float smlnum;
    magma_int_t lquery;
    magma_int_t alleig, valeig, indeig;
    magma_int_t len;

    float* dwork;

    /* determine the number of threads */
    magma_int_t parallel_threads = magma_get_parallel_numthreads();

    wantz = (jobz == MagmaVec);
    lower = (uplo == MagmaLower);

    alleig = (range == MagmaRangeAll);
    valeig = (range == MagmaRangeV);
    indeig = (range == MagmaRangeI);

    lquery = (lwork == -1 || lrwork == -1 || liwork == -1);

    *info = 0;
    if (! (wantz || (jobz == MagmaNoVec))) {
        *info = -1;
    } else if (! (alleig || valeig || indeig)) {
        *info = -2;
    } else if (! (lower || (uplo == MagmaUpper))) {
        *info = -3;
    } else if (n < 0) {
        *info = -4;
    } else if (lda < max(1,n)) {
        *info = -6;
    } else {
        if (valeig) {
            if (n > 0 && vu <= vl) {
                *info = -8;
            }
        } else if (indeig) {
            if (il < 1 || il > max(1,n)) {
                *info = -9;
            } else if (iu < min(n,il) || iu > n) {
                *info = -10;
            }
        }
    }

    magma_int_t nb = magma_get_cbulge_nb(n,parallel_threads);
    magma_int_t Vblksiz = magma_cbulge_get_Vblksiz(n, nb, parallel_threads);

    magma_int_t ldt = Vblksiz;
    magma_int_t ldv = nb + Vblksiz;
    magma_int_t blkcnt = magma_bulge_get_blkcnt(n, nb, Vblksiz);
    magma_int_t lq2 = magma_cbulge_get_lq2(n, parallel_threads);

    if (wantz) {
        lwmin  = lq2 + 2*n + n*n;
        lrwmin = 1 + 5*n + 2*n*n;
        liwmin = 5*n + 3;
    } else {
        lwmin  = lq2 + n + n*nb;
        lrwmin = n;
        liwmin = 1;
    }

    // multiply by 1+eps (in Double!) to ensure length gets rounded up,
    // if it cannot be exactly represented in floating point.
    real_Double_t one_eps = 1. + lapackf77_slamch("Epsilon");
    work[0]  = MAGMA_C_MAKE( lwmin * one_eps, 0.);  // round up
    rwork[0] = lrwmin * one_eps;
    iwork[0] = liwmin;

    if ((lwork < lwmin) && !lquery) {
        *info = -14;
    } else if ((lrwork < lrwmin) && ! lquery) {
        *info = -16;
    } else if ((liwork < liwmin) && ! lquery) {
        *info = -18;
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /* Quick return if possible */
    if (n == 0) {
        return *info;
    }

    if (n == 1) {
        w[0] = MAGMA_C_REAL(A[0]);
        if (wantz) {
            A[0] = MAGMA_C_ONE;
        }
        return *info;
    }


    timer_printf("using %d parallel_threads\n", (int) parallel_threads);

    /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */
    magma_int_t ntiles = n/nb;
    if ( ( ntiles < 2 ) || ( n <= 128 ) ) {
        #ifdef ENABLE_DEBUG
        printf("--------------------------------------------------------------\n");
        printf("  warning matrix too small N=%d NB=%d, calling lapack on CPU  \n", (int) n, (int) nb);
        printf("--------------------------------------------------------------\n");
        #endif
        lapackf77_cheevd(jobz_, uplo_, &n,
                        A, &lda, w,
                        work, &lwork,
                        #if defined(PRECISION_z) || defined(PRECISION_c)
                        rwork, &lrwork,
                        #endif
                        iwork, &liwork,
                        info);
        *m = n;
        return *info;
    }

    /* Get machine constants. */
    safmin = lapackf77_slamch("Safe minimum");
    eps = lapackf77_slamch("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = magma_ssqrt(smlnum);
    rmax = magma_ssqrt(bignum);

    /* Scale matrix to allowable range, if necessary. */
    anrm = lapackf77_clanhe("M", uplo_, &n, A, &lda, rwork);
    iscale = 0;
    if (anrm > 0. && anrm < rmin) {
        iscale = 1;
        sigma = rmin / anrm;
    } else if (anrm > rmax) {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1) {
        lapackf77_clascl(uplo_, &izero, &izero, &d_one, &sigma, &n, &n, A,
                         &lda, info);
    }

    magma_int_t indT2   = 0;
    magma_int_t indTAU2 = indT2  + blkcnt*ldt*Vblksiz;
    magma_int_t indV2   = indTAU2+ blkcnt*Vblksiz;
    magma_int_t indtau1 = indV2  + blkcnt*ldv*Vblksiz;
    magma_int_t indwrk  = indtau1+ n;
    //magma_int_t indwk2  = indwrk + n*n;
    magma_int_t llwork = lwork - indwrk;
    //magma_int_t llwrk2 = lwork - indwk2;
    magma_int_t inde = 0;
    magma_int_t indrwk = inde + n;
    magma_int_t llrwk = lrwork - indrwk;

    magma_timer_t time=0, time_total=0;
    timer_start( time_total );
    timer_start( time );

    magmaFloatComplex *dT1;
    if (MAGMA_SUCCESS != magma_cmalloc( &dT1, n*nb)) {
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }
    magma_chetrd_he2hb(uplo, n, nb, A, lda, &work[indtau1], &work[indwrk], llwork, dT1, info);

    timer_stop( time );
    timer_printf( "  time chetrd_he2hb = %6.2f\n", time );
    timer_start( time );

    /* copy the input matrix into WORK(INDWRK) with band storage */
    /* PAY ATTENTION THAT work[indwrk] should be able to be of size lda2*n which it should be checked in any future modification of lwork.*/
    magma_int_t lda2 = 2*nb; //nb+1+(nb-1);
    magmaFloatComplex* A2 = &work[indwrk];
    memset(A2, 0, n*lda2*sizeof(magmaFloatComplex));

    for (magma_int_t j = 0; j < n-nb; j++) {
        len = nb+1;
        blasf77_ccopy( &len, A(j,j), &ione, A2(0,j), &ione );
        memset(A(j,j), 0, (nb+1)*sizeof(magmaFloatComplex));
        *A(nb+j,j) = c_one;
    }
    for (magma_int_t j = 0; j < nb; j++) {
        len = nb-j;
        blasf77_ccopy( &len, A(j+n-nb,j+n-nb), &ione, A2(0,j+n-nb), &ione );
        memset(A(j+n-nb,j+n-nb), 0, (nb-j)*sizeof(magmaFloatComplex));
    }

    timer_stop( time );
    timer_printf( "  time chetrd_convert = %6.2f\n", time );
    timer_start( time );

    magma_chetrd_hb2st(uplo, n, nb, Vblksiz, A2, lda2, w, &rwork[inde], &work[indV2], ldv, &work[indTAU2], wantz, &work[indT2], ldt);

    timer_stop( time );
    timer_stop( time_total );
    timer_printf( "  time chetrd_hb2st = %6.2f\n", time );
    timer_printf( "  time chetrd = %6.2f\n", time_total );

    /* For eigenvalues only, call SSTERF.  For eigenvectors, first call
     CSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
     tridiagonal matrix, then call CUNMTR to multiply it to the Householder
     transformations represented as Householder vectors in A. */
    if (! wantz) {
        timer_start( time );

        lapackf77_ssterf(&n, w, &rwork[inde], info);
        magma_smove_eig(range, n, w, &il, &iu, vl, vu, m);

        timer_stop( time );
        timer_printf( "  time dstedc = %6.2f\n", time );
    }
    else {
        timer_start( time_total );
        timer_start( time );
        
        if (MAGMA_SUCCESS != magma_smalloc( &dwork, 3*n*(n/2 + 1) )) {
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }

        magma_cstedx(range, n, vl, vu, il, iu, w, &rwork[inde],
                     &work[indwrk], n, &rwork[indrwk],
                     llrwk, iwork, liwork, dwork, info);

        magma_free( dwork );

        timer_stop( time );
        timer_printf( "  time cstedx = %6.2f\n", time );
        timer_start( time );
        
        magmaFloatComplex *dZ;
        magma_int_t lddz = n;

        magmaFloatComplex *da;
        magma_int_t ldda = n;

        magma_smove_eig(range, n, w, &il, &iu, vl, vu, m);

        if (MAGMA_SUCCESS != magma_cmalloc( &dZ, *m*lddz)) {
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }
        if (MAGMA_SUCCESS != magma_cmalloc( &da, n*ldda )) {
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }

        magma_cbulge_back(uplo, n, nb, *m, Vblksiz, &work[indwrk + n * (il-1)], n, dZ, lddz,
                          &work[indV2], ldv, &work[indTAU2], &work[indT2], ldt, info);

        timer_stop( time );
        timer_printf( "  time cbulge_back = %6.2f\n", time );
        timer_start( time );

        magma_csetmatrix( n, n, A, lda, da, ldda );

        magma_cunmqr_gpu_2stages(MagmaLeft, MagmaNoTrans, n-nb, *m, n-nb, da+nb, ldda,
                                 dZ+nb, n, dT1, nb, info);

        magma_cgetmatrix( n, *m, dZ, lddz, A, lda );
        magma_free(dT1);
        magma_free(dZ);
        magma_free(da);

        timer_stop( time );
        timer_stop( time_total );
        timer_printf( "  time cunmqr + copy = %6.2f\n", time );
        timer_printf( "  time eigenvectors backtransf. = %6.2f\n", time_total );
    }

    /* If matrix was scaled, then rescale eigenvalues appropriately. */
    if (iscale == 1) {
        if (*info == 0) {
            imax = n;
        } else {
            imax = *info - 1;
        }
        d__1 = 1. / sigma;
        blasf77_sscal(&imax, &d__1, w, &ione);
    }

    work[0]  = MAGMA_C_MAKE( lwmin * one_eps, 0.);  // round up
    rwork[0] = lrwmin * one_eps;
    iwork[0] = liwmin;

    return *info;
} /* magma_cheevdx_2stage */
Example #14
0
/**
    Purpose
    -------
    SGEGQR orthogonalizes the N vectors given by a real M-by-N matrix A:
           
            A = Q * R.

    On exit, if successful, the orthogonal vectors Q overwrite A
    and R is given in work (on the CPU memory).
    The routine is designed for tall-and-skinny matrices: M >> N, N <= 128.
    
    This version uses normal equations and SVD in an iterative process that
    makes the computation numerically accurate.
    
    Arguments
    ---------
    @param[in]
    ikind   INTEGER
            Several versions are implemented indiceted by the ikind value:  
            1:  This version uses normal equations and SVD in an iterative process 
                that makes the computation numerically accurate.
            2:  This version uses a standard LAPACK-based orthogonalization through
                MAGMA's QR panel factorization (magma_sgeqr2x3_gpu) and magma_sorgqr
            3:  MGS
            4.  Cholesky QR [ Note: this method uses the normal equations which 
                                    squares the condition number of A, therefore 
                                    ||I - Q'Q|| < O(eps cond(A)^2)               ]

    @param[in]
    m       INTEGER
            The number of rows of the matrix A.  m >= n >= 0.

    @param[in]
    n       INTEGER
            The number of columns of the matrix A. 128 >= n >= 0.

    @param[in,out]
    dA      REAL array on the GPU, dimension (ldda,n)
            On entry, the m-by-n matrix A.
            On exit, the m-by-n matrix Q with orthogonal columns.

    @param[in]
    ldda     INTEGER
            The leading dimension of the array dA.  LDDA >= max(1,m).
            To benefit from coalescent memory accesses LDDA must be
            divisible by 16.

    @param
    dwork   (GPU workspace) REAL array, dimension: 
            n^2                    for ikind = 1
            3 n^2 + min(m, n) + 2  for ikind = 2 
            0 (not used)           for ikind = 3
            n^2                    for ikind = 4           

    @param[out]
    work    (CPU workspace) REAL array, dimension 3 n^2.
            On exit, work(1:n^2) holds the rectangular matrix R.
            Preferably, for higher performance, work should be in pinned memory.
 
    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value
                  or another error occured, such as memory allocation failed.


    @ingroup magma_sgeqrf_comp
    ********************************************************************/
extern "C" magma_int_t
magma_sgegqr_gpu( magma_int_t ikind, magma_int_t m, magma_int_t n,
                  float *dA,   magma_int_t ldda,
                  float *dwork, float *work,
                  magma_int_t *info )
{
    #define work(i_,j_) (work + (i_) + (j_)*n)
    #define dA(i_,j_)   (dA   + (i_) + (j_)*ldda)
    
    magma_int_t i = 0, j, k, n2 = n*n;
    magma_int_t ione = 1;
    float c_zero = MAGMA_S_ZERO;
    float c_one  = MAGMA_S_ONE;
    float cn = 200., mins, maxs;

    /* check arguments */
    *info = 0;
    if (ikind < 1 || ikind > 4) {
        *info = -1;
    } else if (m < 0 || m < n) {
        *info = -2;
    } else if (n < 0 || n > 128) {
        *info = -3;
    } else if (ldda < max(1,m)) {
        *info = -5;
    }
    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }

    if (ikind == 1) {
        // === Iterative, based on SVD ============================================================
        float *U, *VT, *vt, *R, *G, *hwork, *tau;
        float *S;

        R    = work;             // Size n * n
        G    = R    + n*n;       // Size n * n
        VT   = G    + n*n;       // Size n * n
        
        magma_smalloc_cpu( &hwork, 32 + 2*n*n + 2*n);
        if ( hwork == NULL ) {
            *info = MAGMA_ERR_HOST_ALLOC;
            return *info;
        }
        
        magma_int_t lwork=n*n+32; // First part f hwork; used as workspace in svd
        
        U    = hwork + n*n + 32;  // Size n*n
        S    = (float *)(U+n*n); // Size n
        tau  = U + n*n + n;       // Size n
        
#if defined(PRECISION_c) || defined(PRECISION_z)
        float *rwork;
        magma_smalloc_cpu( &rwork, 5*n);
        if ( rwork == NULL ) {
            *info = MAGMA_ERR_HOST_ALLOC;
            return *info;
        }
#endif
        
        do {
            i++;
            
            magma_sgemm(MagmaConjTrans, MagmaNoTrans, n, n, m, c_one, dA, ldda, dA, ldda, c_zero, dwork, n );
            magma_sgetmatrix(n, n, dwork, n, G, n);
            
#if defined(PRECISION_s) || defined(PRECISION_d)
            lapackf77_sgesvd("n", "a", &n, &n, G, &n, S, U, &n, VT, &n,
                             hwork, &lwork, info);
#else
            lapackf77_sgesvd("n", "a", &n, &n, G, &n, S, U, &n, VT, &n,
                             hwork, &lwork, rwork, info);
#endif
            
            mins = 100.f, maxs = 0.f;
            for (k=0; k < n; k++) {
                S[k] = magma_ssqrt( S[k] );
                
                if (S[k] < mins)  mins = S[k];
                if (S[k] > maxs)  maxs = S[k];
            }
            
            for (k=0; k < n; k++) {
                vt = VT + k*n;
                for (j=0; j < n; j++)
                    vt[j] *= S[j];
            }
            lapackf77_sgeqrf(&n, &n, VT, &n, tau, hwork, &lwork, info);
            
            if (i == 1)
                blasf77_scopy(&n2, VT, &ione, R, &ione);
            else
                blasf77_strmm("l", "u", "n", "n", &n, &n, &c_one, VT, &n, R, &n);
            
            magma_ssetmatrix(n, n, VT, n, dwork, n);
            magma_strsm( MagmaRight, MagmaUpper, MagmaNoTrans, MagmaNonUnit, m, n, c_one, dwork, n, dA, ldda);
            if (mins > 0.00001f)
                cn = maxs/mins;
            
            //fprintf(stderr, "Iteration %d, cond num = %f \n", i, cn);
        } while (cn > 10.f);
        
        magma_free_cpu( hwork );
#if defined(PRECISION_c) || defined(PRECISION_z)
        magma_free_cpu( rwork );
#endif
        // ================== end of ikind == 1 ===================================================
    }
    else if (ikind == 2) {
        // ================== LAPACK based      ===================================================
        magma_int_t min_mn = min(m, n);
        magma_int_t nb = n;

        float *dtau = dwork + 2*n*n, *d_T = dwork, *ddA = dwork + n*n;
        float *tau  = work+n*n;

        magmablas_slaset( MagmaFull, n, n, c_zero, c_zero, d_T, n );
        magma_sgeqr2x3_gpu(m, n, dA, ldda, dtau, d_T, ddA,
                           (float *)(dwork+min_mn+2*n*n), info);
        magma_sgetmatrix( min_mn, 1, dtau, min_mn, tau, min_mn);
        magma_sgetmatrix( n, n, ddA, n, work, n);
        magma_sorgqr_gpu( m, n, n, dA, ldda, tau, d_T, nb, info );
        // ================== end of ikind == 2 ===================================================       
    }
    else if (ikind == 3) {
        // ================== MGS               ===================================================
        for(magma_int_t j = 0; j<n; j++){
            for(magma_int_t i = 0; i<j; i++){
                *work(i, j) = magma_sdot(m, dA(0,i), 1, dA(0,j), 1);
                magma_saxpy(m, -(*work(i,j)),  dA(0,i), 1, dA(0,j), 1);
            }
            for(magma_int_t i = j; i<n; i++)
                *work(i, j) = MAGMA_S_ZERO;
            //*work(j,j) = MAGMA_S_MAKE( magma_snrm2(m, dA(0,j), 1), 0. );
            *work(j,j) = magma_sdot(m, dA(0,j), 1, dA(0,j), 1);
            *work(j,j) = MAGMA_S_MAKE( sqrt(MAGMA_S_REAL( *work(j,j) )), 0.);
            magma_sscal(m, 1./ *work(j,j), dA(0,j), 1);
        }
        // ================== end of ikind == 3 ===================================================
    }
    else if (ikind == 4) {
        // ================== Cholesky QR       ===================================================
        magma_sgemm(MagmaConjTrans, MagmaNoTrans, n, n, m, c_one, dA, ldda, dA, ldda, c_zero, dwork, n );
        magma_sgetmatrix(n, n, dwork, n, work, n);
        lapackf77_spotrf("u", &n, work, &n, info);
        magma_ssetmatrix(n, n, work, n, dwork, n);
        magma_strsm( MagmaRight, MagmaUpper, MagmaNoTrans, MagmaNonUnit, m, n, c_one, dwork, n, dA, ldda);
        // ================== end of ikind == 4 ===================================================
    }
             
    return *info;
} /* magma_sgegqr_gpu */
Example #15
0
/**
    Purpose
    -------
    CHEEVD_GPU computes all eigenvalues and, optionally, eigenvectors of a
    complex Hermitian matrix A.  If eigenvectors are desired, it uses a
    divide and conquer algorithm.

    The divide and conquer algorithm makes very mild assumptions about
    floating point arithmetic. It will work on machines with a guard
    digit in add/subtract, or on those binary machines without guard
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
    Cray-2. It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.

    Arguments
    ---------
    @param[in]
    jobz    magma_vec_t
      -     = MagmaNoVec:  Compute eigenvalues only;
      -     = MagmaVec:    Compute eigenvalues and eigenvectors.

    @param[in]
    uplo    magma_uplo_t
      -     = MagmaUpper:  Upper triangle of A is stored;
      -     = MagmaLower:  Lower triangle of A is stored.

    @param[in]
    n       INTEGER
            The order of the matrix A.  N >= 0.

    @param[in,out]
    dA      COMPLEX array on the GPU,
            dimension (LDDA, N).
            On entry, the Hermitian matrix A.  If UPLO = MagmaUpper, the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = MagmaLower,
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.
            On exit, if JOBZ = MagmaVec, then if INFO = 0, A contains the
            orthonormal eigenvectors of the matrix A.
            If JOBZ = MagmaNoVec, then on exit the lower triangle (if UPLO=MagmaLower)
            or the upper triangle (if UPLO=MagmaUpper) of A, including the
            diagonal, is destroyed.

    @param[in]
    ldda    INTEGER
            The leading dimension of the array DA.  LDDA >= max(1,N).

    @param[out]
    w       REAL array, dimension (N)
            If INFO = 0, the eigenvalues in ascending order.

    @param
    wA      (workspace) COMPLEX array, dimension (LDWA, N)

    @param[in]
    ldwa    INTEGER
            The leading dimension of the array wA.  LDWA >= max(1,N).

    @param[out]
    work    (workspace) COMPLEX array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The length of the array WORK.
            If N <= 1,                      LWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LWORK >= N + N*NB.
            If JOBZ = MagmaVec   and N > 1, LWORK >= max( N + N*NB, 2*N + N**2 ).
            NB can be obtained through magma_get_chetrd_nb(N).
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal sizes of the WORK, RWORK and
            IWORK arrays, returns these values as the first entries of
            the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    rwork   (workspace) REAL array, dimension (LRWORK)
            On exit, if INFO = 0, RWORK[0] returns the optimal LRWORK.

    @param[in]
    lrwork  INTEGER
            The dimension of the array RWORK.
            If N <= 1,                      LRWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LRWORK >= N.
            If JOBZ = MagmaVec   and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
    \n
            If LRWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    iwork   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK.

    @param[in]
    liwork  INTEGER
            The dimension of the array IWORK.
            If N <= 1,                      LIWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1.
            If JOBZ = MagmaVec   and N > 1, LIWORK >= 3 + 5*N.
    \n
            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value
      -     > 0:  if INFO = i and JOBZ = MagmaNoVec, then the algorithm failed
                  to converge; i off-diagonal elements of an intermediate
                  tridiagonal form did not converge to zero;
                  if INFO = i and JOBZ = MagmaVec, then the algorithm failed
                  to compute an eigenvalue while working on the submatrix
                  lying in rows and columns INFO/(N+1) through
                  mod(INFO,N+1).

    Further Details
    ---------------
    Based on contributions by
       Jeff Rutter, Computer Science Division, University of California
       at Berkeley, USA

    Modified description of INFO. Sven, 16 Feb 05.

    @ingroup magma_cheev_driver
    ********************************************************************/
extern "C" magma_int_t
magma_cheevd_gpu(magma_vec_t jobz, magma_uplo_t uplo,
                 magma_int_t n,
                 magmaFloatComplex *dA, magma_int_t ldda,
                 float *w,
                 magmaFloatComplex *wA,  magma_int_t ldwa,
                 magmaFloatComplex *work, magma_int_t lwork,
                 float *rwork, magma_int_t lrwork,
                 magma_int_t *iwork, magma_int_t liwork,
                 magma_int_t *info)
{
    const char* uplo_ = lapack_uplo_const( uplo );
    const char* jobz_ = lapack_vec_const( jobz );
    magma_int_t ione = 1;

    float d__1;

    float eps;
    magma_int_t inde;
    float anrm;
    magma_int_t imax;
    float rmin, rmax;
    float sigma;
    magma_int_t iinfo, lwmin;
    magma_int_t lower;
    magma_int_t llrwk;
    magma_int_t wantz;
    magma_int_t indwk2, llwrk2;
    magma_int_t iscale;
    float safmin;
    float bignum;
    magma_int_t indtau;
    magma_int_t indrwk, indwrk, liwmin;
    magma_int_t lrwmin, llwork;
    float smlnum;
    magma_int_t lquery;

    float *dwork;
    magmaFloatComplex *dC;
    magma_int_t lddc = ldda;

    wantz = (jobz == MagmaVec);
    lower = (uplo == MagmaLower);
    lquery = (lwork == -1 || lrwork == -1 || liwork == -1);

    *info = 0;
    if (! (wantz || (jobz == MagmaNoVec))) {
        *info = -1;
    } else if (! (lower || (uplo == MagmaUpper))) {
        *info = -2;
    } else if (n < 0) {
        *info = -3;
    } else if (ldda < max(1,n)) {
        *info = -5;
    } else if (ldwa < max(1,n)) {
        *info = -8;
    }

    magma_int_t nb = magma_get_chetrd_nb( n );
    if ( n <= 1 ) {
        lwmin  = 1;
        lrwmin = 1;
        liwmin = 1;
    }
    else if ( wantz ) {
        lwmin  = max( n + n*nb, 2*n + n*n );
        lrwmin = 1 + 5*n + 2*n*n;
        liwmin = 3 + 5*n;
    }
    else {
        lwmin  = n + n*nb;
        lrwmin = n;
        liwmin = 1;
    }
    
    // multiply by 1+eps (in Double!) to ensure length gets rounded up,
    // if it cannot be exactly represented in floating point.
    real_Double_t one_eps = 1. + lapackf77_slamch("Epsilon");
    work[0]  = MAGMA_C_MAKE( lwmin * one_eps, 0.);
    rwork[0] = lrwmin * one_eps;
    iwork[0] = liwmin;

    if ((lwork < lwmin) && !lquery) {
        *info = -10;
    } else if ((lrwork < lrwmin) && ! lquery) {
        *info = -12;
    } else if ((liwork < liwmin) && ! lquery) {
        *info = -14;
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */
    if (n <= 128) {
        #ifdef ENABLE_DEBUG
        printf("--------------------------------------------------------------\n");
        printf("  warning matrix too small N=%d NB=%d, calling lapack on CPU  \n", (int) n, (int) nb);
        printf("--------------------------------------------------------------\n");
        #endif
        magmaFloatComplex *A;
        magma_cmalloc_cpu( &A, n*n );
        magma_cgetmatrix(n, n, dA, ldda, A, n);
        lapackf77_cheevd(jobz_, uplo_,
                         &n, A, &n,
                         w, work, &lwork,
                         rwork, &lrwork,
                         iwork, &liwork, info);
        magma_csetmatrix( n, n, A, n, dA, ldda);
        magma_free_cpu(A);
        return *info;
    }

    magma_queue_t stream;
    magma_queue_create( &stream );

    // dC and dwork are never used together, so use one buffer for both;
    // unfortunately they're different types (complex and float).
    // (this works better in dsyevd_gpu where they're both float).
    // n*lddc for chetrd2_gpu, *2 for complex
    // n for clanhe
    magma_int_t ldwork = n*lddc*2;
    if ( wantz ) {
        // need 3n^2/2 for cstedx
        ldwork = max( ldwork, 3*n*(n/2 + 1) );
    }
    if (MAGMA_SUCCESS != magma_smalloc( &dwork, ldwork )) {
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }
    dC = (magmaFloatComplex*) dwork;

    /* Get machine constants. */
    safmin = lapackf77_slamch("Safe minimum");
    eps    = lapackf77_slamch("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = magma_ssqrt(smlnum);
    rmax = magma_ssqrt(bignum);

    /* Scale matrix to allowable range, if necessary. */
    anrm = magmablas_clanhe(MagmaMaxNorm, uplo, n, dA, ldda, dwork);
    iscale = 0;
    sigma  = 1;
    if (anrm > 0. && anrm < rmin) {
        iscale = 1;
        sigma = rmin / anrm;
    } else if (anrm > rmax) {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1) {
        magmablas_clascl(uplo, 0, 0, 1., sigma, n, n, dA, ldda, info);
    }

    /* Call CHETRD to reduce Hermitian matrix to tridiagonal form. */
    // chetrd rwork: e (n)
    // cstedx rwork: e (n) + llrwk (1 + 4*N + 2*N**2)  ==>  1 + 5n + 2n^2
    inde   = 0;
    indrwk = inde + n;
    llrwk  = lrwork - indrwk;

    // chetrd work: tau (n) + llwork (n*nb)  ==>  n + n*nb
    // cstedx work: tau (n) + z (n^2)
    // cunmtr work: tau (n) + z (n^2) + llwrk2 (n or n*nb)  ==>  2n + n^2, or n + n*nb + n^2
    indtau = 0;
    indwrk = indtau + n;
    indwk2 = indwrk + n*n;
    llwork = lwork - indwrk;
    llwrk2 = lwork - indwk2;

    magma_timer_t time=0;
    timer_start( time );

#ifdef FAST_HEMV
    magma_chetrd2_gpu(uplo, n, dA, ldda, w, &rwork[inde],
                      &work[indtau], wA, ldwa, &work[indwrk], llwork,
                      dC, n*lddc, &iinfo);
#else
    magma_chetrd_gpu (uplo, n, dA, ldda, w, &rwork[inde],
                      &work[indtau], wA, ldwa, &work[indwrk], llwork, &iinfo);
#endif

    timer_stop( time );
    timer_printf( "time chetrd_gpu = %6.2f\n", time );

    /* For eigenvalues only, call SSTERF.  For eigenvectors, first call
       CSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
       tridiagonal matrix, then call CUNMTR to multiply it to the Householder
       transformations represented as Householder vectors in A. */
    if (! wantz) {
        lapackf77_ssterf(&n, w, &rwork[inde], info);
    }
    else {
        timer_start( time );

        magma_cstedx( MagmaRangeAll, n, 0., 0., 0, 0, w, &rwork[inde],
                      &work[indwrk], n, &rwork[indrwk],
                      llrwk, iwork, liwork, dwork, info);

        timer_stop( time );
        timer_printf( "time cstedx = %6.2f\n", time );
        timer_start( time );

        magma_csetmatrix( n, n, &work[indwrk], n, dC, lddc );

        magma_cunmtr_gpu(MagmaLeft, uplo, MagmaNoTrans, n, n, dA, ldda, &work[indtau],
                         dC, lddc, wA, ldwa, &iinfo);

        magma_ccopymatrix( n, n, dC, lddc, dA, ldda );

        timer_stop( time );
        timer_printf( "time cunmtr_gpu + copy = %6.2f\n", time );
    }

    /* If matrix was scaled, then rescale eigenvalues appropriately. */
    if (iscale == 1) {
        if (*info == 0) {
            imax = n;
        } else {
            imax = *info - 1;
        }
        d__1 = 1. / sigma;
        blasf77_sscal(&imax, &d__1, w, &ione);
    }

    work[0]  = MAGMA_C_MAKE( lwmin * one_eps, 0.);  // round up
    rwork[0] = lrwmin * one_eps;
    iwork[0] = liwmin;

    magma_queue_destroy( stream );
    magma_free( dwork );

    return *info;
} /* magma_cheevd_gpu */
Example #16
0
/**
    Purpose
    -------
    SSYEVD_GPU computes all eigenvalues and, optionally, eigenvectors of
    a real symmetric matrix A.  If eigenvectors are desired, it uses a
    divide and conquer algorithm.

    The divide and conquer algorithm makes very mild assumptions about
    floating point arithmetic. It will work on machines with a guard
    digit in add/subtract, or on those binary machines without guard
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
    Cray-2. It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.

    Arguments
    ---------
    @param[in]
    jobz    magma_vec_t
      -     = MagmaNoVec:  Compute eigenvalues only;
      -     = MagmaVec:    Compute eigenvalues and eigenvectors.

    @param[in]
    uplo    magma_uplo_t
      -     = MagmaUpper:  Upper triangle of A is stored;
      -     = MagmaLower:  Lower triangle of A is stored.

    @param[in]
    n       INTEGER
            The order of the matrix A.  N >= 0.

    @param[in,out]
    dA      REAL array on the GPU,
            dimension (LDDA, N).
            On entry, the symmetric matrix A.  If UPLO = MagmaUpper, the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = MagmaLower,
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.
            On exit, if JOBZ = MagmaVec, then if INFO = 0, A contains the
            orthonormal eigenvectors of the matrix A.
            If JOBZ = MagmaNoVec, then on exit the lower triangle (if UPLO=MagmaLower)
            or the upper triangle (if UPLO=MagmaUpper) of A, including the
            diagonal, is destroyed.

    @param[in]
    ldda    INTEGER
            The leading dimension of the array DA.  LDDA >= max(1,N).

    @param[out]
    w       REAL array, dimension (N)
            If INFO = 0, the eigenvalues in ascending order.

    @param
    wA      (workspace) REAL array, dimension (LDWA, N)

    @param[in]
    ldwa    INTEGER
            The leading dimension of the array wA.  LDWA >= max(1,N).

    @param[out]
    work    (workspace) REAL array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The length of the array WORK.
            If N <= 1,                      LWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LWORK >= 2*N + N*NB.
            If JOBZ = MagmaVec   and N > 1, LWORK >= max( 2*N + N*NB, 1 + 6*N + 2*N**2 ).
            NB can be obtained through magma_get_ssytrd_nb(N).
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal sizes of the WORK and IWORK
            arrays, returns these values as the first entries of the WORK
            and IWORK arrays, and no error message related to LWORK or
            LIWORK is issued by XERBLA.

    @param[out]
    iwork   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK.

    @param[in]
    liwork  INTEGER
            The dimension of the array IWORK.
            If N <= 1,                       LIWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1.
            If JOBZ  = MagmaVec   and N > 1, LIWORK >= 3 + 5*N.
    \n
            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK and
            IWORK arrays, returns these values as the first entries of
            the WORK and IWORK arrays, and no error message related to
            LWORK or LIWORK is issued by XERBLA.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value
      -     > 0:  if INFO = i and JOBZ = MagmaNoVec, then the algorithm failed
                  to converge; i off-diagonal elements of an intermediate
                  tridiagonal form did not converge to zero;
                  if INFO = i and JOBZ = MagmaVec, then the algorithm failed
                  to compute an eigenvalue while working on the submatrix
                  lying in rows and columns INFO/(N+1) through
                  mod(INFO,N+1).

    Further Details
    ---------------
    Based on contributions by
       Jeff Rutter, Computer Science Division, University of California
       at Berkeley, USA

    Modified description of INFO. Sven, 16 Feb 05.

    @ingroup magma_ssyev_driver
    ********************************************************************/
extern "C" magma_int_t
magma_ssyevd_gpu(
    magma_vec_t jobz, magma_uplo_t uplo,
    magma_int_t n,
    magmaFloat_ptr dA, magma_int_t ldda,
    float *w,
    float *wA,  magma_int_t ldwa,
    float *work, magma_int_t lwork,
    #ifdef COMPLEX
    float *rwork, magma_int_t lrwork,
    #endif
    magma_int_t *iwork, magma_int_t liwork,
    magma_int_t *info)
{
    magma_int_t ione = 1;

    float d__1;

    float eps;
    magma_int_t inde;
    float anrm;
    float rmin, rmax;
    float sigma;
    magma_int_t iinfo, lwmin;
    magma_int_t lower;
    magma_int_t wantz;
    magma_int_t indwk2, llwrk2;
    magma_int_t iscale;
    float safmin;
    float bignum;
    magma_int_t indtau;
    magma_int_t indwrk, liwmin;
    magma_int_t llwork;
    float smlnum;
    magma_int_t lquery;

    magmaFloat_ptr dwork;
    magma_int_t lddc = ldda;

    wantz = (jobz == MagmaVec);
    lower = (uplo == MagmaLower);
    lquery = (lwork == -1 || liwork == -1);

    *info = 0;
    if (! (wantz || (jobz == MagmaNoVec))) {
        *info = -1;
    } else if (! (lower || (uplo == MagmaUpper))) {
        *info = -2;
    } else if (n < 0) {
        *info = -3;
    } else if (ldda < max(1,n)) {
        *info = -5;
    }

    magma_int_t nb = magma_get_ssytrd_nb( n );
    if ( n <= 1 ) {
        lwmin  = 1;
        liwmin = 1;
    }
    else if ( wantz ) {
        lwmin  = max( 2*n + n*nb, 1 + 6*n + 2*n*n );
        liwmin = 3 + 5*n;
    }
    else {
        lwmin  = 2*n + n*nb;
        liwmin = 1;
    }
    
    work[0]  = magma_smake_lwork( lwmin );
    iwork[0] = liwmin;

    if ((lwork < lwmin) && !lquery) {
        *info = -10;
    } else if ((liwork < liwmin) && ! lquery) {
        *info = -12;
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    magma_queue_t queue;
    magma_device_t cdev;
    magma_getdevice( &cdev );
    magma_queue_create( cdev, &queue );

    /* If matrix is very small, then just call LAPACK on CPU, no need for GPU */
    if (n <= 128) {
        magma_int_t lda = n;
        float *A;
        magma_smalloc_cpu( &A, lda*n );
        magma_sgetmatrix( n, n, dA, ldda, A, lda, queue );
        lapackf77_ssyevd( lapack_vec_const(jobz), lapack_uplo_const(uplo),
                          &n, A, &lda,
                          w, work, &lwork,
                          iwork, &liwork, info );
        magma_ssetmatrix( n, n, A, lda, dA, ldda, queue );
        magma_free_cpu( A );
        magma_queue_destroy( queue );
        return *info;
    }

    // ssytrd2_gpu requires ldda*ceildiv(n,64) + 2*ldda*nb
    // sormtr_gpu  requires lddc*n
    // slansy      requires n
    magma_int_t ldwork = max( ldda*magma_ceildiv(n,64) + 2*ldda*nb, lddc*n );
    ldwork = max( ldwork, n );
    if ( wantz ) {
        // sstedx requires 3n^2/2
        ldwork = max( ldwork, 3*n*(n/2 + 1) );
    }
    if (MAGMA_SUCCESS != magma_smalloc( &dwork, ldwork )) {
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }

    /* Get machine constants. */
    safmin = lapackf77_slamch("Safe minimum");
    eps    = lapackf77_slamch("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = magma_ssqrt( smlnum );
    rmax = magma_ssqrt( bignum );

    /* Scale matrix to allowable range, if necessary. */
    anrm = magmablas_slansy( MagmaMaxNorm, uplo, n, dA, ldda, dwork, ldwork, queue );
    iscale = 0;
    sigma  = 1;
    if (anrm > 0. && anrm < rmin) {
        iscale = 1;
        sigma = rmin / anrm;
    } else if (anrm > rmax) {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1) {
        magmablas_slascl( uplo, 0, 0, 1., sigma, n, n, dA, ldda, queue, info );
    }

    /* Call SSYTRD to reduce symmetric matrix to tridiagonal form. */
    // ssytrd work: e (n) + tau (n) + llwork (n*nb)  ==>  2n + n*nb
    // sstedx work: e (n) + tau (n) + z (n*n) + llwrk2 (1 + 4*n + n^2)  ==>  1 + 6n + 2n^2
    inde   = 0;
    indtau = inde   + n;
    indwrk = indtau + n;
    indwk2 = indwrk + n*n;
    llwork = lwork - indwrk;
    llwrk2 = lwork - indwk2;

    magma_timer_t time=0;
    timer_start( time );

#ifdef FAST_SYMV
    magma_ssytrd2_gpu( uplo, n, dA, ldda, w, &work[inde],
                       &work[indtau], wA, ldwa, &work[indwrk], llwork,
                       dwork, ldwork, &iinfo );
#else
    magma_ssytrd_gpu(  uplo, n, dA, ldda, w, &work[inde],
                       &work[indtau], wA, ldwa, &work[indwrk], llwork,
                       &iinfo );
#endif

    timer_stop( time );
    #ifdef FAST_SYMV
    timer_printf( "time ssytrd2 = %6.2f\n", time );
    #else
    timer_printf( "time ssytrd = %6.2f\n", time );
    #endif

    /* For eigenvalues only, call SSTERF.  For eigenvectors, first call
       SSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
       tridiagonal matrix, then call SORMTR to multiply it to the Householder
       transformations represented as Householder vectors in A. */
    if (! wantz) {
        lapackf77_ssterf( &n, w, &work[inde], info );
    }
    else {
        timer_start( time );

        magma_sstedx( MagmaRangeAll, n, 0., 0., 0, 0, w, &work[inde],
                      &work[indwrk], n, &work[indwk2],
                      llwrk2, iwork, liwork, dwork, info );

        timer_stop( time );
        timer_printf( "time sstedx = %6.2f\n", time );
        timer_start( time );

        magma_ssetmatrix( n, n, &work[indwrk], n, dwork, lddc, queue );

        magma_sormtr_gpu( MagmaLeft, uplo, MagmaNoTrans, n, n, dA, ldda, &work[indtau],
                          dwork, lddc, wA, ldwa, &iinfo );

        magma_scopymatrix( n, n, dwork, lddc, dA, ldda, queue );

        timer_stop( time );
        timer_printf( "time sormtr + copy = %6.2f\n", time );
    }

    /* If matrix was scaled, then rescale eigenvalues appropriately. */
    if (iscale == 1) {
        d__1 = 1. / sigma;
        blasf77_sscal( &n, &d__1, w, &ione );
    }

    work[0]  = magma_smake_lwork( lwmin );
    iwork[0] = liwmin;

    magma_queue_destroy( queue );
    magma_free( dwork );

    return *info;
} /* magma_ssyevd_gpu */
Example #17
0
extern "C" magma_int_t
magma_ssyevd_gpu(char jobz, char uplo,
                 magma_int_t n,
                 float *da, magma_int_t ldda,
                 float *w,
                 float *wa,  magma_int_t ldwa,
                 float *work, magma_int_t lwork,
                 magma_int_t *iwork, magma_int_t liwork,
                 magma_int_t *info)
{
/*  -- MAGMA (version 1.4.0) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       August 2013

    Purpose
    =======
    SSYEVD_GPU computes all eigenvalues and, optionally, eigenvectors of
    a real symmetric matrix A.  If eigenvectors are desired, it uses a
    divide and conquer algorithm.

    The divide and conquer algorithm makes very mild assumptions about
    floating point arithmetic. It will work on machines with a guard
    digit in add/subtract, or on those binary machines without guard
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
    Cray-2. It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.

    Arguments
    =========
    JOBZ    (input) CHARACTER*1
            = 'N':  Compute eigenvalues only;
            = 'V':  Compute eigenvalues and eigenvectors.

    UPLO    (input) CHARACTER*1
            = 'U':  Upper triangle of A is stored;
            = 'L':  Lower triangle of A is stored.

    N       (input) INTEGER
            The order of the matrix A.  N >= 0.

    DA      (device input/output) REAL array on the GPU,
            dimension (LDDA, N).
            On entry, the symmetric matrix A.  If UPLO = 'U', the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = 'L',
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.
            On exit, if JOBZ = 'V', then if INFO = 0, A contains the
            orthonormal eigenvectors of the matrix A.
            If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
            or the upper triangle (if UPLO='U') of A, including the
            diagonal, is destroyed.

    LDDA    (input) INTEGER
            The leading dimension of the array DA.  LDDA >= max(1,N).

    W       (output) DOUBLE PRECISION array, dimension (N)
            If INFO = 0, the eigenvalues in ascending order.

    WA      (workspace) DOUBLE PRECISION array, dimension (LDWA, N)

    LDWA    (input) INTEGER
            The leading dimension of the array WA.  LDWA >= max(1,N).

    WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    LWORK   (input) INTEGER
            The length of the array WORK.
            If N <= 1,                LWORK >= 1.
            If JOBZ  = 'N' and N > 1, LWORK >= 2*N + N*NB.
            If JOBZ  = 'V' and N > 1, LWORK >= max( 2*N + N*NB, 1 + 6*N + 2*N**2 ).
            NB can be obtained through magma_get_ssytrd_nb(N).

            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal sizes of the WORK and IWORK
            arrays, returns these values as the first entries of the WORK
            and IWORK arrays, and no error message related to LWORK or
            LIWORK is issued by XERBLA.

    IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK.

    LIWORK  (input) INTEGER
            The dimension of the array IWORK.
            If N <= 1,                LIWORK >= 1.
            If JOBZ  = 'N' and N > 1, LIWORK >= 1.
            If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.

            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK and
            IWORK arrays, returns these values as the first entries of
            the WORK and IWORK arrays, and no error message related to
            LWORK or LIWORK is issued by XERBLA.

    INFO    (output) INTEGER
            = 0:  successful exit
            < 0:  if INFO = -i, the i-th argument had an illegal value
            > 0:  if INFO = i and JOBZ = 'N', then the algorithm failed
                  to converge; i off-diagonal elements of an intermediate
                  tridiagonal form did not converge to zero;
                  if INFO = i and JOBZ = 'V', then the algorithm failed
                  to compute an eigenvalue while working on the submatrix
                  lying in rows and columns INFO/(N+1) through
                  mod(INFO,N+1).

    Further Details
    ===============
    Based on contributions by
       Jeff Rutter, Computer Science Division, University of California
       at Berkeley, USA

    Modified description of INFO. Sven, 16 Feb 05.
    =====================================================================   */

    char uplo_[2] = {uplo, 0};
    char jobz_[2] = {jobz, 0};
    magma_int_t ione = 1;

    float d__1;

    float eps;
    magma_int_t inde;
    float anrm;
    float rmin, rmax;
    float sigma;
    magma_int_t iinfo, lwmin;
    magma_int_t lower;
    magma_int_t wantz;
    magma_int_t indwk2, llwrk2;
    magma_int_t iscale;
    float safmin;
    float bignum;
    magma_int_t indtau;
    magma_int_t indwrk, liwmin;
    magma_int_t llwork;
    float smlnum;
    magma_int_t lquery;

    float *dwork;
    magma_int_t lddc = ldda;

    wantz = lapackf77_lsame(jobz_, MagmaVecStr);
    lower = lapackf77_lsame(uplo_, MagmaLowerStr);
    lquery = lwork == -1 || liwork == -1;

    *info = 0;
    if (! (wantz || lapackf77_lsame(jobz_, MagmaNoVecStr))) {
        *info = -1;
    } else if (! (lower || lapackf77_lsame(uplo_, MagmaUpperStr))) {
        *info = -2;
    } else if (n < 0) {
        *info = -3;
    } else if (ldda < max(1,n)) {
        *info = -5;
    }

    magma_int_t nb = magma_get_ssytrd_nb( n );
    if ( n <= 1 ) {
        lwmin  = 1;
        liwmin = 1;
    }
    else if ( wantz ) {
        lwmin  = max( 2*n + n*nb, 1 + 6*n + 2*n*n );
        liwmin = 3 + 5*n;
    }
    else {
        lwmin  = 2*n + n*nb;
        liwmin = 1;
    }
    // multiply by 1+eps to ensure length gets rounded up,
    // if it cannot be exactly represented in floating point.
    work[0]  = lwmin * (1. + lapackf77_slamch("Epsilon"));
    iwork[0] = liwmin;

    if ((lwork < lwmin) && !lquery) {
        *info = -10;
    } else if ((liwork < liwmin) && ! lquery) {
        *info = -12;
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */
    if (n <= 128) {
        #ifdef ENABLE_DEBUG
        printf("--------------------------------------------------------------\n");
        printf("  warning matrix too small N=%d NB=%d, calling lapack on CPU  \n", (int) n, (int) nb);
        printf("--------------------------------------------------------------\n");
        #endif
        char jobz_[2] = {jobz, 0}, uplo_[2] = {uplo, 0};
        float *a = (float *) malloc( n * n * sizeof(float) );
        magma_sgetmatrix(n, n, da, ldda, a, n);
        lapackf77_ssyevd(jobz_, uplo_,
                         &n, a, &n,
                         w, work, &lwork,
                         iwork, &liwork, info);
        magma_ssetmatrix( n, n, a, n, da, ldda);
        free(a);
        return *info;
    }

    magma_queue_t stream;
    magma_queue_create( &stream );

    // n*lddc for ssytrd2_gpu
    // n for slansy
    magma_int_t ldwork = n*lddc;
    if ( wantz ) {
        // need 3n^2/2 for sstedx
        ldwork = max( ldwork, 3*n*(n/2 + 1));
    }

    if (MAGMA_SUCCESS != magma_smalloc( &dwork, ldwork )) {
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }

    /* Get machine constants. */
    safmin = lapackf77_slamch("Safe minimum");
    eps    = lapackf77_slamch("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = magma_ssqrt(smlnum);
    rmax = magma_ssqrt(bignum);

    /* Scale matrix to allowable range, if necessary. */
    anrm = magmablas_slansy('M', uplo, n, da, ldda, dwork);
    iscale = 0;
    sigma  = 1;
    if (anrm > 0. && anrm < rmin) {
        iscale = 1;
        sigma = rmin / anrm;
    } else if (anrm > rmax) {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1) {
        magmablas_slascl(uplo, 0, 0, 1., sigma, n, n, da, ldda, info);
    }

    /* Call SSYTRD to reduce symmetric matrix to tridiagonal form. */
    // ssytrd work: e (n) + tau (n) + llwork (n*nb)  ==>  2n + n*nb
    // sstedx work: e (n) + tau (n) + z (n*n) + llwrk2 (1 + 4*n + n^2)  ==>  1 + 6n + 2n^2
    inde   = 0;
    indtau = inde   + n;
    indwrk = indtau + n;
    indwk2 = indwrk + n*n;
    llwork = lwork - indwrk;
    llwrk2 = lwork - indwk2;

//
#ifdef ENABLE_TIMER
    magma_timestr_t start, end;
    start = get_current_time();
#endif

#ifdef FAST_SYMV
    magma_ssytrd2_gpu(uplo, n, da, ldda, w, &work[inde],
                      &work[indtau], wa, ldwa, &work[indwrk], llwork,
                      dwork, n*lddc, &iinfo);
#else
    magma_ssytrd_gpu(uplo, n, da, ldda, w, &work[inde],
                     &work[indtau], wa, ldwa, &work[indwrk], llwork,
                     &iinfo);
#endif

#ifdef ENABLE_TIMER
    end = get_current_time();
    #ifdef FAST_SYMV
    printf("time ssytrd2 = %6.2f\n", GetTimerValue(start,end)/1000.);
    #else
    printf("time ssytrd = %6.2f\n", GetTimerValue(start,end)/1000.);
    #endif
#endif

    /* For eigenvalues only, call SSTERF.  For eigenvectors, first call
       SSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
       tridiagonal matrix, then call SORMTR to multiply it to the Householder
       transformations represented as Householder vectors in A. */
    if (! wantz) {
        lapackf77_ssterf(&n, w, &work[inde], info);
    } else {

#ifdef ENABLE_TIMER
        start = get_current_time();
#endif

        magma_sstedx('A', n, 0., 0., 0, 0, w, &work[inde],
                     &work[indwrk], n, &work[indwk2],
                     llwrk2, iwork, liwork, dwork, info);

#ifdef ENABLE_TIMER
        end = get_current_time();
        printf("time sstedx = %6.2f\n", GetTimerValue(start,end)/1000.);
#endif

        magma_ssetmatrix( n, n, &work[indwrk], n, dwork, lddc );

#ifdef ENABLE_TIMER
        start = get_current_time();
#endif

        magma_sormtr_gpu(MagmaLeft, uplo, MagmaNoTrans, n, n, da, ldda, &work[indtau],
                         dwork, lddc, wa, ldwa, &iinfo);

        magma_scopymatrix( n, n, dwork, lddc, da, ldda );

#ifdef ENABLE_TIMER
        end = get_current_time();
        printf("time sormtr + copy = %6.2f\n", GetTimerValue(start,end)/1000.);
#endif
    }

    /* If matrix was scaled, then rescale eigenvalues appropriately. */
    if (iscale == 1) {
        d__1 = 1. / sigma;
        blasf77_sscal(&n, &d__1, w, &ione);
    }

    work[0]  = lwmin * (1. + lapackf77_slamch("Epsilon"));  // round up
    iwork[0] = liwmin;

    magma_queue_destroy( stream );
    magma_free( dwork );

    return *info;
} /* magma_ssyevd_gpu */
Example #18
0
/***************************************************************************//**
    Purpose
    -------
    SGERFS improves the computed solution to a system of linear equations.

    The iterative refinement process is stopped if
        ITER > ITERMAX
    or for all the RHS we have:
        RNRM < SQRT(n)*XNRM*ANRM*EPS*BWDMAX
    where
        o ITER is the number of the current iteration in the iterative
          refinement process
        o RNRM is the infinity-norm of the residual
        o XNRM is the infinity-norm of the solution
        o ANRM is the infinity-operator-norm of the matrix A
        o EPS is the machine epsilon returned by SLAMCH('Epsilon')
    The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00 respectively.

    Arguments
    ---------
    @param[in]
    trans   magma_trans_t
            Specifies the form of the system of equations:
      -     = MagmaNoTrans:    A    * X = B  (No transpose)
      -     = MagmaTrans:      A**T * X = B  (Transpose)
      -     = MagmaConjTrans:  A**H * X = B  (Conjugate transpose)

    @param[in]
    n       INTEGER
            The number of linear equations, i.e., the order of the
            matrix A.  N >= 0.

    @param[in]
    nrhs    INTEGER
            The number of right hand sides, i.e., the number of columns
            of the matrix B.  NRHS >= 0.

    @param[in]
    dA      REAL array on the GPU, dimension (ldda,N)
            the N-by-N coefficient matrix A.
            
    @param[in]
    ldda    INTEGER
            The leading dimension of the array dA.  ldda >= max(1,N).

    @param[in]
    dB      REAL array on the GPU, dimension (lddb,NRHS)
            The N-by-NRHS right hand side matrix B.

    @param[in]
    lddb    INTEGER
            The leading dimension of the array dB.  lddb >= max(1,N).

    @param[in, out]
    dX      REAL array on the GPU, dimension (lddx,NRHS)
            On entry, the solution matrix X, as computed by
            SGETRS_NOPIV.  On exit, the improved solution matrix X.

    @param[in]
    lddx    INTEGER
            The leading dimension of the array dX.  lddx >= max(1,N).

    @param
    dworkd  (workspace) REAL array on the GPU, dimension (N*NRHS)
            This array is used to hold the residual vectors.

    @param
    dAF     REAL array on the GPU, dimension (ldda,n)
            The factors L and U from the factorization A = L*U
            as computed by SGETRF_NOPIV.

    @param[out]
    iter    INTEGER
      -     < 0: iterative refinement has failed, real
                 factorization has been performed
        +        -1 : the routine fell back to full precision for
                      implementation- or machine-specific reasons
        +        -2 : narrowing the precision induced an overflow,
                      the routine fell back to full precision
        +        -3 : failure of SGETRF
        +        -31: stop the iterative refinement after the 30th iteration
      -     > 0: iterative refinement has been successfully used.
                 Returns the number of iterations
 
    @param[out]
    info   INTEGER
      -     = 0:  successful exit
      -     < 0:  if info = -i, the i-th argument had an illegal value
      -     > 0:  if info = i, U(i,i) computed in REAL is
                  exactly zero.  The factorization has been completed,
                  but the factor U is exactly singular, so the solution
                  could not be computed.

    @ingroup magma_gerfs_nopiv
*******************************************************************************/
extern "C" magma_int_t
magma_sgerfs_nopiv_gpu(
    magma_trans_t trans, magma_int_t n, magma_int_t nrhs,
    magmaFloat_ptr dA, magma_int_t ldda,
    magmaFloat_ptr dB, magma_int_t lddb,
    magmaFloat_ptr dX, magma_int_t lddx,
    magmaFloat_ptr dworkd, magmaFloat_ptr dAF,
    magma_int_t *iter,
    magma_int_t *info)
{
    #define dB(i,j)     (dB + (i) + (j)*lddb)
    #define dX(i,j)     (dX + (i) + (j)*lddx)
    #define dR(i,j)     (dR + (i) + (j)*lddr)
    
    /* Constants */
    const float c_neg_one = MAGMA_S_NEG_ONE;
    const float c_one     = MAGMA_S_ONE;
    const magma_int_t ione = 1;
    
    /* Local variables */
    magmaFloat_ptr dR;
    float Xnrmv, Rnrmv;
    float Anrm, Xnrm, Rnrm, cte, eps;
    magma_int_t i, j, iiter, lddsa, lddr;
    
    /* Check arguments */
    *iter = 0;
    *info = 0;
    if ( n < 0 )
        *info = -1;
    else if ( nrhs < 0 )
        *info = -2;
    else if ( ldda < max(1,n))
        *info = -4;
    else if ( lddb < max(1,n))
        *info = -8;
    else if ( lddx < max(1,n))
        *info = -10;
    
    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    
    if ( n == 0 || nrhs == 0 )
        return *info;

    magma_queue_t queue = NULL;
    magma_device_t cdev;
    magma_getdevice( &cdev );
    magma_queue_create( cdev, &queue );
    
    lddsa = n;
    lddr  = n;
    
    dR  = dworkd;
    
    eps  = lapackf77_slamch("Epsilon");
    Anrm = magmablas_slange( MagmaInfNorm, n, n, dA, ldda, (magmaFloat_ptr)dworkd, n*nrhs, queue );
    cte  = Anrm * eps * magma_ssqrt( (float) n ) * BWDMAX;
    
    // residual dR = dB - dA*dX in real
    magmablas_slacpy( MagmaFull, n, nrhs, dB, lddb, dR, lddr, queue );
    if ( nrhs == 1 ) {
        magma_sgemv( trans, n, n,
                     c_neg_one, dA, ldda,
                                dX, 1,
                     c_one,     dR, 1, queue );
    }
    else {
        magma_sgemm( trans, MagmaNoTrans, n, nrhs, n,
                     c_neg_one, dA, ldda,
                                dX, lddx,
                     c_one,     dR, lddr, queue );
    }
    
    // TODO: use MAGMA_S_ABS( dX(i,j) ) instead of slange?
    for( j=0; j < nrhs; j++ ) {
        i = magma_isamax( n, dX(0,j), 1, queue ) - 1;
        magma_sgetmatrix( 1, 1, dX(i,j), 1, &Xnrmv, 1, queue );
        Xnrm = lapackf77_slange( "F", &ione, &ione, &Xnrmv, &ione, NULL );
        
        i = magma_isamax( n, dR(0,j), 1, queue ) - 1;
        magma_sgetmatrix( 1, 1, dR(i,j), 1, &Rnrmv, 1, queue );
        Rnrm = lapackf77_slange( "F", &ione, &ione, &Rnrmv, &ione, NULL );
        //printf("Rnrm : %e, Xnrm*cte : %e\n", Rnrm, Xnrm*cte);
        if ( Rnrm >  Xnrm*cte ) {
            goto refinement;
        }
    }
    
    *iter = 0;
    goto cleanup;

refinement:
    for( iiter=1; iiter < ITERMAX; ) {
        *info = 0;
        // solve dAF*dX = dR
        // it's okay that dR is used for both dB input and dX output.
        magma_sgetrs_nopiv_gpu( trans, n, nrhs, dAF, lddsa, dR, lddr, info );
        if (*info != 0) {
            *iter = -3;
            goto fallback;
        }
        
        // Add correction and setup residual
        // dX += dR  --and--
        // dR = dB
        // This saves going through dR a second time (if done with one more kernel).
        // -- not really: first time is read, second time is write.
        for( j=0; j < nrhs; j++ ) {
            magmablas_saxpycp( n, dR(0,j), dX(0,j), dB(0,j), queue );
        }
        
        // residual dR = dB - dA*dX in real
        if ( nrhs == 1 ) {
            magma_sgemv( trans, n, n,
                         c_neg_one, dA, ldda,
                                    dX, 1,
                         c_one,     dR, 1, queue );
        }
        else {
            magma_sgemm( trans, MagmaNoTrans, n, nrhs, n,
                         c_neg_one, dA, ldda,
                                    dX, lddx,
                         c_one,     dR, lddr, queue );
        }
        
        /*  Check whether the nrhs normwise backward errors satisfy the
         *  stopping criterion. If yes, set ITER=IITER > 0 and return. */
        for( j=0; j < nrhs; j++ ) {
            i = magma_isamax( n, dX(0,j), 1, queue ) - 1;
            magma_sgetmatrix( 1, 1, dX(i,j), 1, &Xnrmv, 1, queue );
            Xnrm = lapackf77_slange( "F", &ione, &ione, &Xnrmv, &ione, NULL );
            
            i = magma_isamax( n, dR(0,j), 1, queue ) - 1;
            magma_sgetmatrix( 1, 1, dR(i,j), 1, &Rnrmv, 1, queue );
            Rnrm = lapackf77_slange( "F", &ione, &ione, &Rnrmv, &ione, NULL );
            
            if ( Rnrm >  Xnrm*cte ) {
                goto L20;
            }
        }
        
        /*  If we are here, the nrhs normwise backward errors satisfy
         *  the stopping criterion, we are good to exit. */
        *iter = iiter;
        goto cleanup;
        
      L20:
        iiter++;
    }
    
    /* If we are at this place of the code, this is because we have
     * performed ITER=ITERMAX iterations and never satisified the
     * stopping criterion. Set up the ITER flag accordingly. */
    *iter = -ITERMAX - 1;
    
fallback:
    /* Iterative refinement failed to converge to a
     * satisfactory solution. */
    
cleanup:
    magma_queue_destroy( queue );
    
    return *info;
}
Example #19
0
extern "C" magma_int_t
magma_cpidr_strms(
    magma_c_matrix A, magma_c_matrix b, magma_c_matrix *x,
    magma_c_solver_par *solver_par,
    magma_c_preconditioner *precond_par,
    magma_queue_t queue )
{
    magma_int_t info = MAGMA_NOTCONVERGED;

    // prepare solver feedback
    solver_par->solver = Magma_PIDRMERGE;
    solver_par->numiter = 0;
    solver_par->spmv_count = 0;
    solver_par->init_res = 0.0;
    solver_par->final_res = 0.0;
    solver_par->iter_res = 0.0;
    solver_par->runtime = 0.0;

    // constants
    const magmaFloatComplex c_zero = MAGMA_C_ZERO;
    const magmaFloatComplex c_one = MAGMA_C_ONE;
    const magmaFloatComplex c_n_one = MAGMA_C_NEG_ONE;

    // internal user options
    const magma_int_t smoothing = 1;   // 0 = disable, 1 = enable
    const float angle = 0.7;          // [0-1]

    // local variables
    magma_int_t iseed[4] = {0, 0, 0, 1};
    magma_int_t dof;
    magma_int_t s;
    magma_int_t distr;
    magma_int_t k, i, sk;
    magma_int_t innerflag;
    magma_int_t ldd;
    magma_int_t q;
    float residual;
    float nrm;
    float nrmb;
    float nrmr;
    float nrmt;
    float rho;
    magmaFloatComplex om;
    magmaFloatComplex gamma;

    // matrices and vectors
    magma_c_matrix dxs = {Magma_CSR};
    magma_c_matrix dr = {Magma_CSR}, drs = {Magma_CSR};
    magma_c_matrix dP = {Magma_CSR}, dP1 = {Magma_CSR};
    magma_c_matrix dG = {Magma_CSR}, dGcol = {Magma_CSR};
    magma_c_matrix dU = {Magma_CSR};
    magma_c_matrix dM = {Magma_CSR};
    magma_c_matrix df = {Magma_CSR};
    magma_c_matrix dt = {Magma_CSR}, dtt = {Magma_CSR};
    magma_c_matrix dc = {Magma_CSR};
    magma_c_matrix dv = {Magma_CSR};
    magma_c_matrix dlu = {Magma_CSR};
    magma_c_matrix dskp = {Magma_CSR};
    magma_c_matrix dalpha = {Magma_CSR};
    magma_c_matrix dbeta = {Magma_CSR};
    magmaFloatComplex *hMdiag = NULL;
    magmaFloatComplex *hskp = NULL;
    magmaFloatComplex *halpha = NULL;
    magmaFloatComplex *hbeta = NULL;
    magmaFloatComplex *d1 = NULL, *d2 = NULL;
    
    // queue variables
    const magma_int_t nqueues = 3;     // number of queues
    magma_queue_t queues[nqueues];    

    // chronometry
    real_Double_t tempo1, tempo2;

    // create additional queues
    queues[0] = queue;
    for ( q = 1; q < nqueues; q++ ) {
        magma_queue_create( queue->device(), &(queues[q]) );
    }

    // initial s space
    // TODO: add option for 's' (shadow space number)
    // Hack: uses '--restart' option as the shadow space number.
    //       This is not a good idea because the default value of restart option is used to detect
    //       if the user provided a custom restart. This means that if the default restart value
    //       is changed then the code will think it was the user (unless the default value is
    //       also updated in the 'if' statement below.
    s = 1;
    if ( solver_par->restart != 50 ) {
        if ( solver_par->restart > A.num_cols ) {
            s = A.num_cols;
        } else {
            s = solver_par->restart;
        }
    }
    solver_par->restart = s;

    // set max iterations
    solver_par->maxiter = min( 2 * A.num_cols, solver_par->maxiter );

    // check if matrix A is square
    if ( A.num_rows != A.num_cols ) {
        //printf("Matrix A is not square.\n");
        info = MAGMA_ERR_NOT_SUPPORTED;
        goto cleanup;
    }

    // |b|
    nrmb = magma_scnrm2( b.num_rows, b.dval, 1, queue );
    if ( nrmb == 0.0 ) {
        magma_cscal( x->num_rows, MAGMA_C_ZERO, x->dval, 1, queue );
        info = MAGMA_SUCCESS;
        goto cleanup;
    }

    // t = 0
    // make t twice as large to contain both, dt and dr
    ldd = magma_roundup( b.num_rows, 32 );
    CHECK( magma_cvinit( &dt, Magma_DEV, ldd, 2, c_zero, queue ));
    dt.num_rows = b.num_rows;
    dt.num_cols = 1;
    dt.nnz = dt.num_rows;

    // redirect the dr.dval to the second part of dt
    CHECK( magma_cvinit( &dr, Magma_DEV, b.num_rows, 1, c_zero, queue ));
    magma_free( dr.dval );
    dr.dval = dt.dval + ldd;

    // r = b - A x
    CHECK( magma_cresidualvec( A, b, *x, &dr, &nrmr, queue ));
    
    // |r|
    solver_par->init_res = nrmr;
    solver_par->final_res = solver_par->init_res;
    solver_par->iter_res = solver_par->init_res;
    if ( solver_par->verbose > 0 ) {
        solver_par->res_vec[0] = (real_Double_t)nrmr;
    }

    // check if initial is guess good enough
    if ( nrmr <= solver_par->atol ||
        nrmr/nrmb <= solver_par->rtol ) {
        info = MAGMA_SUCCESS;
        goto cleanup;
    }

    // P = randn(n, s)
    // P = ortho(P)
//---------------------------------------
    // P = 0.0
    CHECK( magma_cvinit( &dP, Magma_CPU, A.num_cols, s, c_zero, queue ));

    // P = randn(n, s)
    distr = 3;        // 1 = unif (0,1), 2 = unif (-1,1), 3 = normal (0,1) 
    dof = dP.num_rows * dP.num_cols;
    lapackf77_clarnv( &distr, iseed, &dof, dP.val );

    // transfer P to device
    CHECK( magma_cmtransfer( dP, &dP1, Magma_CPU, Magma_DEV, queue ));
    magma_cmfree( &dP, queue );

    // P = ortho(P1)
    if ( dP1.num_cols > 1 ) {
        // P = magma_cqr(P1), QR factorization
        CHECK( magma_cqr( dP1.num_rows, dP1.num_cols, dP1, dP1.ld, &dP, NULL, queue ));
    } else {
        // P = P1 / |P1|
        nrm = magma_scnrm2( dof, dP1.dval, 1, queue );
        nrm = 1.0 / nrm;
        magma_csscal( dof, nrm, dP1.dval, 1, queue );
        CHECK( magma_cmtransfer( dP1, &dP, Magma_DEV, Magma_DEV, queue ));
    }
    magma_cmfree( &dP1, queue );
//---------------------------------------

    // allocate memory for the scalar products
    CHECK( magma_cmalloc_pinned( &hskp, 5 ));
    CHECK( magma_cvinit( &dskp, Magma_DEV, 4, 1, c_zero, queue ));

    CHECK( magma_cmalloc_pinned( &halpha, s ));
    CHECK( magma_cvinit( &dalpha, Magma_DEV, s, 1, c_zero, queue ));

    CHECK( magma_cmalloc_pinned( &hbeta, s ));
    CHECK( magma_cvinit( &dbeta, Magma_DEV, s, 1, c_zero, queue ));
    
    // workspace for merged dot product
    CHECK( magma_cmalloc( &d1, max(2, s) * b.num_rows ));
    CHECK( magma_cmalloc( &d2, max(2, s) * b.num_rows ));

    // smoothing enabled
    if ( smoothing > 0 ) {
        // set smoothing solution vector
        CHECK( magma_cmtransfer( *x, &dxs, Magma_DEV, Magma_DEV, queue ));

        // tt = 0
        // make tt twice as large to contain both, dtt and drs
        ldd = magma_roundup( b.num_rows, 32 );
        CHECK( magma_cvinit( &dtt, Magma_DEV, ldd, 2, c_zero, queue ));
        dtt.num_rows = dr.num_rows;
        dtt.num_cols = 1;
        dtt.nnz = dtt.num_rows;

        // redirect the drs.dval to the second part of dtt
        CHECK( magma_cvinit( &drs, Magma_DEV, dr.num_rows, 1, c_zero, queue ));
        magma_free( drs.dval );
        drs.dval = dtt.dval + ldd;

        // set smoothing residual vector
        magma_ccopyvector( dr.num_rows, dr.dval, 1, drs.dval, 1, queue );
    }

    // G(n,s) = 0
    if ( s > 1 ) {
        ldd = magma_roundup( A.num_rows, 32 );
        CHECK( magma_cvinit( &dG, Magma_DEV, ldd, s, c_zero, queue ));
        dG.num_rows = A.num_rows;
    } else {
        CHECK( magma_cvinit( &dG, Magma_DEV, A.num_rows, s, c_zero, queue ));
    }

    // dGcol represents a single column of dG, array pointer is set inside loop
    CHECK( magma_cvinit( &dGcol, Magma_DEV, dG.num_rows, 1, c_zero, queue ));
    magma_free( dGcol.dval );

    // U(n,s) = 0
    if ( s > 1 ) {
        ldd = magma_roundup( A.num_cols, 32 );
        CHECK( magma_cvinit( &dU, Magma_DEV, ldd, s, c_zero, queue ));
        dU.num_rows = A.num_cols;
    } else {
        CHECK( magma_cvinit( &dU, Magma_DEV, A.num_cols, s, c_zero, queue ));
    }

    // M(s,s) = I
    CHECK( magma_cvinit( &dM, Magma_DEV, s, s, c_zero, queue ));
    CHECK( magma_cmalloc_pinned( &hMdiag, s ));
    magmablas_claset( MagmaFull, dM.num_rows, dM.num_cols, c_zero, c_one, dM.dval, dM.ld, queue );

    // f = 0
    CHECK( magma_cvinit( &df, Magma_DEV, dP.num_cols, 1, c_zero, queue ));

    // c = 0
    CHECK( magma_cvinit( &dc, Magma_DEV, dM.num_cols, 1, c_zero, queue ));

    // v = r
    CHECK( magma_cmtransfer( dr, &dv, Magma_DEV, Magma_DEV, queue ));

    // lu = 0
    CHECK( magma_cvinit( &dlu, Magma_DEV, dr.num_rows, 1, c_zero, queue ));

    //--------------START TIME---------------
    // chronometry
    tempo1 = magma_sync_wtime( queue );
    if ( solver_par->verbose > 0 ) {
        solver_par->timing[0] = 0.0;
    }

    om = MAGMA_C_ONE;
    gamma = MAGMA_C_ZERO;
    innerflag = 0;

    // start iteration
    do
    {
        solver_par->numiter++;

        // new RHS for small systems
        // f = P' r
        // Q1
        magma_cgemvmdot_shfl( dP.num_rows, dP.num_cols, dP.dval, dr.dval, d1, d2, df.dval, queues[1] );

        // skp[4] = f(k)
        // Q1
        magma_cgetvector_async( 1, df.dval, 1, &hskp[4], 1, queues[1] );

        // c(k:s) = f(k:s)
        // Q1
        magma_ccopyvector_async( s, df.dval, 1, dc.dval, 1, queues[1] );

        // c(k:s) = M(k:s,k:s) \ f(k:s)
        // Q1
        magma_ctrsv( MagmaLower, MagmaNoTrans, MagmaNonUnit, s, dM.dval, dM.ld, dc.dval, 1, queues[1] );

        // shadow space loop
        for ( k = 0; k < s; ++k ) {
            sk = s - k;
            dGcol.dval = dG.dval + k * dG.ld;

            // v = r - G(:,k:s) c(k:s)
            // Q1
            magmablas_cgemv( MagmaNoTrans, dG.num_rows, sk, c_n_one, dGcol.dval, dG.ld, &dc.dval[k], 1, c_one, dv.dval, 1, queues[1] );

            // preconditioning operation 
            // v = L \ v;
            // v = U \ v;
            // Q1
            CHECK( magma_c_applyprecond_left( MagmaNoTrans, A, dv, &dlu, precond_par, queues[1] )); 
            CHECK( magma_c_applyprecond_right( MagmaNoTrans, A, dlu, &dv, precond_par, queues[1] )); 

            // sync Q0 --> U(:,k) = U(:,k) - U(:,1:k) * alpha(1:k)
            magma_queue_sync( queues[0] );

            // U(:,k) = om * v + U(:,k:s) c(k:s)
            // Q1
            magmablas_cgemv( MagmaNoTrans, dU.num_rows, sk, c_one, &dU.dval[k*dU.ld], dU.ld, &dc.dval[k], 1, om, dv.dval, 1, queues[1] );

            // G(:,k) = A U(:,k)
            // Q1
            CHECK( magma_c_spmv( c_one, A, dv, c_zero, dGcol, queues[1] ));
            solver_par->spmv_count++;

            // bi-orthogonalize the new basis vectors
            for ( i = 0; i < k; ++i ) {
                // alpha = P(:,i)' G(:,k)
                // Q1
                halpha[i] = magma_cdotc( dP.num_rows, &dP.dval[i*dP.ld], 1, dGcol.dval, 1, queues[1] );
                // implicit sync Q1 --> alpha = P(:,i)' G(:,k) 

                // alpha = alpha / M(i,i)
                halpha[i] = halpha[i] / hMdiag[i];
                    
                // G(:,k) = G(:,k) - alpha * G(:,i)
                // Q1
                magma_caxpy( dG.num_rows, -halpha[i], &dG.dval[i*dG.ld], 1, dGcol.dval, 1, queues[1] );
            }

            // sync Q1 --> compute new G, skp[4] = f(k
            magma_queue_sync( queues[1] );

            // new column of M = P'G, first k-1 entries are zero
            // M(k:s,k) = P(:,k:s)' G(:,k)
            // Q2
            magma_cgemvmdot_shfl( dP.num_rows, sk, &dP.dval[k*dP.ld], dGcol.dval, d1, d2, &dM.dval[k*dM.ld+k], queues[2] );

            // U(:,k) = v
            // Q0
            magma_ccopyvector_async( dU.num_rows, dv.dval, 1, &dU.dval[k*dU.ld], 1, queues[0] );

            // non-first s iteration
            if ( k > 0 ) {
                // alpha = dalpha
                // Q0
                magma_csetvector_async( k, halpha, 1, dalpha.dval, 1, queues[0] );

                // U update outside of loop using GEMV
                // U(:,k) = U(:,k) - U(:,1:k) * alpha(1:k)
                // Q0
                magmablas_cgemv( MagmaNoTrans, dU.num_rows, k, c_n_one, dU.dval, dU.ld, dalpha.dval, 1, c_one, &dU.dval[k*dU.ld], 1, queues[0] );
            }

            // Mdiag(k) = M(k,k)
            // Q2
            magma_cgetvector( 1, &dM.dval[k*dM.ld+k], 1, &hMdiag[k], 1, queues[2] );
            // implicit sync Q2 --> Mdiag(k) = M(k,k)

            // check M(k,k) == 0
            if ( MAGMA_C_EQUAL(hMdiag[k], MAGMA_C_ZERO) ) {
                innerflag = 1;
                info = MAGMA_DIVERGENCE;
                break;
            }

            // beta = f(k) / M(k,k)
            hbeta[k] = hskp[4] / hMdiag[k];

            // check for nan
            if ( magma_c_isnan( hbeta[k] ) || magma_c_isinf( hbeta[k] )) {
                innerflag = 1;
                info = MAGMA_DIVERGENCE;
                break;
            }

            // non-last s iteration 
            if ( (k + 1) < s ) {
                // f(k+1:s) = f(k+1:s) - beta * M(k+1:s,k)
                // Q1
                magma_caxpy( sk-1, -hbeta[k], &dM.dval[k*dM.ld+(k+1)], 1, &df.dval[k+1], 1, queues[1] );

                // c(k+1:s) = f(k+1:s)
                // Q1
                magma_ccopyvector_async( sk-1, &df.dval[k+1], 1, &dc.dval[k+1], 1, queues[1] );

                // c(k+1:s) = M(k+1:s,k+1:s) \ f(k+1:s)
                // Q1
                magma_ctrsv( MagmaLower, MagmaNoTrans, MagmaNonUnit, sk-1, &dM.dval[(k+1)*dM.ld+(k+1)], dM.ld, &dc.dval[k+1], 1, queues[1] );

                // skp[4] = f(k+1)
                // Q1
                magma_cgetvector_async( 1, &df.dval[k+1], 1, &hskp[4], 1, queues[1] );
            }

            // r = r - beta * G(:,k)
            // Q2
            magma_caxpy( dr.num_rows, -hbeta[k], dGcol.dval, 1, dr.dval, 1, queues[2] );

            // smoothing disabled
            if ( smoothing <= 0 ) {
                // |r|
                // Q2
                nrmr = magma_scnrm2( dr.num_rows, dr.dval, 1, queues[2] );           
                // implicit sync Q2 --> |r|

                // v = r
                // Q1
                magma_ccopyvector_async( dr.num_rows, dr.dval, 1, dv.dval, 1, queues[1] );

            // smoothing enabled
            } else {
                // x = x + beta * U(:,k)
                // Q0
                magma_caxpy( x->num_rows, hbeta[k], &dU.dval[k*dU.ld], 1, x->dval, 1, queues[0] );

                // smoothing operation
//---------------------------------------
                // t = rs - r
                // Q2
                magma_cidr_smoothing_1( drs.num_rows, drs.num_cols, drs.dval, dr.dval, dtt.dval, queues[2] );

                // t't
                // t'rs
                // Q2
                CHECK( magma_cgemvmdot_shfl( dt.ld, 2, dtt.dval, dtt.dval, d1, d2, &dskp.dval[2], queues[2] ));

                // skp[2-3] = dskp[2-3]
                // Q2
                magma_cgetvector( 2, &dskp.dval[2], 1, &hskp[2], 1, queues[2] );
                // implicit sync Q2 --> skp = dskp

                // gamma = (t' * rs) / (t' * t)
                gamma = hskp[3] / hskp[2];
                
                // xs = xs - gamma * (xs - x) 
                // Q0
                magma_cidr_smoothing_2( dxs.num_rows, dxs.num_cols, -gamma, x->dval, dxs.dval, queues[0] );

                // v = r
                // Q1
                magma_ccopyvector_async( dr.num_rows, dr.dval, 1, dv.dval, 1, queues[1] );

                // rs = rs - gamma * t 
                // Q2
                magma_caxpy( drs.num_rows, -gamma, dtt.dval, 1, drs.dval, 1, queues[2] );

                // |rs|
                // Q2
                nrmr = magma_scnrm2( drs.num_rows, drs.dval, 1, queues[2] );       
                // implicit sync Q2 --> |r|
//---------------------------------------
            }

            // store current timing and residual
            if ( solver_par->verbose > 0 ) {
                tempo2 = magma_sync_wtime( queue );
                if ( (solver_par->numiter) % solver_par->verbose == 0 ) {
                    solver_par->res_vec[(solver_par->numiter) / solver_par->verbose]
                            = (real_Double_t)nrmr;
                    solver_par->timing[(solver_par->numiter) / solver_par->verbose]
                            = (real_Double_t)tempo2 - tempo1;
                }
            }

            // check convergence or iteration limit
            if ( nrmr <= solver_par->atol ||
                nrmr/nrmb <= solver_par->rtol ) { 
                s = k + 1; // for the x-update outside the loop
                innerflag = 2;
                info = MAGMA_SUCCESS;
                break;
            }

        }

        // smoothing disabled
        if ( smoothing <= 0 && innerflag != 1 ) {
            // dbeta(1:s) = beta(1:s)
            // Q0
            magma_csetvector_async( s, hbeta, 1, dbeta.dval, 1, queues[0] );

            // x = x + U(:,1:s) * beta(1:s)
            // Q0
            magmablas_cgemv( MagmaNoTrans, dU.num_rows, s, c_one, dU.dval, dU.ld, dbeta.dval, 1, c_one, x->dval, 1, queues[0] );
        }

        // check convergence or iteration limit or invalid result of inner loop
        if ( innerflag > 0 ) {
            break;
        }

        // preconditioning operation 
        // v = L \ v;
        // v = U \ v;
        // Q2
        CHECK( magma_c_applyprecond_left( MagmaNoTrans, A, dv, &dlu, precond_par, queues[2] )); 
        CHECK( magma_c_applyprecond_right( MagmaNoTrans, A, dlu, &dv, precond_par, queues[2] )); 

        // t = A v
        // Q2
        CHECK( magma_c_spmv( c_one, A, dv, c_zero, dt, queues[2] ));
        solver_par->spmv_count++;

        // computation of a new omega
//---------------------------------------
        // t't
        // t'r
        // Q2
        CHECK( magma_cgemvmdot_shfl( dt.ld, 2, dt.dval, dt.dval, d1, d2, dskp.dval, queues[2] ));

        // skp[0-2] = dskp[0-2]
        // Q2
        magma_cgetvector( 2, dskp.dval, 1, hskp, 1, queues[2] );
        // implicit sync Q2 --> skp = dskp

        // |t|
        nrmt = magma_ssqrt( MAGMA_C_REAL(hskp[0]) );

        // rho = abs((t' * r) / (|t| * |r|))
        rho = MAGMA_D_ABS( MAGMA_C_REAL(hskp[1]) / (nrmt * nrmr) );

        // om = (t' * r) / (|t| * |t|)
        om = hskp[1] / hskp[0]; 
        if ( rho < angle ) {
            om = (om * angle) / rho;
        }
//---------------------------------------
        if ( MAGMA_C_EQUAL(om, MAGMA_C_ZERO) ) {
            info = MAGMA_DIVERGENCE;
            break;
        }

        // sync Q1 --> v = r
        magma_queue_sync( queues[1] );

        // r = r - om * t
        // Q2
        magma_caxpy( dr.num_rows, -om, dt.dval, 1, dr.dval, 1, queues[2] );

        // x = x + om * v
        // Q0
        magma_caxpy( x->num_rows, om, dv.dval, 1, x->dval, 1, queues[0] );

        // smoothing disabled
        if ( smoothing <= 0 ) {
            // |r|
            // Q2
            nrmr = magma_scnrm2( dr.num_rows, dr.dval, 1, queues[2] );           
            // implicit sync Q2 --> |r|

            // v = r
            // Q1
            magma_ccopyvector_async( dr.num_rows, dr.dval, 1, dv.dval, 1, queues[1] );

        // smoothing enabled
        } else {
            // smoothing operation
//---------------------------------------
            // t = rs - r
            // Q2
            magma_cidr_smoothing_1( drs.num_rows, drs.num_cols, drs.dval, dr.dval, dtt.dval, queues[2] );

            // t't
            // t'rs
            // Q2
            CHECK( magma_cgemvmdot_shfl( dt.ld, 2, dtt.dval, dtt.dval, d1, d2, &dskp.dval[2], queues[2] ));

            // skp[2-3] = dskp[2-3]
            // Q2
            magma_cgetvector( 2, &dskp.dval[2], 1, &hskp[2], 1, queues[2] );
            // implicit sync Q2 --> skp = dskp

            // gamma = (t' * rs) / (t' * t)
            gamma = hskp[3] / hskp[2];

            // xs = xs - gamma * (xs - x) 
            // Q0
            magma_cidr_smoothing_2( dxs.num_rows, dxs.num_cols, -gamma, x->dval, dxs.dval, queues[0] );

            // v = r
            // Q1
            magma_ccopyvector_async( dr.num_rows, dr.dval, 1, dv.dval, 1, queues[1] );

            // rs = rs - gamma * (rs - r) 
            // Q2
            magma_caxpy( drs.num_rows, -gamma, dtt.dval, 1, drs.dval, 1, queues[2] );

            // |rs|
            // Q2
            nrmr = magma_scnrm2( drs.num_rows, drs.dval, 1, queues[2] );           
            // implicit sync Q2 --> |r|
//---------------------------------------
        }

        // store current timing and residual
        if ( solver_par->verbose > 0 ) {
            tempo2 = magma_sync_wtime( queue );
            magma_queue_sync( queue );
            if ( (solver_par->numiter) % solver_par->verbose == 0 ) {
                solver_par->res_vec[(solver_par->numiter) / solver_par->verbose]
                        = (real_Double_t)nrmr;
                solver_par->timing[(solver_par->numiter) / solver_par->verbose]
                        = (real_Double_t)tempo2 - tempo1;
            }
        }

        // check convergence or iteration limit
        if ( nrmr <= solver_par->atol ||
            nrmr/nrmb <= solver_par->rtol ) { 
            info = MAGMA_SUCCESS;
            break;
        }
    }
    while ( solver_par->numiter + 1 <= solver_par->maxiter );

    // sync all queues
    for ( q = 0; q < nqueues; q++ ) {
        magma_queue_sync( queues[q] );
    }

    // smoothing enabled
    if ( smoothing > 0 ) {
        // x = xs
        magma_ccopyvector_async( x->num_rows, dxs.dval, 1, x->dval, 1, queue );

        // r = rs
        magma_ccopyvector_async( dr.num_rows, drs.dval, 1, dr.dval, 1, queue );
    }

    // get last iteration timing
    tempo2 = magma_sync_wtime( queue );
    magma_queue_sync( queue );
    solver_par->runtime = (real_Double_t)tempo2 - tempo1;
//--------------STOP TIME----------------

    // get final stats
    solver_par->iter_res = nrmr;
    CHECK( magma_cresidualvec( A, b, *x, &dr, &residual, queue ));
    solver_par->final_res = residual;

    // set solver conclusion
    if ( info != MAGMA_SUCCESS && info != MAGMA_DIVERGENCE ) {
        if ( solver_par->init_res > solver_par->final_res ) {
            info = MAGMA_SLOW_CONVERGENCE;
        }
    }


cleanup:
    // free resources
    // sync all queues, destory additional queues
    magma_queue_sync( queues[0] );
    for ( q = 1; q < nqueues; q++ ) {
        magma_queue_sync( queues[q] );
        magma_queue_destroy( queues[q] );
    }

    // smoothing enabled
    if ( smoothing > 0 ) {
        drs.dval = NULL;  // needed because its pointer is redirected to dtt
        magma_cmfree( &dxs, queue );
        magma_cmfree( &drs, queue ); 
        magma_cmfree( &dtt, queue );
    }
    dr.dval = NULL;       // needed because its pointer is redirected to dt
    dGcol.dval = NULL;    // needed because its pointer is redirected to dG
    magma_cmfree( &dr, queue );
    magma_cmfree( &dP, queue );
    magma_cmfree( &dP1, queue );
    magma_cmfree( &dG, queue );
    magma_cmfree( &dGcol, queue );
    magma_cmfree( &dU, queue );
    magma_cmfree( &dM, queue );
    magma_cmfree( &df, queue );
    magma_cmfree( &dt, queue );
    magma_cmfree( &dc, queue );
    magma_cmfree( &dv, queue );
    magma_cmfree( &dlu, queue );
    magma_cmfree( &dskp, queue );
    magma_cmfree( &dalpha, queue );
    magma_cmfree( &dbeta, queue );
    magma_free_pinned( hMdiag );
    magma_free_pinned( hskp );
    magma_free_pinned( halpha );
    magma_free_pinned( hbeta );
    magma_free( d1 );
    magma_free( d2 );

    solver_par->info = info;
    return info;
    /* magma_cpidr_strms */
}
Example #20
0
/**
    Purpose
    -------
    SGEEV computes for an N-by-N real nonsymmetric matrix A, the
    eigenvalues and, optionally, the left and/or right eigenvectors.

    The right eigenvector v(j) of A satisfies
                     A * v(j) = lambda(j) * v(j)
    where lambda(j) is its eigenvalue.
    The left eigenvector u(j) of A satisfies
                  u(j)**T * A = lambda(j) * u(j)**T
    where u(j)**T denotes the transpose of u(j).

    The computed eigenvectors are normalized to have Euclidean norm
    equal to 1 and largest component real.

    Arguments
    ---------
    @param[in]
    jobvl   magma_vec_t
      -     = MagmaNoVec: left eigenvectors of A are not computed;
      -     = MagmaVec:   left eigenvectors of are computed.

    @param[in]
    jobvr   magma_vec_t
      -     = MagmaNoVec: right eigenvectors of A are not computed;
      -     = MagmaVec:   right eigenvectors of A are computed.

    @param[in]
    n       INTEGER
            The order of the matrix A. N >= 0.

    @param[in,out]
    A       REAL array, dimension (LDA,N)
            On entry, the N-by-N matrix A.
            On exit, A has been overwritten.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    @param[out]
    wr      REAL array, dimension (N)
    @param[out]
    wi      REAL array, dimension (N)
            WR and WI contain the real and imaginary parts,
            respectively, of the computed eigenvalues.  Complex
            conjugate pairs of eigenvalues appear consecutively
            with the eigenvalue having the positive imaginary part
            first.

    @param[out]
    VL      REAL array, dimension (LDVL,N)
            If JOBVL = MagmaVec, the left eigenvectors u(j) are stored one
            after another in the columns of VL, in the same order
            as their eigenvalues.
            If JOBVL = MagmaNoVec, VL is not referenced.
            u(j) = VL(:,j), the j-th column of VL.

    @param[in]
    ldvl    INTEGER
            The leading dimension of the array VL.  LDVL >= 1; if
            JOBVL = MagmaVec, LDVL >= N.

    @param[out]
    VR      REAL array, dimension (LDVR,N)
            If JOBVR = MagmaVec, the right eigenvectors v(j) are stored one
            after another in the columns of VR, in the same order
            as their eigenvalues.
            If JOBVR = MagmaNoVec, VR is not referenced.
            v(j) = VR(:,j), the j-th column of VR.

    @param[in]
    ldvr    INTEGER
            The leading dimension of the array VR.  LDVR >= 1; if
            JOBVR = MagmaVec, LDVR >= N.

    @param[out]
    work    (workspace) REAL array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The dimension of the array WORK.  LWORK >= (2 +   nb + nb*ngpu)*N.
            For optimal performance,          LWORK >= (2 + 2*nb + nb*ngpu)*N.
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal size of the WORK array, returns
            this value as the first entry of the WORK array, and no error
            message related to LWORK is issued by XERBLA.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value.
      -     > 0:  if INFO = i, the QR algorithm failed to compute all the
                  eigenvalues, and no eigenvectors have been computed;
                  elements and i+1:N of W contain eigenvalues which have
                  converged.

    @ingroup magma_sgeev_driver
    ********************************************************************/
extern "C" magma_int_t
magma_sgeev_m(
    magma_vec_t jobvl, magma_vec_t jobvr, magma_int_t n,
    float *A, magma_int_t lda,
    #ifdef COMPLEX
    float *w,
    #else
    float *wr, float *wi,
    #endif
    float *VL, magma_int_t ldvl,
    float *VR, magma_int_t ldvr,
    float *work, magma_int_t lwork,
    #ifdef COMPLEX
    float *rwork,
    #endif
    magma_int_t *info )
{
    #define VL(i,j)  (VL + (i) + (j)*ldvl)
    #define VR(i,j)  (VR + (i) + (j)*ldvr)
    
    const magma_int_t ione  = 1;
    const magma_int_t izero = 0;
    
    float d__1, d__2;
    float r, cs, sn, scl;
    float dum[1], eps;
    float anrm, cscale, bignum, smlnum;
    magma_int_t i, k, ilo, ihi;
    magma_int_t ibal, ierr, itau, iwrk, nout, liwrk, nb;
    magma_int_t scalea, minwrk, optwrk, lquery, wantvl, wantvr, select[1];
    
    magma_side_t side = MagmaRight;
    magma_int_t ngpu = magma_num_gpus();
    
    magma_timer_t time_total=0, time_gehrd=0, time_unghr=0, time_hseqr=0, time_trevc=0, time_sum=0;
    magma_flops_t flop_total=0, flop_gehrd=0, flop_unghr=0, flop_hseqr=0, flop_trevc=0, flop_sum=0;
    timer_start( time_total );
    flops_start( flop_total );
    
    *info = 0;
    lquery = (lwork == -1);
    wantvl = (jobvl == MagmaVec);
    wantvr = (jobvr == MagmaVec);
    if (! wantvl && jobvl != MagmaNoVec) {
        *info = -1;
    } else if (! wantvr && jobvr != MagmaNoVec) {
        *info = -2;
    } else if (n < 0) {
        *info = -3;
    } else if (lda < max(1,n)) {
        *info = -5;
    } else if ( (ldvl < 1) || (wantvl && (ldvl < n))) {
        *info = -9;
    } else if ( (ldvr < 1) || (wantvr && (ldvr < n))) {
        *info = -11;
    }

    /* Compute workspace */
    nb = magma_get_sgehrd_nb( n );
    if (*info == 0) {
        minwrk = (2 +   nb + nb*ngpu)*n;
        optwrk = (2 + 2*nb + nb*ngpu)*n;
        work[0] = magma_smake_lwork( optwrk );
        
        if (lwork < minwrk && ! lquery) {
            *info = -13;
        }
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /* Quick return if possible */
    if (n == 0) {
        return *info;
    }
   
    #if defined(Version3)
    float *dT;
    if (MAGMA_SUCCESS != magma_smalloc( &dT, nb*n )) {
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }
    #endif
    #if defined(Version5)
    float *T;
    if (MAGMA_SUCCESS != magma_smalloc_cpu( &T, nb*n )) {
        *info = MAGMA_ERR_HOST_ALLOC;
        return *info;
    }
    #endif

    /* Get machine constants */
    eps    = lapackf77_slamch( "P" );
    smlnum = lapackf77_slamch( "S" );
    bignum = 1. / smlnum;
    lapackf77_slabad( &smlnum, &bignum );
    smlnum = magma_ssqrt( smlnum ) / eps;
    bignum = 1. / smlnum;

    /* Scale A if max element outside range [SMLNUM,BIGNUM] */
    anrm = lapackf77_slange( "M", &n, &n, A, &lda, dum );
    scalea = 0;
    if (anrm > 0. && anrm < smlnum) {
        scalea = 1;
        cscale = smlnum;
    } else if (anrm > bignum) {
        scalea = 1;
        cscale = bignum;
    }
    if (scalea) {
        lapackf77_slascl( "G", &izero, &izero, &anrm, &cscale, &n, &n, A, &lda, &ierr );
    }

    /* Balance the matrix
     * (Workspace: need N)
     *  - this space is reserved until after gebak */
    ibal = 0;
    lapackf77_sgebal( "B", &n, A, &lda, &ilo, &ihi, &work[ibal], &ierr );

    /* Reduce to upper Hessenberg form
     * (Workspace: need 3*N, prefer 2*N + N*NB + NB*NGPU)
     *  - added NB*NGPU needed for multi-GPU magma_sgehrd_m
     *  - including N reserved for gebal/gebak, unused by sgehrd */
    itau = ibal + n;
    iwrk = itau + n;
    liwrk = lwork - iwrk;

    timer_start( time_gehrd );
    flops_start( flop_gehrd );
    #if defined(Version1)
        // Version 1 - LAPACK
        lapackf77_sgehrd( &n, &ilo, &ihi, A, &lda,
                          &work[itau], &work[iwrk], &liwrk, &ierr );
    #elif defined(Version2)
        // Version 2 - LAPACK consistent HRD
        magma_sgehrd2( n, ilo, ihi, A, lda,
                       &work[itau], &work[iwrk], liwrk, &ierr );
    #elif defined(Version3)
        // Version 3 - LAPACK consistent MAGMA HRD + T matrices stored,
        magma_sgehrd( n, ilo, ihi, A, lda,
                      &work[itau], &work[iwrk], liwrk, dT, &ierr );
    #elif defined(Version5)
        // Version 4 - Multi-GPU, T on host
        magma_sgehrd_m( n, ilo, ihi, A, lda,
                        &work[itau], &work[iwrk], liwrk, T, &ierr );
    #endif
    time_sum += timer_stop( time_gehrd );
    flop_sum += flops_stop( flop_gehrd );

    if (wantvl) {
        /* Want left eigenvectors
         * Copy Householder vectors to VL */
        side = MagmaLeft;
        lapackf77_slacpy( MagmaLowerStr, &n, &n, A, &lda, VL, &ldvl );

        /* Generate orthogonal matrix in VL
         * (Workspace: need 3*N-1, prefer 2*N + (N-1)*NB)
         *  - including N reserved for gebal/gebak, unused by sorghr */
        timer_start( time_unghr );
        flops_start( flop_unghr );
        #if defined(Version1) || defined(Version2)
            // Version 1 & 2 - LAPACK
            lapackf77_sorghr( &n, &ilo, &ihi, VL, &ldvl, &work[itau],
                              &work[iwrk], &liwrk, &ierr );
        #elif defined(Version3)
            // Version 3 - LAPACK consistent MAGMA HRD + T matrices stored
            magma_sorghr( n, ilo, ihi, VL, ldvl, &work[itau], dT, nb, &ierr );
        #elif defined(Version5)
            // Version 5 - Multi-GPU, T on host
            magma_sorghr_m( n, ilo, ihi, VL, ldvl, &work[itau], T, nb, &ierr );
        #endif
        time_sum += timer_stop( time_unghr );
        flop_sum += flops_stop( flop_unghr );

        timer_start( time_hseqr );
        flops_start( flop_hseqr );
        /* Perform QR iteration, accumulating Schur vectors in VL
         * (Workspace: need N+1, prefer N+HSWORK (see comments) )
         *  - including N reserved for gebal/gebak, unused by shseqr */
        iwrk = itau;
        liwrk = lwork - iwrk;
        lapackf77_shseqr( "S", "V", &n, &ilo, &ihi, A, &lda, wr, wi,
                          VL, &ldvl, &work[iwrk], &liwrk, info );
        time_sum += timer_stop( time_hseqr );
        flop_sum += flops_stop( flop_hseqr );

        if (wantvr) {
            /* Want left and right eigenvectors
             * Copy Schur vectors to VR */
            side = MagmaBothSides;
            lapackf77_slacpy( "F", &n, &n, VL, &ldvl, VR, &ldvr );
        }
    }
    else if (wantvr) {
        /* Want right eigenvectors
         * Copy Householder vectors to VR */
        side = MagmaRight;
        lapackf77_slacpy( "L", &n, &n, A, &lda, VR, &ldvr );

        /* Generate orthogonal matrix in VR
         * (Workspace: need 3*N-1, prefer 2*N + (N-1)*NB)
         *  - including N reserved for gebal/gebak, unused by sorghr */
        timer_start( time_unghr );
        flops_start( flop_unghr );
        #if defined(Version1) || defined(Version2)
            // Version 1 & 2 - LAPACK
            lapackf77_sorghr( &n, &ilo, &ihi, VR, &ldvr, &work[itau],
                              &work[iwrk], &liwrk, &ierr );
        #elif defined(Version3)
            // Version 3 - LAPACK consistent MAGMA HRD + T matrices stored
            magma_sorghr( n, ilo, ihi, VR, ldvr, &work[itau], dT, nb, &ierr );
        #elif defined(Version5)
            // Version 5 - Multi-GPU, T on host
            magma_sorghr_m( n, ilo, ihi, VR, ldvr, &work[itau], T, nb, &ierr );
        #endif
        time_sum += timer_stop( time_unghr );
        flop_sum += flops_stop( flop_unghr );

        /* Perform QR iteration, accumulating Schur vectors in VR
         * (Workspace: need N+1, prefer N+HSWORK (see comments) )
         *  - including N reserved for gebal/gebak, unused by shseqr */
        timer_start( time_hseqr );
        flops_start( flop_hseqr );
        iwrk = itau;
        liwrk = lwork - iwrk;
        lapackf77_shseqr( "S", "V", &n, &ilo, &ihi, A, &lda, wr, wi,
                          VR, &ldvr, &work[iwrk], &liwrk, info );
        time_sum += timer_stop( time_hseqr );
        flop_sum += flops_stop( flop_hseqr );
    }
    else {
        /* Compute eigenvalues only
         * (Workspace: need N+1, prefer N+HSWORK (see comments) )
         *  - including N reserved for gebal/gebak, unused by shseqr */
        timer_start( time_hseqr );
        flops_start( flop_hseqr );
        iwrk = itau;
        liwrk = lwork - iwrk;
        lapackf77_shseqr( "E", "N", &n, &ilo, &ihi, A, &lda, wr, wi,
                          VR, &ldvr, &work[iwrk], &liwrk, info );
        time_sum += timer_stop( time_hseqr );
        flop_sum += flops_stop( flop_hseqr );
    }

    /* If INFO > 0 from SHSEQR, then quit */
    if (*info > 0) {
        goto CLEANUP;
    }

    timer_start( time_trevc );
    flops_start( flop_trevc );
    if (wantvl || wantvr) {
        /* Compute left and/or right eigenvectors
         * (Workspace: need 4*N, prefer (2 + 2*nb)*N)
         *  - including N reserved for gebal/gebak, unused by strevc */
        liwrk = lwork - iwrk;
        #if TREVC_VERSION == 1
        lapackf77_strevc( lapack_side_const(side), "B", select, &n, A, &lda, VL, &ldvl,
                          VR, &ldvr, &n, &nout, &work[iwrk], &ierr );
        #elif TREVC_VERSION == 2
        lapackf77_strevc3( lapack_side_const(side), "B", select, &n, A, &lda, VL, &ldvl,
                           VR, &ldvr, &n, &nout, &work[iwrk], &liwrk, &ierr );
        #elif TREVC_VERSION == 3
        magma_strevc3( side, MagmaBacktransVec, select, n, A, lda, VL, ldvl,
                       VR, ldvr, n, &nout, &work[iwrk], liwrk, &ierr );
        #elif TREVC_VERSION == 4
        magma_strevc3_mt( side, MagmaBacktransVec, select, n, A, lda, VL, ldvl,
                          VR, ldvr, n, &nout, &work[iwrk], liwrk, &ierr );
        #elif TREVC_VERSION == 5
        magma_strevc3_mt_gpu( side, MagmaBacktransVec, select, n, A, lda, VL, ldvl,
                              VR, ldvr, n, &nout, &work[iwrk], liwrk, &ierr );
        #else
        #error Unknown TREVC_VERSION
        #endif
    }
    time_sum += timer_stop( time_trevc );
    flop_sum += flops_stop( flop_trevc );

    if (wantvl) {
        /* Undo balancing of left eigenvectors
         * (Workspace: need N) */
        lapackf77_sgebak( "B", "L", &n, &ilo, &ihi, &work[ibal], &n,
                          VL, &ldvl, &ierr );

        /* Normalize left eigenvectors and make largest component real */
        for (i = 0; i < n; ++i) {
            if ( wi[i] == 0. ) {
                scl = 1. / magma_cblas_snrm2( n, VL(0,i), 1 );
                blasf77_sscal( &n, &scl, VL(0,i), &ione );
            }
            else if ( wi[i] > 0. ) {
                d__1 = magma_cblas_snrm2( n, VL(0,i), 1 );
                d__2 = magma_cblas_snrm2( n, VL(0,i+1), 1 );
                scl = 1. / lapackf77_slapy2( &d__1, &d__2 );
                blasf77_sscal( &n, &scl, VL(0,i), &ione );
                blasf77_sscal( &n, &scl, VL(0,i+1), &ione );
                for (k = 0; k < n; ++k) {
                    /* Computing 2nd power */
                    d__1 = *VL(k,i);
                    d__2 = *VL(k,i+1);
                    work[iwrk + k] = d__1*d__1 + d__2*d__2;
                }
                k = blasf77_isamax( &n, &work[iwrk], &ione ) - 1;  // subtract 1; k is 0-based
                lapackf77_slartg( VL(k,i), VL(k,i+1), &cs, &sn, &r );
                blasf77_srot( &n, VL(0,i), &ione, VL(0,i+1), &ione, &cs, &sn );
                *VL(k,i+1) = 0.;
            }
        }
    }

    if (wantvr) {
        /* Undo balancing of right eigenvectors
         * (Workspace: need N) */
        lapackf77_sgebak( "B", "R", &n, &ilo, &ihi, &work[ibal], &n,
                          VR, &ldvr, &ierr );

        /* Normalize right eigenvectors and make largest component real */
        for (i = 0; i < n; ++i) {
            if ( wi[i] == 0. ) {
                scl = 1. / magma_cblas_snrm2( n, VR(0,i), 1 );
                blasf77_sscal( &n, &scl, VR(0,i), &ione );
            }
            else if ( wi[i] > 0. ) {
                d__1 = magma_cblas_snrm2( n, VR(0,i), 1 );
                d__2 = magma_cblas_snrm2( n, VR(0,i+1), 1 );
                scl = 1. / lapackf77_slapy2( &d__1, &d__2 );
                blasf77_sscal( &n, &scl, VR(0,i), &ione );
                blasf77_sscal( &n, &scl, VR(0,i+1), &ione );
                for (k = 0; k < n; ++k) {
                    /* Computing 2nd power */
                    d__1 = *VR(k,i);
                    d__2 = *VR(k,i+1);
                    work[iwrk + k] = d__1*d__1 + d__2*d__2;
                }
                k = blasf77_isamax( &n, &work[iwrk], &ione ) - 1;  // subtract 1; k is 0-based
                lapackf77_slartg( VR(k,i), VR(k,i+1), &cs, &sn, &r );
                blasf77_srot( &n, VR(0,i), &ione, VR(0,i+1), &ione, &cs, &sn );
                *VR(k,i+1) = 0.;
            }
        }
    }

CLEANUP:
    /* Undo scaling if necessary */
    if (scalea) {
        // converged eigenvalues, stored in wr[i+1:n] and wi[i+1:n] for i = INFO
        magma_int_t nval = n - (*info);
        magma_int_t ld = max( nval, 1 );
        lapackf77_slascl( "G", &izero, &izero, &cscale, &anrm, &nval, &ione, wr + (*info), &ld, &ierr );
        lapackf77_slascl( "G", &izero, &izero, &cscale, &anrm, &nval, &ione, wi + (*info), &ld, &ierr );
        if (*info > 0) {
            // first ilo columns were already upper triangular,
            // so the corresponding eigenvalues are also valid.
            nval = ilo - 1;
            lapackf77_slascl( "G", &izero, &izero, &cscale, &anrm, &nval, &ione, wr, &n, &ierr );
            lapackf77_slascl( "G", &izero, &izero, &cscale, &anrm, &nval, &ione, wi, &n, &ierr );
        }
    }

    #if defined(Version3)
    magma_free( dT );
    #endif
    #if defined(Version5)
    magma_free_cpu( T );
    #endif
    
    timer_stop( time_total );
    flops_stop( flop_total );
    timer_printf( "sgeev times n %5d, gehrd %7.3f, unghr %7.3f, hseqr %7.3f, trevc %7.3f, total %7.3f, sum %7.3f\n",
                  (int) n, time_gehrd, time_unghr, time_hseqr, time_trevc, time_total, time_sum );
    timer_printf( "sgeev flops n %5d, gehrd %7lld, unghr %7lld, hseqr %7lld, trevc %7lld, total %7lld, sum %7lld\n",
                  (int) n, flop_gehrd, flop_unghr, flop_hseqr, flop_trevc, flop_total, flop_sum );
    
    work[0] = magma_smake_lwork( optwrk );
    
    return *info;
} /* magma_sgeev */
Example #21
0
/***************************************************************************//**
    Purpose
    -------
    CGEEV computes for an N-by-N complex nonsymmetric matrix A, the
    eigenvalues and, optionally, the left and/or right eigenvectors.

    The right eigenvector v(j) of A satisfies
                     A * v(j) = lambda(j) * v(j)
    where lambda(j) is its eigenvalue.
    The left eigenvector u(j) of A satisfies
                  u(j)**H * A = lambda(j) * u(j)**H
    where u(j)**H denotes the conjugate transpose of u(j).

    The computed eigenvectors are normalized to have Euclidean norm
    equal to 1 and largest component real.

    Arguments
    ---------
    @param[in]
    jobvl   magma_vec_t
      -     = MagmaNoVec: left eigenvectors of A are not computed;
      -     = MagmaVec:   left eigenvectors of are computed.

    @param[in]
    jobvr   magma_vec_t
      -     = MagmaNoVec: right eigenvectors of A are not computed;
      -     = MagmaVec:   right eigenvectors of A are computed.

    @param[in]
    n       INTEGER
            The order of the matrix A. N >= 0.

    @param[in,out]
    A       COMPLEX array, dimension (LDA,N)
            On entry, the N-by-N matrix A.
            On exit, A has been overwritten.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    @param[out]
    w       COMPLEX array, dimension (N)
            W contains the computed eigenvalues.

    @param[out]
    VL      COMPLEX array, dimension (LDVL,N)
            If JOBVL = MagmaVec, the left eigenvectors u(j) are stored one
            after another in the columns of VL, in the same order
            as their eigenvalues.
            If JOBVL = MagmaNoVec, VL is not referenced.
            u(j) = VL(:,j), the j-th column of VL.

    @param[in]
    ldvl    INTEGER
            The leading dimension of the array VL.  LDVL >= 1; if
            JOBVL = MagmaVec, LDVL >= N.

    @param[out]
    VR      COMPLEX array, dimension (LDVR,N)
            If JOBVR = MagmaVec, the right eigenvectors v(j) are stored one
            after another in the columns of VR, in the same order
            as their eigenvalues.
            If JOBVR = MagmaNoVec, VR is not referenced.
            v(j) = VR(:,j), the j-th column of VR.

    @param[in]
    ldvr    INTEGER
            The leading dimension of the array VR.  LDVR >= 1; if
            JOBVR = MagmaVec, LDVR >= N.

    @param[out]
    work    (workspace) COMPLEX array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The dimension of the array WORK.  LWORK >= (1 +   nb + nb*ngpu)*N.
            For optimal performance,          LWORK >= (1 + 2*nb + nb*ngpu)*N.
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal size of the WORK array, returns
            this value as the first entry of the WORK array, and no error
            message related to LWORK is issued by XERBLA.

    @param
    rwork   (workspace) REAL array, dimension (2*N)

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value.
      -     > 0:  if INFO = i, the QR algorithm failed to compute all the
                  eigenvalues, and no eigenvectors have been computed;
                  elements and i+1:N of W contain eigenvalues which have
                  converged.

    @ingroup magma_geev
*******************************************************************************/
extern "C" magma_int_t
magma_cgeev_m(
    magma_vec_t jobvl, magma_vec_t jobvr, magma_int_t n,
    magmaFloatComplex *A, magma_int_t lda,
    #ifdef COMPLEX
    magmaFloatComplex *w,
    #else
    float *wr, float *wi,
    #endif
    magmaFloatComplex *VL, magma_int_t ldvl,
    magmaFloatComplex *VR, magma_int_t ldvr,
    magmaFloatComplex *work, magma_int_t lwork,
    #ifdef COMPLEX
    float *rwork,
    #endif
    magma_int_t *info )
{
    #define VL(i,j)  (VL + (i) + (j)*ldvl)
    #define VR(i,j)  (VR + (i) + (j)*ldvr)
    
    const magma_int_t ione  = 1;
    const magma_int_t izero = 0;
    
    float d__1, d__2;
    magmaFloatComplex tmp;
    float scl;
    float dum[1], eps;
    float anrm, cscale, bignum, smlnum;
    magma_int_t i, k, ilo, ihi;
    magma_int_t ibal, ierr, itau, iwrk, nout, liwrk, nb;
    magma_int_t scalea, minwrk, optwrk, irwork, lquery, wantvl, wantvr, select[1];

    magma_side_t side = MagmaRight;
    magma_int_t ngpu = magma_num_gpus();

    irwork = 0;
    *info = 0;
    lquery = (lwork == -1);
    wantvl = (jobvl == MagmaVec);
    wantvr = (jobvr == MagmaVec);
    if (! wantvl && jobvl != MagmaNoVec) {
        *info = -1;
    } else if (! wantvr && jobvr != MagmaNoVec) {
        *info = -2;
    } else if (n < 0) {
        *info = -3;
    } else if (lda < max(1,n)) {
        *info = -5;
    } else if ( (ldvl < 1) || (wantvl && (ldvl < n))) {
        *info = -8;
    } else if ( (ldvr < 1) || (wantvr && (ldvr < n))) {
        *info = -10;
    }

    /* Compute workspace */
    nb = magma_get_cgehrd_nb( n );
    if (*info == 0) {
        minwrk = (1 +   nb + nb*ngpu)*n;
        optwrk = (1 + 2*nb + nb*ngpu)*n;
        work[0] = magma_cmake_lwork( optwrk );

        if (lwork < minwrk && ! lquery) {
            *info = -12;
        }
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /* Quick return if possible */
    if (n == 0) {
        return *info;
    }
    
    #if defined(Version3)
    magmaFloatComplex *dT;
    if (MAGMA_SUCCESS != magma_cmalloc( &dT, nb*n )) {
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }
    #endif
    #if defined(Version5)
    magmaFloatComplex *T;
    if (MAGMA_SUCCESS != magma_cmalloc_cpu( &T, nb*n )) {
        *info = MAGMA_ERR_HOST_ALLOC;
        return *info;
    }
    #endif

    /* Get machine constants */
    eps    = lapackf77_slamch( "P" );
    smlnum = lapackf77_slamch( "S" );
    bignum = 1. / smlnum;
    lapackf77_slabad( &smlnum, &bignum );
    smlnum = magma_ssqrt( smlnum ) / eps;
    bignum = 1. / smlnum;

    /* Scale A if max element outside range [SMLNUM,BIGNUM] */
    anrm = lapackf77_clange( "M", &n, &n, A, &lda, dum );
    scalea = 0;
    if (anrm > 0. && anrm < smlnum) {
        scalea = 1;
        cscale = smlnum;
    } else if (anrm > bignum) {
        scalea = 1;
        cscale = bignum;
    }
    if (scalea) {
        lapackf77_clascl( "G", &izero, &izero, &anrm, &cscale, &n, &n, A, &lda, &ierr );
    }

    /* Balance the matrix
     * (CWorkspace: none)
     * (RWorkspace: need N)
     *  - this space is reserved until after gebak */
    ibal = 0;
    lapackf77_cgebal( "B", &n, A, &lda, &ilo, &ihi, &rwork[ibal], &ierr );

    /* Reduce to upper Hessenberg form
     * (CWorkspace: need 2*N, prefer N + N*NB + NB*NGPU)
     * (RWorkspace: N)
     *  - added NB*NGPU needed for multi-GPU magma_cgehrd_m
     *  - including N reserved for gebal/gebak, unused by cgehrd */
    itau = 0;
    iwrk = itau + n;
    liwrk = lwork - iwrk;

    #if defined(Version1)
        // Version 1 - LAPACK
        lapackf77_cgehrd( &n, &ilo, &ihi, A, &lda,
                          &work[itau], &work[iwrk], &liwrk, &ierr );
    #elif defined(Version2)
        // Version 2 - LAPACK consistent HRD
        magma_cgehrd2( n, ilo, ihi, A, lda,
                       &work[itau], &work[iwrk], liwrk, &ierr );
    #elif defined(Version3)
        // Version 3 - LAPACK consistent MAGMA HRD + T matrices stored,
        magma_cgehrd( n, ilo, ihi, A, lda,
                      &work[itau], &work[iwrk], liwrk, dT, &ierr );
    #elif defined(Version5)
        // Version 4 - Multi-GPU, T on host
        magma_cgehrd_m( n, ilo, ihi, A, lda,
                        &work[itau], &work[iwrk], liwrk, T, &ierr );
    #endif

    if (wantvl) {
        /* Want left eigenvectors
         * Copy Householder vectors to VL */
        side = MagmaLeft;
        lapackf77_clacpy( MagmaLowerStr, &n, &n, A, &lda, VL, &ldvl );

        /* Generate unitary matrix in VL
         * (CWorkspace: need 2*N-1, prefer N + (N-1)*NB)
         * (RWorkspace: N)
         *  - including N reserved for gebal/gebak, unused by cunghr */
        #if defined(Version1) || defined(Version2)
            // Version 1 & 2 - LAPACK
            lapackf77_cunghr( &n, &ilo, &ihi, VL, &ldvl, &work[itau],
                              &work[iwrk], &liwrk, &ierr );
        #elif defined(Version3)
            // Version 3 - LAPACK consistent MAGMA HRD + T matrices stored
            magma_cunghr( n, ilo, ihi, VL, ldvl, &work[itau], dT, nb, &ierr );
        #elif defined(Version5)
            // Version 5 - Multi-GPU, T on host
            magma_cunghr_m( n, ilo, ihi, VL, ldvl, &work[itau], T, nb, &ierr );
        #endif

        /* Perform QR iteration, accumulating Schur vectors in VL
         * (CWorkspace: need 1, prefer HSWORK (see comments) )
         * (RWorkspace: N)
         *  - including N reserved for gebal/gebak, unused by chseqr */
        iwrk = itau;
        liwrk = lwork - iwrk;
        lapackf77_chseqr( "S", "V", &n, &ilo, &ihi, A, &lda, w,
                          VL, &ldvl, &work[iwrk], &liwrk, info );

        if (wantvr) {
            /* Want left and right eigenvectors
             * Copy Schur vectors to VR */
            side = MagmaBothSides;
            lapackf77_clacpy( "F", &n, &n, VL, &ldvl, VR, &ldvr );
        }
    }
    else if (wantvr) {
        /* Want right eigenvectors
         * Copy Householder vectors to VR */
        side = MagmaRight;
        lapackf77_clacpy( "L", &n, &n, A, &lda, VR, &ldvr );

        /* Generate unitary matrix in VR
         * (CWorkspace: need 2*N-1, prefer N + (N-1)*NB)
         * (RWorkspace: N)
         *  - including N reserved for gebal/gebak, unused by cunghr */
        #if defined(Version1) || defined(Version2)
            // Version 1 & 2 - LAPACK
            lapackf77_cunghr( &n, &ilo, &ihi, VR, &ldvr, &work[itau],
                              &work[iwrk], &liwrk, &ierr );
        #elif defined(Version3)
            // Version 3 - LAPACK consistent MAGMA HRD + T matrices stored
            magma_cunghr( n, ilo, ihi, VR, ldvr, &work[itau], dT, nb, &ierr );
        #elif defined(Version5)
            // Version 5 - Multi-GPU, T on host
            magma_cunghr_m( n, ilo, ihi, VR, ldvr, &work[itau], T, nb, &ierr );
        #endif

        /* Perform QR iteration, accumulating Schur vectors in VR
         * (CWorkspace: need 1, prefer HSWORK (see comments) )
         * (RWorkspace: N)
         *  - including N reserved for gebal/gebak, unused by chseqr */
        iwrk = itau;
        liwrk = lwork - iwrk;
        lapackf77_chseqr( "S", "V", &n, &ilo, &ihi, A, &lda, w,
                          VR, &ldvr, &work[iwrk], &liwrk, info );
    }
    else {
        /* Compute eigenvalues only
         * (CWorkspace: need 1, prefer HSWORK (see comments) )
         * (RWorkspace: N)
         *  - including N reserved for gebal/gebak, unused by chseqr */
        iwrk = itau;
        liwrk = lwork - iwrk;
        lapackf77_chseqr( "E", "N", &n, &ilo, &ihi, A, &lda, w,
                          VR, &ldvr, &work[iwrk], &liwrk, info );
    }

    /* If INFO > 0 from CHSEQR, then quit */
    if (*info > 0) {
        goto CLEANUP;
    }

    if (wantvl || wantvr) {
        /* Compute left and/or right eigenvectors
         * (CWorkspace: need 2*N)
         * (RWorkspace: need 2*N)
         *  - including N reserved for gebal/gebak, unused by ctrevc */
        irwork = ibal + n;
        #if TREVC_VERSION == 1
        lapackf77_ctrevc( lapack_side_const(side), "B", select, &n, A, &lda, VL, &ldvl,
                          VR, &ldvr, &n, &nout, &work[iwrk], &rwork[irwork], &ierr );
        #elif TREVC_VERSION == 2
        liwrk = lwork - iwrk;
        lapackf77_ctrevc3( lapack_side_const(side), "B", select, &n, A, &lda, VL, &ldvl,
                           VR, &ldvr, &n, &nout, &work[iwrk], &liwrk, &rwork[irwork], &ierr );
        #elif TREVC_VERSION == 3
        magma_ctrevc3( side, MagmaBacktransVec, select, n, A, lda, VL, ldvl,
                       VR, ldvr, n, &nout, &work[iwrk], liwrk, &rwork[irwork], &ierr );
        #elif TREVC_VERSION == 4
        magma_ctrevc3_mt( side, MagmaBacktransVec, select, n, A, lda, VL, ldvl,
                          VR, ldvr, n, &nout, &work[iwrk], liwrk, &rwork[irwork], &ierr );
        #elif TREVC_VERSION == 5
        magma_ctrevc3_mt_gpu( side, MagmaBacktransVec, select, n, A, lda, VL, ldvl,
                              VR, ldvr, n, &nout, &work[iwrk], liwrk, &rwork[irwork], &ierr );
        #else
        #error Unknown TREVC_VERSION
        #endif
    }

    if (wantvl) {
        /* Undo balancing of left eigenvectors
         * (CWorkspace: none)
         * (RWorkspace: need N) */
        lapackf77_cgebak( "B", "L", &n, &ilo, &ihi, &rwork[ibal], &n,
                          VL, &ldvl, &ierr );

        /* Normalize left eigenvectors and make largest component real */
        for (i = 0; i < n; ++i) {
            scl = 1. / magma_cblas_scnrm2( n, VL(0,i), 1 );
            blasf77_csscal( &n, &scl, VL(0,i), &ione );
            for (k = 0; k < n; ++k) {
                /* Computing 2nd power */
                d__1 = MAGMA_C_REAL( *VL(k,i) );
                d__2 = MAGMA_C_IMAG( *VL(k,i) );
                rwork[irwork + k] = d__1*d__1 + d__2*d__2;
            }
            k = blasf77_isamax( &n, &rwork[irwork], &ione ) - 1;  // subtract 1; k is 0-based
            tmp = MAGMA_C_CONJ( *VL(k,i) ) / magma_ssqrt( rwork[irwork + k] );
            blasf77_cscal( &n, &tmp, VL(0,i), &ione );
            *VL(k,i) = MAGMA_C_MAKE( MAGMA_C_REAL( *VL(k,i) ), 0 );
        }
    }

    if (wantvr) {
        /* Undo balancing of right eigenvectors
         * (CWorkspace: none)
         * (RWorkspace: need N) */
        lapackf77_cgebak( "B", "R", &n, &ilo, &ihi, &rwork[ibal], &n,
                          VR, &ldvr, &ierr );

        /* Normalize right eigenvectors and make largest component real */
        for (i = 0; i < n; ++i) {
            scl = 1. / magma_cblas_scnrm2( n, VR(0,i), 1 );
            blasf77_csscal( &n, &scl, VR(0,i), &ione );
            for (k = 0; k < n; ++k) {
                /* Computing 2nd power */
                d__1 = MAGMA_C_REAL( *VR(k,i) );
                d__2 = MAGMA_C_IMAG( *VR(k,i) );
                rwork[irwork + k] = d__1*d__1 + d__2*d__2;
            }
            k = blasf77_isamax( &n, &rwork[irwork], &ione ) - 1;  // subtract 1; k is 0-based
            tmp = MAGMA_C_CONJ( *VR(k,i) ) / magma_ssqrt( rwork[irwork + k] );
            blasf77_cscal( &n, &tmp, VR(0,i), &ione );
            *VR(k,i) = MAGMA_C_MAKE( MAGMA_C_REAL( *VR(k,i) ), 0 );
        }
    }

CLEANUP:
    /* Undo scaling if necessary */
    if (scalea) {
        // converged eigenvalues, stored in WR[i+1:n] and WI[i+1:n] for i = INFO
        magma_int_t nval = n - (*info);
        magma_int_t ld   = max( nval, 1 );
        lapackf77_clascl( "G", &izero, &izero, &cscale, &anrm, &nval, &ione, w + (*info), &ld, &ierr );
        if (*info > 0) {
            // first ilo columns were already upper triangular,
            // so the corresponding eigenvalues are also valid.
            nval = ilo - 1;
            lapackf77_clascl( "G", &izero, &izero, &cscale, &anrm, &nval, &ione, w, &n, &ierr );
        }
    }

    #if defined(Version3)
    magma_free( dT );
    #endif
    #if defined(Version5)
    magma_free_cpu( T );
    #endif
    
    work[0] = magma_cmake_lwork( minwrk );  // TODO use optwrk as in dgeev

    return *info;
} /* magma_cgeev */
extern "C" magma_int_t
magma_sgeev(magma_vec_t jobvl, magma_vec_t jobvr, magma_int_t n,
            float *a, magma_int_t lda,
            float *WR, float *WI,
            float *vl, magma_int_t ldvl,
            float *vr, magma_int_t ldvr,
            float *work, magma_int_t lwork,
            magma_int_t *info, magma_queue_t queue)
{
/*  -- clMAGMA (version 1.0.0) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       September 2012

    Purpose   
    =======   
    SGEEV computes for an N-by-N real nonsymmetric matrix A, the   
    eigenvalues and, optionally, the left and/or right eigenvectors.   

    The right eigenvector v(j) of A satisfies   
                     A * v(j) = lambda(j) * v(j)   
    where lambda(j) is its eigenvalue.   
    The left eigenvector u(j) of A satisfies   
                  u(j)**T * A = lambda(j) * u(j)**T   
    where u(j)**T denotes the transpose of u(j).   

    The computed eigenvectors are normalized to have Euclidean norm   
    equal to 1 and largest component real.   

    Arguments   
    =========   
    JOBVL   (input) CHARACTER*1   
            = 'N': left eigenvectors of A are not computed;   
            = 'V': left eigenvectors of are computed.   

    JOBVR   (input) CHARACTER*1   
            = 'N': right eigenvectors of A are not computed;   
            = 'V': right eigenvectors of A are computed.   

    N       (input) INTEGER   
            The order of the matrix A. N >= 0.   

    A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)   
            On entry, the N-by-N matrix A.   
            On exit, A has been overwritten.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,N).   

    WR      (output) DOUBLE PRECISION array, dimension (N)   
    WI      (output) DOUBLE PRECISION array, dimension (N)   
            WR and WI contain the real and imaginary parts,
            respectively, of the computed eigenvalues.  Complex
            conjugate pairs of eigenvalues appear consecutively
            with the eigenvalue having the positive imaginary part
            first.

    VL      (output) DOUBLE PRECISION array, dimension (LDVL,N)   
            If JOBVL = 'V', the left eigenvectors u(j) are stored one   
            after another in the columns of VL, in the same order   
            as their eigenvalues.   
            If JOBVL = 'N', VL is not referenced.   
            u(j) = VL(:,j), the j-th column of VL.   

    LDVL    (input) INTEGER   
            The leading dimension of the array VL.  LDVL >= 1; if   
            JOBVL = 'V', LDVL >= N.   

    VR      (output) DOUBLE PRECISION array, dimension (LDVR,N)   
            If JOBVR = 'V', the right eigenvectors v(j) are stored one   
            after another in the columns of VR, in the same order   
            as their eigenvalues.   
            If JOBVR = 'N', VR is not referenced.   
            v(j) = VR(:,j), the j-th column of VR.   

    LDVR    (input) INTEGER   
            The leading dimension of the array VR.  LDVR >= 1; if   
            JOBVR = 'V', LDVR >= N.   

    WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK.  LWORK >= (1+nb)*N.   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   
            > 0:  if INFO = i, the QR algorithm failed to compute all the   
                  eigenvalues, and no eigenvectors have been computed;   
                  elements and i+1:N of W contain eigenvalues which have   
                  converged.   
    =====================================================================    */

    magma_int_t c__1 = 1;
    magma_int_t c__0 = 0;
    magma_int_t c_n1 = -1;
    
    magma_int_t a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, 
            i__2, i__3;
    float d__1, d__2;

    magma_int_t i__, k, ihi, ilo;
    float      r__, cs, sn, scl;
    float dum[1], eps;
    magma_int_t ibal;
    float anrm;
    magma_int_t ierr, itau, iwrk, nout;
    magma_int_t scalea;
    float cscale;
    float bignum;
    magma_int_t minwrk;
    magma_int_t wantvl;
    float smlnum;
    magma_int_t lquery, wantvr, select[1];

    magma_int_t nb = 0;
    magmaFloat_ptr dT;
    //magma_timestr_t start, end;

    char side[2] = {0, 0};
    magma_vec_t jobvl_ = jobvl;
    magma_vec_t jobvr_ = jobvr;

    *info = 0;
    lquery = lwork == -1;
    wantvl = lapackf77_lsame(lapack_const(jobvl_), "V");
    wantvr = lapackf77_lsame(lapack_const(jobvr_), "V");
    if (! wantvl && ! lapackf77_lsame(lapack_const(jobvl_), "N")) {
        *info = -1;
    } else if (! wantvr && ! lapackf77_lsame(lapack_const(jobvr_), "N")) {
        *info = -2;
    } else if (n < 0) {
        *info = -3;
    } else if (lda < max(1,n)) {
        *info = -5;
    } else if ( (ldvl < 1) || (wantvl && (ldvl < n))) {
        *info = -9;
    } else if ( (ldvr < 1) || (wantvr && (ldvr < n))) {
        *info = -11;
    }

    /*  Compute workspace   */
    if (*info == 0) {

        nb = magma_get_sgehrd_nb(n);
        minwrk = (2+nb)*n;
        work[0] = (float) minwrk;
        
        if (lwork < minwrk && ! lquery) {
            *info = -13;
        }

    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /* Quick return if possible */
    if (n == 0) {
        return *info;
    }
   
    // if eigenvectors are needed
#if defined(VERSION3)
    if (MAGMA_SUCCESS != magma_malloc( &dT, nb*n*sizeof(float) )) {
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }
#endif

    // subtract row and col for 1-based indexing
    a_dim1   = lda;
    a_offset = 1 + a_dim1;
    a       -= a_offset;
    vl_dim1   = ldvl;
    vl_offset = 1 + vl_dim1;
    vl       -= vl_offset;
    vr_dim1   = ldvr;
    vr_offset = 1 + vr_dim1;
    vr       -= vr_offset;
    --work;

    /* Get machine constants */
    eps    = lapackf77_slamch("P");
    smlnum = lapackf77_slamch("S");
    bignum = 1. / smlnum;
    lapackf77_slabad(&smlnum, &bignum);
    smlnum = magma_ssqrt(smlnum) / eps;
    bignum = 1. / smlnum;

    /* Scale A if max element outside range [SMLNUM,BIGNUM] */
    anrm = lapackf77_slange("M", &n, &n, &a[a_offset], &lda, dum);
    scalea = 0;
    if (anrm > 0. && anrm < smlnum) {
        scalea = 1;
        cscale = smlnum;
    } else if (anrm > bignum) {
        scalea = 1;
        cscale = bignum;
    }
    if (scalea) {
        lapackf77_slascl("G", &c__0, &c__0, &anrm, &cscale, &n, &n, 
                &a[a_offset], &lda, &ierr);
    }

    /* Balance the matrix   
       (Workspace: need N) */
    ibal = 1;
    lapackf77_sgebal("B", &n, &a[a_offset], &lda, &ilo, &ihi, &work[ibal], &ierr);

    /* Reduce to upper Hessenberg form   
       (Workspace: need 3*N, prefer 2*N+N*NB) */
    itau = ibal + n;
    iwrk = itau + n;
    i__1 = lwork - iwrk + 1;

    //start = get_current_time();
#if defined(VERSION1)
    /*
     * Version 1 - LAPACK
     */
    lapackf77_sgehrd(&n, &ilo, &ihi, &a[a_offset], &lda,
                     &work[itau], &work[iwrk], &i__1, &ierr);
#elif defined(VERSION2)
    /*
     *  Version 2 - LAPACK consistent HRD
     */
    magma_sgehrd2(n, ilo, ihi, &a[a_offset], lda,
                  &work[itau], &work[iwrk], &i__1, &ierr);
#elif defined(VERSION3)
    /*  
     * Version 3 - LAPACK consistent MAGMA HRD + matrices T stored, 
     */
    magma_sgehrd(n, ilo, ihi, &a[a_offset], lda,
                 &work[itau], &work[iwrk], i__1, dT, 0, &ierr, queue);
#endif
    //end = get_current_time();
    //printf("    Time for sgehrd = %5.2f sec\n", GetTimerValue(start,end)/1000.);

    if (wantvl) {
      /*        Want left eigenvectors   
                Copy Householder vectors to VL */
        side[0] = 'L';
        lapackf77_slacpy(MagmaLowerStr, &n, &n, 
                         &a[a_offset], &lda, &vl[vl_offset], &ldvl);

        /* 
         * Generate orthogonal matrix in VL 
         *   (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB) 
         */
        i__1 = lwork - iwrk + 1;

        //start = get_current_time();
#if defined(VERSION1) || defined(VERSION2)
        /*
         * Version 1 & 2 - LAPACK
         */
        lapackf77_sorghr(&n, &ilo, &ihi, &vl[vl_offset], &ldvl, 
                         &work[itau], &work[iwrk], &i__1, &ierr);
#elif defined(VERSION3)
        /*
         * Version 3 - LAPACK consistent MAGMA HRD + matrices T stored
         */
        magma_sorghr(n, ilo, ihi, &vl[vl_offset], ldvl, &work[itau], 
                     dT, 0, nb, &ierr, queue);
#endif
        //end = get_current_time();
        //printf("    Time for sorghr = %5.2f sec\n", GetTimerValue(start,end)/1000.);

        /*
         * Perform QR iteration, accumulating Schur vectors in VL
         *   (Workspace: need N+1, prefer N+HSWORK (see comments) )
         */
        iwrk = itau;
        i__1 = lwork - iwrk + 1;
        lapackf77_shseqr("S", "V", &n, &ilo, &ihi, &a[a_offset], &lda, WR, WI, 
                         &vl[vl_offset], &ldvl, &work[iwrk], &i__1, info);

        if (wantvr) {
          /* Want left and right eigenvectors   
             Copy Schur vectors to VR */
            side[0] = 'B';
            lapackf77_slacpy("F", &n, &n, &vl[vl_offset], &ldvl, &vr[vr_offset], &ldvr);
        }

    } else if (wantvr) {
        /*  Want right eigenvectors   
            Copy Householder vectors to VR */
        side[0] = 'R';
        lapackf77_slacpy("L", &n, &n, &a[a_offset], &lda, &vr[vr_offset], &ldvr);

        /*
         * Generate orthogonal matrix in VR
         *   (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB) 
         */
        i__1 = lwork - iwrk + 1;
        //start = get_current_time();
#if defined(VERSION1) || defined(VERSION2)
        /*
         * Version 1 & 2 - LAPACK
         */
        lapackf77_sorghr(&n, &ilo, &ihi, &vr[vr_offset], &ldvr, 
                         &work[itau], &work[iwrk], &i__1, &ierr);
#elif defined(VERSION3)
        /*
         * Version 3 - LAPACK consistent MAGMA HRD + matrices T stored
         */
        magma_sorghr(n, ilo, ihi, &vr[vr_offset], ldvr, 
                     &work[itau], dT, 0, nb, &ierr, queue);
#endif
        //end = get_current_time();
        //printf("    Time for sorghr = %5.2f sec\n", GetTimerValue(start,end)/1000.);

        /* 
         * Perform QR iteration, accumulating Schur vectors in VR   
         *   (Workspace: need N+1, prefer N+HSWORK (see comments) ) 
         */
        iwrk = itau;
        i__1 = lwork - iwrk + 1;
        lapackf77_shseqr("S", "V", &n, &ilo, &ihi, &a[a_offset], &lda, WR, WI,
                &vr[vr_offset], &ldvr, &work[iwrk], &i__1, info);
    } else {
        /*  
         * Compute eigenvalues only   
         *   (Workspace: need N+1, prefer N+HSWORK (see comments) ) 
         */
        iwrk = itau;
        i__1 = lwork - iwrk + 1;
        lapackf77_shseqr("E", "N", &n, &ilo, &ihi, &a[a_offset], &lda, WR, WI,
                &vr[vr_offset], &ldvr, &work[iwrk], &i__1, info);
    }

    /* If INFO > 0 from SHSEQR, then quit */
    if (*info > 0) {
        fprintf(stderr, "SHSEQR returned with info = %d\n", (int) *info);
        goto L50;
    }

    if (wantvl || wantvr) {
        /*  
         * Compute left and/or right eigenvectors   
         *   (Workspace: need 4*N) 
         */
        lapackf77_strevc(side, "B", select, &n, &a[a_offset], &lda, &vl[vl_offset], &ldvl,
                &vr[vr_offset], &ldvr, &n, &nout, &work[iwrk], &ierr);
    }

    if (wantvl) {
        /*  
         * Undo balancing of left eigenvectors   
         *   (Workspace: need N) 
         */
        lapackf77_sgebak("B", "L", &n, &ilo, &ihi, 
                         &work[ibal], &n, &vl[vl_offset], &ldvl, &ierr);

        /* Normalize left eigenvectors and make largest component real */
        for (i__ = 1; i__ <= n; ++i__) {
            if ( WI[i__-1] == 0.) {
                scl = cblas_snrm2(n, &vl[i__ * vl_dim1 + 1], 1);
                scl = 1. / scl;
                cblas_sscal(n, (scl), &vl[i__ * vl_dim1 + 1], 1);
            } else if (WI[i__-1] > 0.) {
                d__1 = cblas_snrm2(n, &vl[ i__      * vl_dim1 + 1], 1);
                d__2 = cblas_snrm2(n, &vl[(i__ + 1) * vl_dim1 + 1], 1);
                scl = lapackf77_slapy2(&d__1, &d__2);
                scl = 1. / scl;
                cblas_sscal(n, (scl), &vl[ i__      * vl_dim1 + 1], 1);
                cblas_sscal(n, (scl), &vl[(i__ + 1) * vl_dim1 + 1], 1);
                i__2 = n;
                for (k = 1; k <= i__2; ++k) {
                    /* Computing 2nd power */
                    d__1 = vl[k + i__ * vl_dim1];
                    /* Computing 2nd power */
                    d__2 = vl[k + (i__ + 1) * vl_dim1];
                    work[iwrk + k - 1] = d__1 * d__1 + d__2 * d__2;
                }
                /* Comment:
                   Fortran BLAS does not have to add 1
                   C       BLAS must add one to cblas_isamax */ 
                k = cblas_isamax(n, &work[iwrk], 1)+1;
                lapackf77_slartg(&vl[k +  i__      * vl_dim1], 
                                 &vl[k + (i__ + 1) * vl_dim1], &cs, &sn, &r__);
                cblas_srot(n, &vl[ i__      * vl_dim1 + 1], 1, 
                           &vl[(i__ + 1) * vl_dim1 + 1], 1, cs, (sn));
                vl[k + (i__ + 1) * vl_dim1] = 0.;
            }
        }
    }

    if (wantvr) {
        /*  
         * Undo balancing of right eigenvectors   
         *   (Workspace: need N) 
         */
        lapackf77_sgebak("B", "R", &n, &ilo, &ihi, &work[ibal], &n, 
                         &vr[vr_offset], &ldvr, &ierr);

        /* Normalize right eigenvectors and make largest component real */
        for (i__ = 1; i__ <= n; ++i__) {
            if (WI[i__-1] == 0.) {
                scl = 1. / cblas_snrm2(n, &vr[i__ * vr_dim1 + 1], 1);
                cblas_sscal(n, (scl), &vr[i__ * vr_dim1 + 1], 1);
            } else if (WI[i__-1] > 0.) {
                d__1 = cblas_snrm2(n, &vr[ i__      * vr_dim1 + 1], 1);
                d__2 = cblas_snrm2(n, &vr[(i__ + 1) * vr_dim1 + 1], 1);
                scl = lapackf77_slapy2(&d__1, &d__2);
                scl = 1. / scl;
                cblas_sscal(n, (scl), &vr[ i__      * vr_dim1 + 1], 1);
                cblas_sscal(n, (scl), &vr[(i__ + 1) * vr_dim1 + 1], 1);
                i__2 = n;
                for (k = 1; k <= i__2; ++k) {
                    /* Computing 2nd power */
                    d__1 = vr[k + i__ * vr_dim1];
                    /* Computing 2nd power */
                    d__2 = vr[k + (i__ + 1) * vr_dim1];
                    work[iwrk + k - 1] = d__1 * d__1 + d__2 * d__2;
                }
                /* Comment:
                   Fortran BLAS does not have to add 1
                   C       BLAS must add one to cblas_isamax */
                k = cblas_isamax(n, &work[iwrk], 1)+1;
                lapackf77_slartg(&vr[k + i__ * vr_dim1], &vr[k + (i__ + 1) * vr_dim1], 
                        &cs, &sn, &r__);
                cblas_srot(n, &vr[ i__      * vr_dim1 + 1], 1, 
                              &vr[(i__ + 1) * vr_dim1 + 1], 1, cs, (sn));
                vr[k + (i__ + 1) * vr_dim1] = 0.;
            }
        }
    }

    /*  Undo scaling if necessary */
L50:
    if (scalea) {
        i__1 = n - *info;
        /* Computing MAX */
        i__3 = n - *info;
        i__2 = max(i__3,1);
        lapackf77_slascl("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, 
                         WR + (*info), &i__2, &ierr);
        i__1 = n - *info;
        /* Computing MAX */
        i__3 = n - *info;
        i__2 = max(i__3,1);
        lapackf77_slascl("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, 
                WI + (*info), &i__2, &ierr);
        if (*info > 0) {
            i__1 = ilo - 1;
            lapackf77_slascl("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, 
                    WR, &n, &ierr);
            i__1 = ilo - 1;
            lapackf77_slascl("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1,
                    WI, &n, &ierr);
        }
    }

#if defined(VERSION3)
    magma_free( dT );
#endif
    return *info;
} /* magma_sgeev */
Example #23
0
/***************************************************************************//**
    Purpose
    -------
    CHEEVD computes all eigenvalues and, optionally, eigenvectors of a
    complex Hermitian matrix A.  If eigenvectors are desired, it uses a
    divide and conquer algorithm.

    The divide and conquer algorithm makes very mild assumptions about
    floating point arithmetic. It will work on machines with a guard
    digit in add/subtract, or on those binary machines without guard
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
    Cray-2. It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.

    Arguments
    ---------
    @param[in]
    ngpu    INTEGER
            Number of GPUs to use. ngpu > 0.

    @param[in]
    jobz    magma_vec_t
      -     = MagmaNoVec:  Compute eigenvalues only;
      -     = MagmaVec:    Compute eigenvalues and eigenvectors.

    @param[in]
    range   magma_range_t
      -     = MagmaRangeAll: all eigenvalues will be found.
      -     = MagmaRangeV:   all eigenvalues in the half-open interval (VL,VU]
                   will be found.
      -     = MagmaRangeI:   the IL-th through IU-th eigenvalues will be found.

    @param[in]
    uplo    magma_uplo_t
      -     = MagmaUpper:  Upper triangle of A is stored;
      -     = MagmaLower:  Lower triangle of A is stored.

    @param[in]
    n       INTEGER
            The order of the matrix A.  N >= 0.

    @param[in,out]
    A       COMPLEX array, dimension (LDA, N)
            On entry, the Hermitian matrix A.  If UPLO = MagmaUpper, the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = MagmaLower,
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.
            On exit, if JOBZ = MagmaVec, then if INFO = 0, A contains the
            orthonormal eigenvectors of the matrix A.
            If JOBZ = MagmaNoVec, then on exit the lower triangle (if UPLO=MagmaLower)
            or the upper triangle (if UPLO=MagmaUpper) of A, including the
            diagonal, is destroyed.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    @param[in]
    vl      REAL
    @param[in]
    vu      REAL
            If RANGE=MagmaRangeV, the lower and upper bounds of the interval to
            be searched for eigenvalues. VL < VU.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeI.

    @param[in]
    il      INTEGER
    @param[in]
    iu      INTEGER
            If RANGE=MagmaRangeI, the indices (in ascending order) of the
            smallest and largest eigenvalues to be returned.
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeV.

    @param[out]
    m       INTEGER
            The total number of eigenvalues found.  0 <= M <= N.
            If RANGE = MagmaRangeAll, M = N, and if RANGE = MagmaRangeI, M = IU-IL+1.

    @param[out]
    w       REAL array, dimension (N)
            If INFO = 0, the eigenvalues in ascending order.

    @param[out]
    work    (workspace) COMPLEX array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The length of the array WORK.
     -      If N <= 1,                      LWORK >= 1.
     -      If JOBZ = MagmaNoVec and N > 1, LWORK >= N + N*NB.
     -      If JOBZ = MagmaVec   and N > 1, LWORK >= max( N + N*NB, 2*N + N**2 ).
            NB can be obtained through magma_get_chetrd_nb(N).
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal sizes of the WORK, RWORK and
            IWORK arrays, returns these values as the first entries of
            the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    rwork   (workspace) REAL array,
                                           dimension (LRWORK)
            On exit, if INFO = 0, RWORK[0] returns the optimal LRWORK.

    @param[in]
    lrwork  INTEGER
            The dimension of the array RWORK.
     -      If N <= 1,                      LRWORK >= 1.
     -      If JOBZ = MagmaNoVec and N > 1, LRWORK >= N.
     -      If JOBZ = MagmaVec   and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
    \n
            If LRWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    iwork   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK.

    @param[in]
    liwork  INTEGER
            The dimension of the array IWORK.
     -      If N <= 1,                      LIWORK >= 1.
     -      If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1.
     -      If JOBZ = MagmaVec   and N > 1, LIWORK >= 3 + 5*N.
    \n
            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value
      -     > 0:  if INFO = i and JOBZ = MagmaNoVec, then the algorithm failed
                  to converge; i off-diagonal elements of an intermediate
                  tridiagonal form did not converge to zero;
                  if INFO = i and JOBZ = MagmaVec, then the algorithm failed
                  to compute an eigenvalue while working on the submatrix
                  lying in rows and columns INFO/(N+1) through
                  mod(INFO,N+1).

    Further Details
    ---------------
    Based on contributions by
       Jeff Rutter, Computer Science Division, University of California
       at Berkeley, USA

    Modified description of INFO. Sven, 16 Feb 05.

    @ingroup magma_heevdx
*******************************************************************************/
extern "C" magma_int_t
magma_cheevdx_m(
    magma_int_t ngpu,
    magma_vec_t jobz, magma_range_t range, magma_uplo_t uplo,
    magma_int_t n,
    magmaFloatComplex *A, magma_int_t lda,
    float vl, float vu, magma_int_t il, magma_int_t iu,
    magma_int_t *m, float *w,
    magmaFloatComplex *work, magma_int_t lwork,
    #ifdef COMPLEX
    float *rwork, magma_int_t lrwork,
    #endif
    magma_int_t *iwork, magma_int_t liwork,
    magma_int_t *info)
{
    const char* uplo_  = lapack_uplo_const( uplo  );
    const char* jobz_  = lapack_vec_const( jobz  );
    magma_int_t ione = 1;
    magma_int_t izero = 0;
    float d_one = 1.;
    
    float d__1;
    
    float eps;
    magma_int_t inde;
    float anrm;
    magma_int_t imax;
    float rmin, rmax;
    float sigma;
    magma_int_t iinfo, lwmin;
    magma_int_t lower;
    magma_int_t llrwk;
    magma_int_t wantz;
    magma_int_t indwk2, llwrk2;
    magma_int_t iscale;
    float safmin;
    float bignum;
    magma_int_t indtau;
    magma_int_t indrwk, indwrk, liwmin;
    magma_int_t lrwmin, llwork;
    float smlnum;
    magma_int_t lquery;
    magma_int_t alleig, valeig, indeig;
    
    wantz = (jobz == MagmaVec);
    lower = (uplo == MagmaLower);
    
    alleig = (range == MagmaRangeAll);
    valeig = (range == MagmaRangeV);
    indeig = (range == MagmaRangeI);
    
    lquery = (lwork == -1 || lrwork == -1 || liwork == -1);

    *info = 0;
    if (! (wantz || (jobz == MagmaNoVec))) {
        *info = -1;
    } else if (! (alleig || valeig || indeig)) {
        *info = -2;
    } else if (! (lower || (uplo == MagmaUpper))) {
        *info = -3;
    } else if (n < 0) {
        *info = -4;
    } else if (lda < max(1,n)) {
        *info = -6;
    } else {
        if (valeig) {
            if (n > 0 && vu <= vl) {
                *info = -8;
            }
        } else if (indeig) {
            if (il < 1 || il > max(1,n)) {
                *info = -9;
            } else if (iu < min(n,il) || iu > n) {
                *info = -10;
            }
        }
    }
    
    magma_int_t nb = magma_get_chetrd_nb( n );
    if ( n <= 1 ) {
        lwmin  = 1;
        lrwmin = 1;
        liwmin = 1;
    }
    else if ( wantz ) {
        lwmin  = max( n + n*nb, 2*n + n*n );
        lrwmin = 1 + 5*n + 2*n*n;
        liwmin = 3 + 5*n;
    }
    else {
        lwmin  = n + n*nb;
        lrwmin = n;
        liwmin = 1;
    }
    
    work[0]  = magma_cmake_lwork( lwmin );
    rwork[0] = magma_smake_lwork( lrwmin );
    iwork[0] = liwmin;
    
    if ((lwork < lwmin) && !lquery) {
        *info = -14;
    } else if ((lrwork < lrwmin) && ! lquery) {
        *info = -16;
    } else if ((liwork < liwmin) && ! lquery) {
        *info = -18;
    }
    
    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }
    
    /* Quick return if possible */
    if (n == 0) {
        return *info;
    }

    if (n == 1) {
        w[0] = MAGMA_C_REAL(A[0]);
        if (wantz) {
            A[0] = MAGMA_C_ONE;
        }
        return *info;
    }
    /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */
    if (n <= 128) {
        #ifdef ENABLE_DEBUG
        printf("--------------------------------------------------------------\n");
        printf("  warning matrix too small N=%lld NB=%lld, calling lapack on CPU\n", (long long) n, (long long) nb );
        printf("--------------------------------------------------------------\n");
        #endif
        lapackf77_cheevd(jobz_, uplo_,
                         &n, A, &lda,
                         w, work, &lwork,
                         #ifdef COMPLEX
                         rwork, &lrwork,
                         #endif
                         iwork, &liwork, info);
        return *info;
    }

    /* Get machine constants. */
    safmin = lapackf77_slamch("Safe minimum");
    eps = lapackf77_slamch("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = magma_ssqrt(smlnum);
    rmax = magma_ssqrt(bignum);

    /* Scale matrix to allowable range, if necessary. */
    anrm = lapackf77_clanhe("M", uplo_, &n, A, &lda, rwork);
    iscale = 0;
    if (anrm > 0. && anrm < rmin) {
        iscale = 1;
        sigma = rmin / anrm;
    } else if (anrm > rmax) {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1) {
        lapackf77_clascl(uplo_, &izero, &izero, &d_one, &sigma, &n, &n, A,
                         &lda, info);
    }

    /* Call CHETRD to reduce Hermitian matrix to tridiagonal form. */
    inde = 0;
    indtau = 0;
    indwrk = indtau + n;
    indrwk = inde + n;
    indwk2 = indwrk + n * n;
    llwork = lwork - indwrk;
    llwrk2 = lwork - indwk2;
    llrwk = lrwork - indrwk;

    magma_timer_t time=0;
    timer_start( time );

    magma_chetrd_mgpu(ngpu, 1, uplo, n, A, lda, w, &rwork[inde],
                      &work[indtau], &work[indwrk], llwork, &iinfo);

    timer_stop( time );
    timer_printf( "time chetrd = %6.2f\n", time );

    /* For eigenvalues only, call SSTERF.  For eigenvectors, first call
       CSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
       tridiagonal matrix, then call CUNMTR to multiply it to the Householder
       transformations represented as Householder vectors in A. */
    if (! wantz) {
        lapackf77_ssterf(&n, w, &rwork[inde], info);
        magma_smove_eig(range, n, w, &il, &iu, vl, vu, m);
    }
    else {
        timer_start( time );

        magma_cstedx_m(ngpu, range, n, vl, vu, il, iu, w, &rwork[inde],
                       &work[indwrk], n, &rwork[indrwk],
                       llrwk, iwork, liwork, info);

        timer_stop( time );
        timer_printf( "time cstedc = %6.2f\n", time );
        timer_start( time );

        magma_smove_eig(range, n, w, &il, &iu, vl, vu, m);

        magma_cunmtr_m(ngpu, MagmaLeft, uplo, MagmaNoTrans, n, *m, A, lda, &work[indtau],
                       &work[indwrk + n * (il-1)], n, &work[indwk2], llwrk2, &iinfo);

        lapackf77_clacpy("A", &n, m, &work[indwrk + n * (il-1)], &n, A, &lda);
        
        timer_stop( time );
        timer_printf( "time cunmtr + copy = %6.2f\n", time );
    }

    /* If matrix was scaled, then rescale eigenvalues appropriately. */
    if (iscale == 1) {
        if (*info == 0) {
            imax = n;
        } else {
            imax = *info - 1;
        }
        d__1 = 1. / sigma;
        blasf77_sscal(&imax, &d__1, w, &ione);
    }

    work[0]  = magma_cmake_lwork( lwmin );
    rwork[0] = magma_smake_lwork( lrwmin );
    iwork[0] = liwmin;

    return *info;
} /* magma_cheevd_m */
Example #24
0
/**
    Purpose
    -------
    SSYEVD computes all eigenvalues and, optionally, eigenvectors of
    a real symmetric matrix A.  If eigenvectors are desired, it uses a
    divide and conquer algorithm.

    The divide and conquer algorithm makes very mild assumptions about
    floating point arithmetic. It will work on machines with a guard
    digit in add/subtract, or on those binary machines without guard
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
    Cray-2. It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.

    Arguments
    ---------
    @param[in]
    jobz    magma_vec_t
      -     = MagmaNoVec:  Compute eigenvalues only;
      -     = MagmaVec:    Compute eigenvalues and eigenvectors.

    @param[in]
    uplo    magma_uplo_t
      -     = MagmaUpper:  Upper triangle of A is stored;
      -     = MagmaLower:  Lower triangle of A is stored.

    @param[in]
    n       INTEGER
            The order of the matrix A.  N >= 0.

    @param[in,out]
    A       REAL array, dimension (LDA, N)
            On entry, the symmetric matrix A.  If UPLO = MagmaUpper, the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = MagmaLower,
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.
            On exit, if JOBZ = MagmaVec, then if INFO = 0, A contains the
            orthonormal eigenvectors of the matrix A.
            If JOBZ = MagmaNoVec, then on exit the lower triangle (if UPLO=MagmaLower)
            or the upper triangle (if UPLO=MagmaUpper) of A, including the
            diagonal, is destroyed.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    @param[out]
    w       REAL array, dimension (N)
            If INFO = 0, the eigenvalues in ascending order.

    @param[out]
    work    (workspace) REAL array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The length of the array WORK.
            If N <= 1,                      LWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LWORK >= 2*N + N*NB.
            If JOBZ = MagmaVec   and N > 1, LWORK >= max( 2*N + N*NB, 1 + 6*N + 2*N**2 ).
            NB can be obtained through magma_get_ssytrd_nb(N).
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal sizes of the WORK and IWORK
            arrays, returns these values as the first entries of the WORK
            and IWORK arrays, and no error message related to LWORK or
            LIWORK is issued by XERBLA.

    @param[out]
    iwork   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK.

    @param[in]
    liwork  INTEGER
            The dimension of the array IWORK.
            If N <= 1,                      LIWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1.
            If JOBZ = MagmaVec   and N > 1, LIWORK >= 3 + 5*N.
    \n
            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK and
            IWORK arrays, returns these values as the first entries of
            the WORK and IWORK arrays, and no error message related to
            LWORK or LIWORK is issued by XERBLA.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value
      -     > 0:  if INFO = i and JOBZ = MagmaNoVec, then the algorithm failed
                  to converge; i off-diagonal elements of an intermediate
                  tridiagonal form did not converge to zero;
                  if INFO = i and JOBZ = MagmaVec, then the algorithm failed
                  to compute an eigenvalue while working on the submatrix
                  lying in rows and columns INFO/(N+1) through
                  mod(INFO,N+1).

    Further Details
    ---------------
    Based on contributions by
       Jeff Rutter, Computer Science Division, University of California
       at Berkeley, USA

    Modified description of INFO. Sven, 16 Feb 05.

    @ingroup magma_ssyev_driver
    ********************************************************************/
extern "C" magma_int_t
magma_ssyevd(magma_vec_t jobz, magma_uplo_t uplo,
             magma_int_t n,
             float *A, magma_int_t lda,
             float *w,
             float *work, magma_int_t lwork,
             magma_int_t *iwork, magma_int_t liwork,
             magma_int_t *info)
{
    const char* uplo_ = lapack_uplo_const( uplo );
    const char* jobz_ = lapack_vec_const( jobz );
    magma_int_t ione = 1;
    magma_int_t izero = 0;
    float d_one = 1.;

    float d__1;

    float eps;
    magma_int_t inde;
    float anrm;
    float rmin, rmax;
    float sigma;
    magma_int_t iinfo, lwmin;
    magma_int_t lower;
    magma_int_t wantz;
    magma_int_t indwk2, llwrk2;
    magma_int_t iscale;
    float safmin;
    float bignum;
    magma_int_t indtau;
    magma_int_t indwrk, liwmin;
    magma_int_t llwork;
    float smlnum;
    magma_int_t lquery;

    float* dwork;

    wantz = (jobz == MagmaVec);
    lower = (uplo == MagmaLower);
    lquery = (lwork == -1 || liwork == -1);

    *info = 0;

    if (! (wantz || (jobz == MagmaNoVec))) {
        *info = -1;
    } else if (! (lower || (uplo == MagmaUpper))) {
        *info = -2;
    } else if (n < 0) {
        *info = -3;
    } else if (lda < max(1,n)) {
        *info = -5;
    }

    magma_int_t nb = magma_get_ssytrd_nb( n );
    if ( n <= 1 ) {
        lwmin  = 1;
        liwmin = 1;
    }
    else if ( wantz ) {
        lwmin  = max( 2*n + n*nb, 1 + 6*n + 2*n*n );
        liwmin = 3 + 5*n;
    }
    else {
        lwmin  = 2*n + n*nb;
        liwmin = 1;
    }
    // multiply by 1+eps to ensure length gets rounded up,
    // if it cannot be exactly represented in floating point.
    float one_eps = 1. + lapackf77_slamch("Epsilon");
    work[0]  = lwmin * one_eps;
    iwork[0] = liwmin;

    if ((lwork < lwmin) && !lquery) {
        *info = -8;
    } else if ((liwork < liwmin) && ! lquery) {
        *info = -10;
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /* Quick return if possible */
    if (n == 0) {
        return *info;
    }

    if (n == 1) {
        w[0] = A[0];
        if (wantz) {
            A[0] = 1.;
        }
        return *info;
    }
    
    /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */
    if (n <= 128) {
        #ifdef ENABLE_DEBUG
        printf("--------------------------------------------------------------\n");
        printf("  warning matrix too small N=%d NB=%d, calling lapack on CPU  \n", (int) n, (int) nb);
        printf("--------------------------------------------------------------\n");
        #endif
        lapackf77_ssyevd(jobz_, uplo_,
                         &n, A, &lda,
                         w, work, &lwork,
                         iwork, &liwork, info);
        return *info;
    }

    /* Get machine constants. */
    safmin = lapackf77_slamch("Safe minimum");
    eps    = lapackf77_slamch("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = magma_ssqrt(smlnum);
    rmax = magma_ssqrt(bignum);

    /* Scale matrix to allowable range, if necessary. */
    anrm = lapackf77_slansy("M", uplo_, &n, A, &lda, work );
    iscale = 0;
    if (anrm > 0. && anrm < rmin) {
        iscale = 1;
        sigma = rmin / anrm;
    } else if (anrm > rmax) {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1) {
        lapackf77_slascl(uplo_, &izero, &izero, &d_one, &sigma, &n, &n, A,
                &lda, info);
    }

    /* Call SSYTRD to reduce symmetric matrix to tridiagonal form. */
    // ssytrd work: e (n) + tau (n) + llwork (n*nb)  ==>  2n + n*nb
    // sstedx work: e (n) + tau (n) + z (n*n) + llwrk2 (1 + 4*n + n^2)  ==>  1 + 6n + 2n^2
    inde   = 0;
    indtau = inde   + n;
    indwrk = indtau + n;
    indwk2 = indwrk + n*n;
    llwork = lwork - indwrk;
    llwrk2 = lwork - indwk2;



    magma_ssytrd(uplo, n, A, lda, w, &work[inde],
                 &work[indtau], &work[indwrk], llwork, &iinfo);


    /* For eigenvalues only, call SSTERF.  For eigenvectors, first call
       SSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
       tridiagonal matrix, then call SORMTR to multiply it to the Householder
       transformations represented as Householder vectors in A. */
    if (! wantz) {
        lapackf77_ssterf(&n, w, &work[inde], info);
    }
    else {


        if (MAGMA_SUCCESS != magma_smalloc( &dwork, 3*n*(n/2 + 1) )) {
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }

        // TTT Possible bug for n < 128
        magma_sstedx(311, n, 0., 0., 0, 0, w, &work[inde],
                     &work[indwrk], n, &work[indwk2],
                     llwrk2, iwork, liwork, dwork, info);

        magma_free( dwork );


        magma_sormtr(MagmaLeft, uplo, MagmaNoTrans, n, n, A, lda, &work[indtau],
                     &work[indwrk], n, &work[indwk2], llwrk2, &iinfo);

        lapackf77_slacpy("A", &n, &n, &work[indwrk], &n, A, &lda);

    }

    /* If matrix was scaled, then rescale eigenvalues appropriately. */
    if (iscale == 1) {
        d__1 = 1. / sigma;
        blasf77_sscal(&n, &d__1, w, &ione);
    }

    work[0]  = lwmin * one_eps;  // round up
    iwork[0] = liwmin;

    return *info;
} /* magma_ssyevd */
Example #25
0
extern "C" magma_int_t
magma_cheevdx(char jobz, char range, char uplo,
              magma_int_t n,
              magmaFloatComplex *a, magma_int_t lda,
              float vl, float vu, magma_int_t il, magma_int_t iu,
              magma_int_t *m, float *w,
              magmaFloatComplex *work, magma_int_t lwork,
              float *rwork, magma_int_t lrwork,
              magma_int_t *iwork, magma_int_t liwork,
              magma_int_t *info)
{
/*  -- MAGMA (version 1.4.0) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       August 2013

    Purpose
    =======
    CHEEVDX computes selected eigenvalues and, optionally, eigenvectors
    of a complex Hermitian matrix A. Eigenvalues and eigenvectors can
    be selected by specifying either a range of values or a range of
    indices for the desired eigenvalues.
    If eigenvectors are desired, it uses a divide and conquer algorithm.

    The divide and conquer algorithm makes very mild assumptions about
    floating point arithmetic. It will work on machines with a guard
    digit in add/subtract, or on those binary machines without guard
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
    Cray-2. It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.

    Arguments
    =========
    JOBZ    (input) CHARACTER*1
            = 'N':  Compute eigenvalues only;
            = 'V':  Compute eigenvalues and eigenvectors.

    RANGE   (input) CHARACTER*1
            = 'A': all eigenvalues will be found.
            = 'V': all eigenvalues in the half-open interval (VL,VU]
                   will be found.
            = 'I': the IL-th through IU-th eigenvalues will be found.

    UPLO    (input) CHARACTER*1
            = 'U':  Upper triangle of A is stored;
            = 'L':  Lower triangle of A is stored.

    N       (input) INTEGER
            The order of the matrix A.  N >= 0.

    A       (input/output) COMPLEX array, dimension (LDA, N)
            On entry, the Hermitian matrix A.  If UPLO = 'U', the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = 'L',
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.
            On exit, if JOBZ = 'V', then if INFO = 0, the first m columns
            of A contains the required
            orthonormal eigenvectors of the matrix A.
            If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
            or the upper triangle (if UPLO='U') of A, including the
            diagonal, is destroyed.

    LDA     (input) INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    VL      (input) DOUBLE PRECISION
    VU      (input) DOUBLE PRECISION
            If RANGE='V', the lower and upper bounds of the interval to
            be searched for eigenvalues. VL < VU.
            Not referenced if RANGE = 'A' or 'I'.

    IL      (input) INTEGER
    IU      (input) INTEGER
            If RANGE='I', the indices (in ascending order) of the
            smallest and largest eigenvalues to be returned.
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
            Not referenced if RANGE = 'A' or 'V'.

    M       (output) INTEGER
            The total number of eigenvalues found.  0 <= M <= N.
            If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.

    W       (output) DOUBLE PRECISION array, dimension (N)
            If INFO = 0, the required m eigenvalues in ascending order.

    WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    LWORK   (input) INTEGER
            The length of the array WORK.
            If N <= 1,                LWORK >= 1.
            If JOBZ  = 'N' and N > 1, LWORK >= N + N*NB.
            If JOBZ  = 'V' and N > 1, LWORK >= max( N + N*NB, 2*N + N**2 ).
            NB can be obtained through magma_get_chetrd_nb(N).

            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal sizes of the WORK, RWORK and
            IWORK arrays, returns these values as the first entries of
            the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    RWORK   (workspace/output) DOUBLE PRECISION array,
                                           dimension (LRWORK)
            On exit, if INFO = 0, RWORK[0] returns the optimal LRWORK.

    LRWORK  (input) INTEGER
            The dimension of the array RWORK.
            If N <= 1,                LRWORK >= 1.
            If JOBZ  = 'N' and N > 1, LRWORK >= N.
            If JOBZ  = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.

            If LRWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK.

    LIWORK  (input) INTEGER
            The dimension of the array IWORK.
            If N <= 1,                LIWORK >= 1.
            If JOBZ  = 'N' and N > 1, LIWORK >= 1.
            If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.

            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    INFO    (output) INTEGER
            = 0:  successful exit
            < 0:  if INFO = -i, the i-th argument had an illegal value
            > 0:  if INFO = i and JOBZ = 'N', then the algorithm failed
                  to converge; i off-diagonal elements of an intermediate
                  tridiagonal form did not converge to zero;
                  if INFO = i and JOBZ = 'V', then the algorithm failed
                  to compute an eigenvalue while working on the submatrix
                  lying in rows and columns INFO/(N+1) through
                  mod(INFO,N+1).

    Further Details
    ===============
    Based on contributions by
       Jeff Rutter, Computer Science Division, University of California
       at Berkeley, USA

    Modified description of INFO. Sven, 16 Feb 05.
    =====================================================================   */

    char uplo_[2] = {uplo, 0};
    char jobz_[2] = {jobz, 0};
    char range_[2] = {range, 0};
    magma_int_t ione = 1;
    magma_int_t izero = 0;
    float d_one = 1.;

    float d__1;

    float eps;
    magma_int_t inde;
    float anrm;
    magma_int_t imax;
    float rmin, rmax;
    float sigma;
    magma_int_t iinfo, lwmin;
    magma_int_t lower;
    magma_int_t llrwk;
    magma_int_t wantz;
    magma_int_t indwk2, llwrk2;
    magma_int_t iscale;
    float safmin;
    float bignum;
    magma_int_t indtau;
    magma_int_t indrwk, indwrk, liwmin;
    magma_int_t lrwmin, llwork;
    float smlnum;
    magma_int_t lquery;
    magma_int_t alleig, valeig, indeig;

    float* dwork;

    wantz = lapackf77_lsame(jobz_, MagmaVecStr);
    lower = lapackf77_lsame(uplo_, MagmaLowerStr);

    alleig = lapackf77_lsame( range_, "A" );
    valeig = lapackf77_lsame( range_, "V" );
    indeig = lapackf77_lsame( range_, "I" );

    lquery = lwork == -1 || lrwork == -1 || liwork == -1;

    *info = 0;
    if (! (wantz || lapackf77_lsame(jobz_, MagmaNoVecStr))) {
        *info = -1;
    } else if (! (alleig || valeig || indeig)) {
        *info = -2;
    } else if (! (lower || lapackf77_lsame(uplo_, MagmaUpperStr))) {
        *info = -3;
    } else if (n < 0) {
        *info = -4;
    } else if (lda < max(1,n)) {
        *info = -6;
    } else {
        if (valeig) {
            if (n > 0 && vu <= vl) {
                *info = -8;
            }
        } else if (indeig) {
            if (il < 1 || il > max(1,n)) {
                *info = -9;
            } else if (iu < min(n,il) || iu > n) {
                *info = -10;
            }
        }
    }

    magma_int_t nb = magma_get_chetrd_nb( n );
    if ( n <= 1 ) {
        lwmin  = 1;
        lrwmin = 1;
        liwmin = 1;
    }
    else if ( wantz ) {
        lwmin  = max( n + n*nb, 2*n + n*n );
        lrwmin = 1 + 5*n + 2*n*n;
        liwmin = 3 + 5*n;
    }
    else {
        lwmin  = n + n*nb;
        lrwmin = n;
        liwmin = 1;
    }
    // multiply by 1+eps to ensure length gets rounded up,
    // if it cannot be exactly represented in floating point.
    work[0]  = MAGMA_C_MAKE( lwmin * (1. + lapackf77_slamch("Epsilon")), 0.);
    rwork[0] = lrwmin * (1. + lapackf77_slamch("Epsilon"));
    iwork[0] = liwmin;

    if ((lwork < lwmin) && !lquery) {
        *info = -14;
    } else if ((lrwork < lrwmin) && ! lquery) {
        *info = -16;
    } else if ((liwork < liwmin) && ! lquery) {
        *info = -18;
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /* Quick return if possible */
    if (n == 0) {
        return *info;
    }

    if (n == 1) {
        w[0] = MAGMA_C_REAL(a[0]);
        if (wantz) {
            a[0] = MAGMA_C_ONE;
        }
        return *info;
    }
    /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */
    if (n <= 128){
        #ifdef ENABLE_DEBUG
        printf("--------------------------------------------------------------\n");
        printf("  warning matrix too small N=%d NB=%d, calling lapack on CPU  \n", (int) n, (int) nb);
        printf("--------------------------------------------------------------\n");
        #endif
        lapackf77_cheevd(jobz_, uplo_,
                         &n, a, &lda,
                         w, work, &lwork,
#if defined(PRECISION_z) || defined(PRECISION_c)
                         rwork, &lrwork, 
#endif  
                         iwork, &liwork, info);
        return *info;
    }
    /* Get machine constants. */
    safmin = lapackf77_slamch("Safe minimum");
    eps    = lapackf77_slamch("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = magma_ssqrt(smlnum);
    rmax = magma_ssqrt(bignum);

    /* Scale matrix to allowable range, if necessary. */
    anrm = lapackf77_clanhe("M", uplo_, &n, a, &lda, rwork);
    iscale = 0;
    if (anrm > 0. && anrm < rmin) {
        iscale = 1;
        sigma = rmin / anrm;
    } else if (anrm > rmax) {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1) {
        lapackf77_clascl(uplo_, &izero, &izero, &d_one, &sigma, &n, &n, a,
                         &lda, info);
    }

    /* Call CHETRD to reduce Hermitian matrix to tridiagonal form. */
    // chetrd rwork: e (n)
    // cstedx rwork: e (n) + llrwk (1 + 4*N + 2*N**2)  ==>  1 + 5n + 2n^2
    inde   = 0;
    indrwk = inde + n;
    llrwk  = lrwork - indrwk;

    // chetrd work: tau (n) + llwork (n*nb)  ==>  n + n*nb
    // cstedx work: tau (n) + z (n^2)
    // cunmtr work: tau (n) + z (n^2) + llwrk2 (n or n*nb)  ==>  2n + n^2, or n + n*nb + n^2
    indtau = 0;
    indwrk = indtau + n;
    indwk2 = indwrk + n*n;
    llwork = lwork - indwrk;
    llwrk2 = lwork - indwk2;

//
#ifdef ENABLE_TIMER
    magma_timestr_t start, end;
    start = get_current_time();
#endif

    magma_chetrd(uplo_[0], n, a, lda, w, &rwork[inde],
                 &work[indtau], &work[indwrk], llwork, &iinfo);

#ifdef ENABLE_TIMER
    end = get_current_time();
    printf("time chetrd = %6.2f\n", GetTimerValue(start,end)/1000.);
#endif

    /* For eigenvalues only, call SSTERF.  For eigenvectors, first call
     CSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
     tridiagonal matrix, then call CUNMTR to multiply it to the Householder
     transformations represented as Householder vectors in A. */
    if (! wantz) {
        lapackf77_ssterf(&n, w, &rwork[inde], info);

        magma_smove_eig(range, n, w, &il, &iu, vl, vu, m);

    } else {

#ifdef ENABLE_TIMER
        start = get_current_time();
#endif

        if (MAGMA_SUCCESS != magma_smalloc( &dwork, 3*n*(n/2 + 1) )) {
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }

        magma_cstedx(range, n, vl, vu, il, iu, w, &rwork[inde],
                     &work[indwrk], n, &rwork[indrwk],
                     llrwk, iwork, liwork, dwork, info);

        magma_free( dwork );

#ifdef ENABLE_TIMER
        end = get_current_time();
        printf("time cstedx = %6.2f\n", GetTimerValue(start,end)/1000.);
        start = get_current_time();
#endif

        magma_smove_eig(range, n, w, &il, &iu, vl, vu, m);

        magma_cunmtr(MagmaLeft, uplo, MagmaNoTrans, n, *m, a, lda, &work[indtau],
                     &work[indwrk + n * (il-1) ], n, &work[indwk2], llwrk2, &iinfo);

        lapackf77_clacpy("A", &n, m, &work[indwrk + n * (il-1)] , &n, a, &lda);

#ifdef ENABLE_TIMER
        end = get_current_time();
        printf("time cunmtr + copy = %6.2f\n", GetTimerValue(start,end)/1000.);
#endif

    }

    /* If matrix was scaled, then rescale eigenvalues appropriately. */
    if (iscale == 1) {
        if (*info == 0) {
            imax = n;
        } else {
            imax = *info - 1;
        }
        d__1 = 1. / sigma;
        blasf77_sscal(&imax, &d__1, w, &ione);
    }

    work[0]  = MAGMA_C_MAKE( lwmin * (1. + lapackf77_slamch("Epsilon")), 0.);  // round up
    rwork[0] = lrwmin * (1. + lapackf77_slamch("Epsilon"));
    iwork[0] = liwmin;

    return *info;
} /* magma_cheevdx */
Example #26
0
/**
    @deprecated
    
    Purpose
    -------
    CLAQPS computes a step of QR factorization with column pivoting
    of a complex M-by-N matrix A by using Blas-3.  It tries to factorize
    NB columns from A starting from the row OFFSET+1, and updates all
    of the matrix with Blas-3 xGEMM.

    In some cases, due to catastrophic cancellations, it cannot
    factorize NB columns.  Hence, the actual number of factorized
    columns is returned in KB.

    Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.

    Arguments
    ---------
    @param[in]
    m       INTEGER
            The number of rows of the matrix A. M >= 0.

    @param[in]
    n       INTEGER
            The number of columns of the matrix A. N >= 0

    @param[in]
    offset  INTEGER
            The number of rows of A that have been factorized in
            previous steps.

    @param[in]
    nb      INTEGER
            The number of columns to factorize.

    @param[out]
    kb      INTEGER
            The number of columns actually factorized.

    @param[in,out]
    A       COMPLEX array, dimension (LDA,N)
            On entry, the M-by-N matrix A.
            On exit, block A(OFFSET+1:M,1:KB) is the triangular
            factor obtained and block A(1:OFFSET,1:N) has been
            accordingly pivoted, but no factorized.
            The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has
            been updated.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A. LDA >= max(1,M).

    @param[in,out]
    jpvt    INTEGER array, dimension (N)
            JPVT(I) = K <==> Column K of the full matrix A has been
            permuted into position I in AP.

    @param[out]
    tau     COMPLEX array, dimension (KB)
            The scalar factors of the elementary reflectors.

    @param[in,out]
    vn1     REAL array, dimension (N)
            The vector with the partial column norms.

    @param[in,out]
    vn2     REAL array, dimension (N)
            The vector with the exact column norms.

    @param[in,out]
    auxv    COMPLEX array, dimension (NB)
            Auxiliar vector.

    @param[in,out]
    F       COMPLEX array, dimension (LDF,NB)
            Matrix F' = L*Y'*A.

    @param[in]
    ldf     INTEGER
            The leading dimension of the array F. LDF >= max(1,N).

    @ingroup magma_cgeqp3_aux
    ********************************************************************/
extern "C" magma_int_t
magma_claqps_gpu(magma_int_t m, magma_int_t n, magma_int_t offset,
             magma_int_t nb, magma_int_t *kb,
             magmaFloatComplex *A,  magma_int_t lda,
             magma_int_t *jpvt, magmaFloatComplex *tau,
             float *vn1, float *vn2,
             magmaFloatComplex *auxv,
             magmaFloatComplex *F,  magma_int_t ldf)
{
#define  A(i, j) (A  + (i) + (j)*(lda ))
#define  F(i, j) (F  + (i) + (j)*(ldf ))

    magmaFloatComplex c_zero    = MAGMA_C_MAKE( 0.,0.);
    magmaFloatComplex c_one     = MAGMA_C_MAKE( 1.,0.);
    magmaFloatComplex c_neg_one = MAGMA_C_MAKE(-1.,0.);
    magma_int_t ione = 1;
    
    magma_int_t i__1, i__2;
    //float d__1;
    magmaFloatComplex z__1;
    
    //magma_int_t j;
    magma_int_t k, rk;
    //magmaFloatComplex Akk;
    magmaFloatComplex *Aks;
    magmaFloatComplex tauk = MAGMA_C_ZERO;
    magma_int_t pvt;
    //float temp, temp2;
    float tol3z;
    magma_int_t itemp;

    float lsticc, *lsticcs;
    magma_int_t lastrk;
    magma_smalloc( &lsticcs, 1+256*(n+255)/256 );

    lastrk = min( m, n + offset );
    tol3z = magma_ssqrt( lapackf77_slamch("Epsilon"));

    lsticc = 0;
    k = 0;
    magma_cmalloc( &Aks, nb );

    while( k < nb && lsticc == 0 ) {
        rk = offset + k;
        
        /* Determine ith pivot column and swap if necessary */
        // subtract 1 from Fortran/CUBLAS isamax; pvt, k are 0-based.
        pvt = k + magma_isamax( n-k, &vn1[k], ione ) - 1;
        
        if (pvt != k) {
            /*if (pvt >= nb) {
                // 1. Start copy from GPU
                magma_cgetmatrix_async( m - offset - nb, 1,
                                        dA(offset + nb, pvt), ldda,
                                        A (offset + nb, pvt), lda, stream );
            }*/

            /* F gets swapped so F must be sent at the end to GPU   */
            i__1 = k;
            /*if (pvt < nb) {
                // no need of transfer if pivot is within the panel
                blasf77_cswap( &m, A(0, pvt), &ione, A(0, k), &ione );
            }
            else {
                // 1. Finish copy from GPU
                magma_queue_sync( stream );

                // 2. Swap as usual on CPU
                blasf77_cswap(&m, A(0, pvt), &ione, A(0, k), &ione);

                // 3. Restore the GPU
                magma_csetmatrix_async( m - offset - nb, 1,
                                        A (offset + nb, pvt), lda,
                                        dA(offset + nb, pvt), ldda, stream);
            }*/
            magmablas_cswap( m, A(0, pvt), ione, A(0, k), ione );

            //blasf77_cswap( &i__1, F(pvt,0), &ldf, F(k,0), &ldf );
            magmablas_cswap( i__1, F(pvt, 0), ldf, F(k, 0), ldf);
            itemp     = jpvt[pvt];
            jpvt[pvt] = jpvt[k];
            jpvt[k]   = itemp;
            //vn1[pvt] = vn1[k];
            //vn2[pvt] = vn2[k];
            #if defined(PRECISION_d) || defined(PRECISION_z)
                //magma_dswap( 1, &vn1[pvt], 1, &vn1[k], 1 );
                //magma_dswap( 1, &vn2[pvt], 1, &vn2[k], 1 );
                magma_dswap( 2, &vn1[pvt], n+offset, &vn1[k], n+offset );
            #else
                //magma_sswap( 1, &vn1[pvt], 1, &vn1[k], 1 );
                //magma_sswap( 1, &vn2[pvt], 1, &vn2[k], 1 );
                magma_sswap(2, &vn1[pvt], n+offset, &vn1[k], n+offset);
            #endif
        }

        /* Apply previous Householder reflectors to column K:
           A(RK:M,K) := A(RK:M,K) - A(RK:M,1:K-1)*F(K,1:K-1)'.
           Optimization: multiply with beta=0; wait for vector and subtract */
        if (k > 0) {
            /*#if (defined(PRECISION_c) || defined(PRECISION_z))
            for (j = 0; j < k; ++j) {
                *F(k,j) = MAGMA_C_CNJG( *F(k,j) );
            }
            #endif*/

//#define RIGHT_UPDATE
#ifdef RIGHT_UPDATE
            i__1 = m - offset - nb;
            i__2 = k;
            magma_cgemv( MagmaNoTrans, i__1, i__2,
                         c_neg_one, A(offset+nb, 0), lda,
                                    F(k,         0), ldf,
                         c_one,     A(offset+nb, k), ione );
#else
            i__1 = m - rk;
            i__2 = k;
            /*blasf77_cgemv( MagmaNoTransStr, &i__1, &i__2,
                           &c_neg_one, A(rk, 0), &lda,
                                       F(k,  0), &ldf,
                           &c_one,     A(rk, k), &ione );*/
            magma_cgemv( MagmaNoTrans, i__1, i__2,
                         c_neg_one, A(rk, 0), lda,
                                    F(k,  0), ldf,
                         c_one,     A(rk, k), ione );
#endif

            /*#if (defined(PRECISION_c) || defined(PRECISION_z))
            for (j = 0; j < k; ++j) {
                *F(k,j) = MAGMA_C_CNJG( *F(k,j) );
            }
            #endif*/
        }
        
        /*  Generate elementary reflector H(k). */
        magma_clarfg_gpu(m-rk, A(rk, k), A(rk + 1, k), &tau[k], &vn1[k], &Aks[k]);

        //Akk = *A(rk, k);
        //*A(rk, k) = c_one;
        //magma_cgetvector( 1, &Aks[k],  1, &Akk,     1 );

        /* needed to avoid the race condition */
        if (k == 0) magma_csetvector(  1,    &c_one,       1, A(rk, k), 1 );
        else        magma_ccopymatrix( 1, 1, A(offset, 0), 1, A(rk, k), 1 );

        /* Compute Kth column of F:
           Compute  F(K+1:N,K) := tau(K)*A(RK:M,K+1:N)'*A(RK:M,K) on the GPU */
        if (k < n-1 || k > 0) magma_cgetvector( 1, &tau[k], 1, &tauk, 1 );
        if (k < n-1) {
            i__1 = m - rk;
            i__2 = n - k - 1;

            /* Send the vector to the GPU */
            //magma_csetmatrix( i__1, 1, A(rk, k), lda, dA(rk,k), ldda );

            /* Multiply on GPU */
            // was CALL CGEMV( 'Conjugate transpose', M-RK+1, N-K,
            //                 TAU( K ), A( RK,  K+1 ), LDA,
            //                           A( RK,  K   ), 1,
            //                 CZERO,    F( K+1, K   ), 1 )
            //magma_cgetvector( 1, &tau[k], 1, &tauk, 1 );
            magma_cgemv( MagmaConjTrans, m-rk, n-k-1,
                         tauk,   A( rk,  k+1 ), lda,
                                 A( rk,  k   ), 1,
                         c_zero, F( k+1, k   ), 1 );
            //magma_cscal( m-rk, tau[k], F( k+1, k), 1 );
            //magma_int_t i__3 = nb-k-1;
            //magma_int_t i__4 = i__2 - i__3;
            //magma_int_t i__5 = nb-k;
            //magma_cgemv( MagmaConjTrans, i__1 - i__5, i__2 - i__3,
            //             tau[k], dA(rk +i__5, k+1+i__3), ldda,
            //                     dA(rk +i__5, k       ), ione,
            //             c_zero, dF(k+1+i__3, k       ), ione );
            
            //magma_cgetmatrix_async( i__2-i__3, 1,
            //                        dF(k + 1 +i__3, k), i__2,
            //                        F (k + 1 +i__3, k), i__2, stream );
            
            //blasf77_cgemv( MagmaConjTransStr, &i__1, &i__3,
            //               &tau[k], A(rk,  k+1), &lda,
            //                        A(rk,  k  ), &ione,
            //               &c_zero, F(k+1, k  ), &ione );
            
            //magma_queue_sync( stream );
            //blasf77_cgemv( MagmaConjTransStr, &i__5, &i__4,
            //               &tau[k], A(rk, k+1+i__3), &lda,
            //                        A(rk, k       ), &ione,
            //               &c_one,  F(k+1+i__3, k ), &ione );
        }
        
        /* Padding F(1:K,K) with zeros.
        for (j = 0; j <= k; ++j) {
            magma_csetvector( 1, &c_zero, 1, F(j, k), 1 );
        }*/
        
        /* Incremental updating of F:
           F(1:N,K) := F(1:N,K)                        - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)'*A(RK:M,K).
           F(1:N,K) := tau(K)*A(RK:M,K+1:N)'*A(RK:M,K) - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)'*A(RK:M,K)
                    := tau(K)(A(RK:M,K+1:N)' - F(1:N,1:K-1)*A(RK:M,1:K-1)') A(RK:M,K)
           so, F is (updated A)*V */
        //if (k > 0 && k < n-1) {
        if (k > 0) {
            //magma_cgetvector( 1, &tau[k], 1, &tauk, 1 );
            z__1 = MAGMA_C_NEGATE( tauk );
#ifdef RIGHT_UPDATE
            i__1 = m - offset - nb;
            i__2 = k;
            magma_cgemv( MagmaConjTrans, i__1, i__2,
                         z__1,   A(offset+nb, 0), lda,
                                 A(offset+nb, k), ione,
                         c_zero, auxv, ione );
            
            i__1 = k;
            magma_cgemv( MagmaNoTrans, n-k-1, i__1,
                         c_one, F(k+1,0), ldf,
                                auxv,     ione,
                         c_one, F(k+1,k), ione );
#else
            i__1 = m - rk;
            i__2 = k;
            //blasf77_cgemv( MagmaConjTransStr, &i__1, &i__2,
            //               &z__1,   A(rk, 0), &lda,
            //                        A(rk, k), &ione,
            //               &c_zero, auxv, &ione );

            magma_cgemv( MagmaConjTrans, i__1, i__2,
                         z__1,   A(rk, 0), lda,
                                 A(rk, k), ione,
                         c_zero, auxv, ione );
            
            //i__1 = k;
            //blasf77_cgemv( MagmaNoTransStr, &n, &i__1,
            //               &c_one, F(0,0), &ldf,
            //                       auxv,   &ione,
            //               &c_one, F(0,k), &ione );
            /*magma_cgemv( MagmaNoTrans, n, i__1,
                           c_one, F(0,0), ldf,
                                  auxv,   ione,
                           c_one, F(0,k), ione );*/
            /* I think we only need stricly lower-triangular part :) */
            magma_cgemv( MagmaNoTrans, n-k-1, i__2,
                         c_one, F(k+1,0), ldf,
                                auxv,     ione,
                         c_one, F(k+1,k), ione );
#endif
        }
        
        /* Optimization: On the last iteration start sending F back to the GPU */
        
        /* Update the current row of A:
           A(RK,K+1:N) := A(RK,K+1:N) - A(RK,1:K)*F(K+1:N,1:K)'.               */
        if (k < n-1) {
            i__1 = n - k - 1;
            i__2 = k + 1;
            //blasf77_cgemm( MagmaNoTransStr, MagmaConjTransStr, &ione, &i__1, &i__2,
            //               &c_neg_one, A(rk, 0  ), &lda,
            //                           F(k+1,0  ), &ldf,
            //               &c_one,     A(rk, k+1), &lda );
#ifdef RIGHT_UPDATE
            /* right-looking update of rows,                     */
            magma_cgemm( MagmaNoTrans, MagmaConjTrans, nb-k, i__1, ione,
                         c_neg_one, A(rk,  k  ), lda,
                                    F(k+1, k  ), ldf,
                         c_one,     A(rk,  k+1), lda );
#else
            /* left-looking update of rows,                     *
             * since F=A'v with original A, so no right-looking */
            magma_cgemm( MagmaNoTrans, MagmaConjTrans, ione, i__1, i__2,
                         c_neg_one, A(rk, 0  ), lda,
                                    F(k+1,0  ), ldf,
                         c_one,     A(rk, k+1), lda );
#endif
        }
        
        /* Update partial column norms. */
        if (rk < min(m, n+offset)-1 ) {
            magmablas_scnrm2_row_check_adjust(n-k-1, tol3z, &vn1[k+1], &vn2[k+1], A(rk,k+1), lda, lsticcs);

            magma_device_sync();
            #if defined(PRECISION_d) || defined(PRECISION_z)
            magma_sgetvector( 1, &lsticcs[0], 1, &lsticc, 1 );
            #else
            magma_sgetvector( 1, &lsticcs[0], 1, &lsticc, 1 );
            #endif
        }


        /*if (rk < lastrk) {
            for (j = k + 1; j < n; ++j) {
                if (vn1[j] != 0.) {
                    // NOTE: The following 4 lines follow from the analysis in
                    //   Lapack Working Note 176.
                    temp = MAGMA_C_ABS( *A(rk,j) ) / vn1[j];
                    temp = max( 0., ((1. + temp) * (1. - temp)) );

                    d__1 = vn1[j] / vn2[j];
                    temp2 = temp * (d__1 * d__1);

                    if (temp2 <= tol3z) {
                        vn2[j] = (float) lsticc;
                        lsticc = j;
                    } else {
                        vn1[j] *= magma_ssqrt(temp);
                    }
                }
            }
        }*/
        
        //*A(rk, k) = Akk;
        //magma_csetvector( 1, &Akk, 1, A(rk, k), 1 );
        //magma_cswap( 1, &Aks[k], 1, A(rk, k), 1 );
        
        ++k;
    }
    magma_ccopymatrix( 1, k, Aks, 1, A(offset, 0), lda+1 );

    // leave k as the last column done
    --k;
    *kb = k + 1;
    rk = offset + *kb - 1;

    /* Apply the block reflector to the rest of the matrix:
       A(OFFSET+KB+1:M,KB+1:N) := A(OFFSET+KB+1:M,KB+1:N) - A(OFFSET+KB+1:M,1:KB)*F(KB+1:N,1:KB)'  */
    if (*kb < min(n, m - offset)) {
        i__1 = m - rk - 1;
        i__2 = n - *kb;
        
        /* Send F to the GPU
        magma_csetmatrix( i__2, *kb,
                          F (*kb, 0), ldf,
                          dF(*kb, 0), i__2 );*/

        magma_cgemm( MagmaNoTrans, MagmaConjTrans, i__1, i__2, *kb,
                     c_neg_one, A(rk+1, 0  ), lda,
                                F(*kb,  0  ), ldf,
                     c_one,     A(rk+1, *kb), lda );
    }
    /* Recomputation of difficult columns. */
    if ( lsticc > 0 ) {
        // printf( " -- recompute dnorms --\n" );
        magmablas_scnrm2_check(m-rk-1, n-*kb, A(rk+1,*kb), lda,
                               &vn1[*kb], lsticcs);
        magma_scopymatrix( n-*kb, 1, &vn1[*kb], *kb, &vn2[*kb], *kb);
    /*while( lsticc > 0 ) {
        itemp = (magma_int_t)(vn2[lsticc] >= 0. ? floor(vn2[lsticc] + .5) : -floor(.5 - vn2[lsticc]));
        i__1 = m - rk - 1;
        if (lsticc <= nb)
            vn1[lsticc] = magma_cblas_scnrm2( i__1, A(rk+1,lsticc), ione );
        else {
            // Where is the data, CPU or GPU ?
            float r1, r2;
            
            r1 = magma_cblas_scnrm2( nb-k, A(rk+1,lsticc), ione );
            r2 = magma_scnrm2(m-offset-nb, dA(offset + nb + 1, lsticc), ione);
            
            vn1[lsticc] = magma_ssqrt(r1*r1+r2*r2);
        }
        
        // NOTE: The computation of VN1( LSTICC ) relies on the fact that
        //   SNRM2 does not fail on vectors with norm below the value of SQRT(SLAMCH('S'))
        vn2[lsticc] = vn1[lsticc];
        lsticc = itemp;*/
    }
    magma_free(Aks);
    magma_free(lsticcs);

    return MAGMA_SUCCESS;
} /* magma_claqps */
Example #27
0
/**
    Purpose
    -------
    SLAQPS computes a step of QR factorization with column pivoting
    of a real M-by-N matrix A by using Blas-3.  It tries to factorize
    NB columns from A starting from the row OFFSET+1, and updates all
    of the matrix with Blas-3 xGEMM.

    In some cases, due to catastrophic cancellations, it cannot
    factorize NB columns.  Hence, the actual number of factorized
    columns is returned in KB.

    Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.

    Arguments
    ---------
    @param[in]
    m       INTEGER
            The number of rows of the matrix A. M >= 0.

    @param[in]
    n       INTEGER
            The number of columns of the matrix A. N >= 0

    @param[in]
    offset  INTEGER
            The number of rows of A that have been factorized in
            previous steps.

    @param[in]
    nb      INTEGER
            The number of columns to factorize.

    @param[out]
    kb      INTEGER
            The number of columns actually factorized.

    @param[in,out]
    A       REAL array, dimension (LDA,N)
            On entry, the M-by-N matrix A.
            On exit, block A(OFFSET+1:M,1:KB) is the triangular
            factor obtained and block A(1:OFFSET,1:N) has been
            accordingly pivoted, but no factorized.
            The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has
            been updated.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A. LDA >= max(1,M).

    @param[in,out]
    jpvt    INTEGER array, dimension (N)
            JPVT(I) = K <==> Column K of the full matrix A has been
            permuted into position I in AP.

    @param[out]
    tau     REAL array, dimension (KB)
            The scalar factors of the elementary reflectors.

    @param[in,out]
    vn1     REAL array, dimension (N)
            The vector with the partial column norms.

    @param[in,out]
    vn2     REAL array, dimension (N)
            The vector with the exact column norms.

    @param[in,out]
    auxv    REAL array, dimension (NB)
            Auxiliar vector.

    @param[in,out]
    F       REAL array, dimension (LDF,NB)
            Matrix F' = L*Y'*A.

    @param[in]
    ldf     INTEGER
            The leading dimension of the array F. LDF >= max(1,N).

    @ingroup magma_sgeqp3_aux
    ********************************************************************/
extern "C" magma_int_t
magma_slaqps(magma_int_t m, magma_int_t n, magma_int_t offset,
             magma_int_t nb, magma_int_t *kb,
             float *A,  magma_int_t lda,
             float *dA, magma_int_t ldda,
             magma_int_t *jpvt, float *tau, float *vn1, float *vn2,
             float *auxv,
             float *F,  magma_int_t ldf,
             float *dF, magma_int_t lddf)
{
#define  A(i, j) (A  + (i) + (j)*(lda ))
#define dA(i, j) (dA + (i) + (j)*(ldda))
#define  F(i, j) (F  + (i) + (j)*(ldf ))
#define dF(i, j) (dF + (i) + (j)*(lddf))

    float c_zero    = MAGMA_S_MAKE( 0.,0.);
    float c_one     = MAGMA_S_MAKE( 1.,0.);
    float c_neg_one = MAGMA_S_MAKE(-1.,0.);
    magma_int_t ione = 1;
    
    magma_int_t i__1, i__2;
    float d__1;
    float z__1;
    
    magma_int_t j, k, rk;
    float Akk;
    magma_int_t pvt;
    float temp, temp2, tol3z;
    magma_int_t itemp;

    magma_int_t lsticc;
    magma_int_t lastrk;

    lastrk = min( m, n + offset );
    tol3z = magma_ssqrt( lapackf77_slamch("Epsilon"));

    magma_queue_t stream;
    magma_queue_create( &stream );

    lsticc = 0;
    k = 0;
    while( k < nb && lsticc == 0 ) {
        rk = offset + k;
        
        /* Determine ith pivot column and swap if necessary */
        // subtract 1 from Fortran isamax; pvt, k are 0-based.
        i__1 = n-k;
        pvt = k + blasf77_isamax( &i__1, &vn1[k], &ione ) - 1;
        
        if (pvt != k) {
            if (pvt >= nb) {
                /* 1. Start copy from GPU                           */
                magma_sgetmatrix_async( m - offset - nb, 1,
                                        dA(offset + nb, pvt), ldda,
                                        A (offset + nb, pvt), lda, stream );
            }

            /* F gets swapped so F must be sent at the end to GPU   */
            i__1 = k;
            blasf77_sswap( &i__1, F(pvt,0), &ldf, F(k,0), &ldf );
            itemp     = jpvt[pvt];
            jpvt[pvt] = jpvt[k];
            jpvt[k]   = itemp;
            vn1[pvt] = vn1[k];
            vn2[pvt] = vn2[k];

            if (pvt < nb) {
                /* no need of transfer if pivot is within the panel */
                blasf77_sswap( &m, A(0, pvt), &ione, A(0, k), &ione );
            }
            else {
                /* 1. Finish copy from GPU                          */
                magma_queue_sync( stream );

                /* 2. Swap as usual on CPU                          */
                blasf77_sswap(&m, A(0, pvt), &ione, A(0, k), &ione);

                /* 3. Restore the GPU                               */
                magma_ssetmatrix_async( m - offset - nb, 1,
                                        A (offset + nb, pvt), lda,
                                        dA(offset + nb, pvt), ldda, stream);
            }
        }

        /* Apply previous Householder reflectors to column K:
           A(RK:M,K) := A(RK:M,K) - A(RK:M,1:K-1)*F(K,1:K-1)'.
           Optimization: multiply with beta=0; wait for vector and subtract */
        if (k > 0) {
            #if defined(PRECISION_c) || defined(PRECISION_z)
            for (j = 0; j < k; ++j) {
                *F(k,j) = MAGMA_S_CNJG( *F(k,j) );
            }
            #endif

            i__1 = m - rk;
            i__2 = k;
            blasf77_sgemv( MagmaNoTransStr, &i__1, &i__2,
                           &c_neg_one, A(rk, 0), &lda,
                                       F(k,  0), &ldf,
                           &c_one,     A(rk, k), &ione );

            #if defined(PRECISION_c) || defined(PRECISION_z)
            for (j = 0; j < k; ++j) {
                *F(k,j) = MAGMA_S_CNJG( *F(k,j) );
            }
            #endif
        }
        
        /*  Generate elementary reflector H(k). */
        if (rk < m-1) {
            i__1 = m - rk;
            lapackf77_slarfg( &i__1, A(rk, k), A(rk + 1, k), &ione, &tau[k] );
        } else {
            lapackf77_slarfg( &ione, A(rk, k), A(rk, k), &ione, &tau[k] );
        }
        
        Akk = *A(rk, k);
        *A(rk, k) = c_one;

        /* Compute Kth column of F:
           Compute  F(K+1:N,K) := tau(K)*A(RK:M,K+1:N)'*A(RK:M,K) on the GPU */
        if (k < n-1) {
            i__1 = m - rk;
            i__2 = n - k - 1;
        
            /* Send the vector to the GPU */
            magma_ssetmatrix( i__1, 1, A(rk, k), lda, dA(rk,k), ldda );
        
            /* Multiply on GPU */
            // was CALL SGEMV( 'Conjugate transpose', M-RK+1, N-K,
            //                 TAU( K ), A( RK,  K+1 ), LDA,
            //                           A( RK,  K   ), 1,
            //                 CZERO,    F( K+1, K   ), 1 )
            magma_int_t i__3 = nb-k-1;
            magma_int_t i__4 = i__2 - i__3;
            magma_int_t i__5 = nb-k;
            magma_sgemv( MagmaConjTrans, i__1 - i__5, i__2 - i__3,
                         tau[k], dA(rk +i__5, k+1+i__3), ldda,
                                 dA(rk +i__5, k       ), ione,
                         c_zero, dF(k+1+i__3, k       ), ione );
            
            magma_sgetmatrix_async( i__2-i__3, 1,
                                    dF(k + 1 +i__3, k), i__2,
                                    F (k + 1 +i__3, k), i__2, stream );
            
            blasf77_sgemv( MagmaConjTransStr, &i__1, &i__3,
                           &tau[k], A(rk,  k+1), &lda,
                                    A(rk,  k  ), &ione,
                           &c_zero, F(k+1, k  ), &ione );
            
            magma_queue_sync( stream );
            blasf77_sgemv( MagmaConjTransStr, &i__5, &i__4,
                           &tau[k], A(rk, k+1+i__3), &lda,
                                    A(rk, k       ), &ione,
                           &c_one,  F(k+1+i__3, k ), &ione );
        }
        
        /* Padding F(1:K,K) with zeros. */
        for (j = 0; j < k; ++j) {
            *F(j, k) = c_zero;
        }
        
        /* Incremental updating of F:
           F(1:N,K) := F(1:N,K) - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)'*A(RK:M,K). */
        if (k > 0) {
            i__1 = m - rk;
            i__2 = k;
            z__1 = MAGMA_S_NEGATE( tau[k] );
            blasf77_sgemv( MagmaConjTransStr, &i__1, &i__2,
                           &z__1,   A(rk, 0), &lda,
                                    A(rk, k), &ione,
                           &c_zero, auxv, &ione );
            
            i__1 = k;
            blasf77_sgemv( MagmaNoTransStr, &n, &i__1,
                           &c_one, F(0,0), &ldf,
                                   auxv,   &ione,
                           &c_one, F(0,k), &ione );
        }
        
        /* Optimization: On the last iteration start sending F back to the GPU */
        
        /* Update the current row of A:
           A(RK,K+1:N) := A(RK,K+1:N) - A(RK,1:K)*F(K+1:N,1:K)'.               */
        if (k < n-1) {
            i__1 = n - k - 1;
            i__2 = k + 1;
            blasf77_sgemm( MagmaNoTransStr, MagmaConjTransStr, &ione, &i__1, &i__2,
                           &c_neg_one, A(rk, 0  ), &lda,
                                       F(k+1,0  ), &ldf,
                           &c_one,     A(rk, k+1), &lda );
        }
        
        /* Update partial column norms. */
        if (rk < lastrk) {
            for (j = k + 1; j < n; ++j) {
                if (vn1[j] != 0.) {
                    /* NOTE: The following 4 lines follow from the analysis in
                       Lapack Working Note 176. */
                    temp = MAGMA_S_ABS( *A(rk,j) ) / vn1[j];
                    temp = max( 0., ((1. + temp) * (1. - temp)) );
        
                    d__1 = vn1[j] / vn2[j];
                    temp2 = temp * (d__1 * d__1);
        
                    if (temp2 <= tol3z) {
                        vn2[j] = (float) lsticc;
                        lsticc = j;
                    } else {
                        vn1[j] *= magma_ssqrt(temp);
                    }
                }
            }
        }
        
        *A(rk, k) = Akk;
        
        ++k;
    }
    // leave k as the last column done
    --k;
    *kb = k + 1;
    rk = offset + *kb - 1;

    /* Apply the block reflector to the rest of the matrix:
       A(OFFSET+KB+1:M,KB+1:N) := A(OFFSET+KB+1:M,KB+1:N) - A(OFFSET+KB+1:M,1:KB)*F(KB+1:N,1:KB)'  */
    if (*kb < min(n, m - offset)) {
        i__1 = m - rk - 1;
        i__2 = n - *kb;
        
        /* Send F to the GPU */
        magma_ssetmatrix( i__2, *kb,
                          F (*kb, 0), ldf,
                          dF(*kb, 0), i__2 );

        magma_sgemm( MagmaNoTrans, MagmaConjTrans, i__1, i__2, *kb,
                     c_neg_one, dA(rk+1, 0  ), ldda,
                                dF(*kb,  0  ), i__2,
                     c_one,     dA(rk+1, *kb), ldda );
    }
    
    /* Recomputation of difficult columns. */
    while( lsticc > 0 ) {
        itemp = (magma_int_t)(vn2[lsticc] >= 0. ? floor(vn2[lsticc] + .5) : -floor(.5 - vn2[lsticc]));
        i__1 = m - rk - 1;
        if (lsticc <= nb)
            vn1[lsticc] = magma_cblas_snrm2( i__1, A(rk+1,lsticc), ione );
        else {
            /* Where is the data, CPU or GPU ? */
            float r1, r2;
            
            r1 = magma_cblas_snrm2( nb-k, A(rk+1,lsticc), ione );
            r2 = magma_snrm2(m-offset-nb, dA(offset + nb + 1, lsticc), ione);
            
            //vn1[lsticc] = magma_snrm2(i__1, dA(rk + 1, lsticc), ione);
            vn1[lsticc] = magma_ssqrt(r1*r1 + r2*r2);
        }
        
        /* NOTE: The computation of VN1( LSTICC ) relies on the fact that
           SNRM2 does not fail on vectors with norm below the value of SQRT(SLAMCH('S')) */
        vn2[lsticc] = vn1[lsticc];
        lsticc = itemp;
    }
    
    magma_queue_destroy( stream );

    return MAGMA_SUCCESS;
} /* magma_slaqps */
Example #28
0
/* ////////////////////////////////////////////////////////////////////////////
   -- Testing cunmlq
*/
int main( int argc, char** argv )
{
    TESTING_INIT();
    
    real_Double_t   gflops, gpu_perf, gpu_time, cpu_perf, cpu_time;
    float Cnorm, error, work[1];
    magmaFloatComplex c_neg_one = MAGMA_C_NEG_ONE;
    magma_int_t ione = 1;
    magma_int_t mm, m, n, k, size, info;
    magma_int_t ISEED[4] = {0,0,0,1};
    magma_int_t nb, ldc, lda, lwork, lwork_max;
    magmaFloatComplex *C, *R, *A, *W, *tau;
    magma_int_t status = 0;
    
    magma_opts opts;
    opts.parse_opts( argc, argv );
    
    // need slightly looser bound (60*eps instead of 30*eps) for some tests
    opts.tolerance = max( 60., opts.tolerance );
    float tol = opts.tolerance * lapackf77_slamch("E");
    
    // test all combinations of input parameters
    magma_side_t  side [] = { MagmaLeft,       MagmaRight   };
    magma_trans_t trans[] = { Magma_ConjTrans, MagmaNoTrans };

    printf("%%   M     N     K   side   trans   CPU Gflop/s (sec)   GPU Gflop/s (sec)   ||R||_F / ||QC||_F\n");
    printf("%%==============================================================================================\n");
    for( int itest = 0; itest < opts.ntest; ++itest ) {
      for( int iside = 0; iside < 2; ++iside ) {
      for( int itran = 0; itran < 2; ++itran ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {
            m = opts.msize[itest];
            n = opts.nsize[itest];
            k = opts.ksize[itest];
            nb  = magma_get_cgelqf_nb( m, n );
            ldc = m;
            // A is k x m (left) or k x n (right)
            mm = (side[iside] == MagmaLeft ? m : n);
            lda = k;
            gflops = FLOPS_CUNMLQ( m, n, k, side[iside] ) / 1e9;
            
            if ( side[iside] == MagmaLeft && m < k ) {
                printf( "%5d %5d %5d   %4c   %5c   skipping because side=left  and m < k\n",
                        (int) m, (int) n, (int) k,
                        lapacke_side_const( side[iside] ),
                        lapacke_trans_const( trans[itran] ) );
                continue;
            }
            if ( side[iside] == MagmaRight && n < k ) {
                printf( "%5d %5d %5d   %4c   %5c   skipping because side=right and n < k\n",
                        (int) m, (int) n, (int) k,
                        lapacke_side_const( side[iside] ),
                        lapacke_trans_const( trans[itran] ) );
                continue;
            }
            
            // need at least 2*nb*nb for gelqf
            lwork_max = max( max( m*nb, n*nb ), 2*nb*nb );
            // this rounds it up slightly if needed to agree with lwork query
            lwork_max = int( real( magma_cmake_lwork( lwork_max )));
            
            TESTING_MALLOC_CPU( C,   magmaFloatComplex, ldc*n );
            TESTING_MALLOC_CPU( R,   magmaFloatComplex, ldc*n );
            TESTING_MALLOC_CPU( A,   magmaFloatComplex, lda*mm );
            TESTING_MALLOC_CPU( W,   magmaFloatComplex, lwork_max );
            TESTING_MALLOC_CPU( tau, magmaFloatComplex, k );
            
            // C is full, m x n
            size = ldc*n;
            lapackf77_clarnv( &ione, ISEED, &size, C );
            lapackf77_clacpy( "Full", &m, &n, C, &ldc, R, &ldc );
            
            size = lda*mm;
            lapackf77_clarnv( &ione, ISEED, &size, A );
            
            // compute LQ factorization to get Householder vectors in A, tau
            magma_cgelqf( k, mm, A, lda, tau, W, lwork_max, &info );
            if (info != 0) {
                printf("magma_cgelqf returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            }
            
            /* =====================================================================
               Performs operation using LAPACK
               =================================================================== */
            cpu_time = magma_wtime();
            lapackf77_cunmlq( lapack_side_const( side[iside] ), lapack_trans_const( trans[itran] ),
                              &m, &n, &k,
                              A, &lda, tau, C, &ldc, W, &lwork_max, &info );
            cpu_time = magma_wtime() - cpu_time;
            cpu_perf = gflops / cpu_time;
            if (info != 0) {
                printf("lapackf77_cunmlq returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            }
            
            /* ====================================================================
               Performs operation using MAGMA
               =================================================================== */
            // query for workspace size
            lwork = -1;
            magma_cunmlq( side[iside], trans[itran],
                          m, n, k,
                          A, lda, tau, R, ldc, W, lwork, &info );
            if (info != 0) {
                printf("magma_cunmlq (lwork query) returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            }
            lwork = (magma_int_t) MAGMA_C_REAL( W[0] );
            if ( lwork < 0 || lwork > lwork_max ) {
                printf("Warning: optimal lwork %d > allocated lwork_max %d\n", (int) lwork, (int) lwork_max );
                lwork = lwork_max;
            }
            
            gpu_time = magma_wtime();
            magma_cunmlq( side[iside], trans[itran],
                          m, n, k,
                          A, lda, tau, R, ldc, W, lwork, &info );
            gpu_time = magma_wtime() - gpu_time;
            gpu_perf = gflops / gpu_time;
            if (info != 0) {
                printf("magma_cunmlq returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            }
            
            /* =====================================================================
               compute relative error |QC_magma - QC_lapack| / |QC_lapack|
               =================================================================== */
            size = ldc*n;
            blasf77_caxpy( &size, &c_neg_one, C, &ione, R, &ione );
            Cnorm = lapackf77_clange( "Fro", &m, &n, C, &ldc, work );
            error = lapackf77_clange( "Fro", &m, &n, R, &ldc, work ) / (magma_ssqrt(m*n) * Cnorm);
            
            printf( "%5d %5d %5d   %4c   %5c   %7.2f (%7.2f)   %7.2f (%7.2f)   %8.2e   %s\n",
                    (int) m, (int) n, (int) k,
                    lapacke_side_const( side[iside] ),
                    lapacke_trans_const( trans[itran] ),
                    cpu_perf, cpu_time, gpu_perf, gpu_time,
                    error, (error < tol ? "ok" : "failed") );
            status += ! (error < tol);
            
            TESTING_FREE_CPU( C );
            TESTING_FREE_CPU( R );
            TESTING_FREE_CPU( A );
            TESTING_FREE_CPU( W );
            TESTING_FREE_CPU( tau );
            fflush( stdout );
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
      }}  // end iside, itran
      printf( "\n" );
    }
    
    opts.cleanup();
    TESTING_FINALIZE();
    return status;
}
/* ////////////////////////////////////////////////////////////////////////////
   -- Testing cgeqrf
*/
int main( int argc, char** argv)
{
    TESTING_INIT();

    real_Double_t    gflops, gpu_perf, gpu_time, cpu_perf, cpu_time;
    float           error, work[1];

    magmaFloatComplex  c_neg_one = MAGMA_C_NEG_ONE;
    magmaFloatComplex *h_A, *h_T, *h_R, *tau, *h_work, tmp[1];
    magmaFloatComplex *d_A,  *d_T, *ddA, *dtau;
    magmaFloatComplex *d_A2, *d_T2, *ddA2, *dtau2;
    float *dwork, *dwork2;

    magma_int_t M, N, lda, ldda, lwork, n2, info, min_mn;
    magma_int_t ione     = 1;
    magma_int_t ISEED[4] = {0,0,0,1};
    magma_int_t status = 0;

    #define BLOCK_SIZE 64

    magma_opts opts;
    parse_opts( argc, argv, &opts );
    
    float tol = 10. * opts.tolerance * lapackf77_slamch("E");
    
    magma_queue_t stream[2];
    magma_queue_create( &stream[0] );
    magma_queue_create( &stream[1] );

    printf("version %d\n", (int) opts.version );
    printf("  M     N     CPU GFlop/s (ms)    GPU GFlop/s (ms)   ||R||_F/||A||_F  ||R_T||\n");
    printf("=============================================================================\n");
    for( int itest = 0; itest < opts.ntest; ++itest ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {
            M     = opts.msize[itest];
            N     = opts.nsize[itest];

            if (N > 128) {
                printf("%5d %5d   skipping because cgeqr2x requires N <= 128\n",
                        (int) M, (int) N);
                continue;
            }
            if (M < N) {
                printf("%5d %5d   skipping because cgeqr2x requires M >= N\n",
                        (int) M, (int) N);
                continue;
            }

            min_mn = min(M, N);
            lda    = M;
            n2     = lda*N;
            ldda   = ((M+31)/32)*32;
            gflops = (FLOPS_CGEQRF( M, N ) + FLOPS_CGEQRT( M, N )) / 1e9;

            /* Allocate memory for the matrix */
            TESTING_MALLOC_CPU( tau,   magmaFloatComplex, min_mn );
            TESTING_MALLOC_CPU( h_A,   magmaFloatComplex, n2     );
            TESTING_MALLOC_CPU( h_T,   magmaFloatComplex, N*N    );
        
            TESTING_MALLOC_PIN( h_R,   magmaFloatComplex, n2     );
        
            TESTING_MALLOC_DEV( d_A,   magmaFloatComplex, ldda*N );
            TESTING_MALLOC_DEV( d_T,   magmaFloatComplex, N*N    );
            TESTING_MALLOC_DEV( ddA,   magmaFloatComplex, N*N    );
            TESTING_MALLOC_DEV( dtau,  magmaFloatComplex, min_mn );
        
            TESTING_MALLOC_DEV( d_A2,  magmaFloatComplex, ldda*N );
            TESTING_MALLOC_DEV( d_T2,  magmaFloatComplex, N*N    );
            TESTING_MALLOC_DEV( ddA2,  magmaFloatComplex, N*N    );
            TESTING_MALLOC_DEV( dtau2, magmaFloatComplex, min_mn );
        
            TESTING_MALLOC_DEV( dwork,  float, max(5*min_mn, (BLOCK_SIZE*2+2)*min_mn) );
            TESTING_MALLOC_DEV( dwork2, float, max(5*min_mn, (BLOCK_SIZE*2+2)*min_mn) );
            
            // todo replace with magma_claset
            cudaMemset(ddA, 0, N*N*sizeof(magmaFloatComplex));
            cudaMemset(d_T, 0, N*N*sizeof(magmaFloatComplex));
        
            cudaMemset(ddA2, 0, N*N*sizeof(magmaFloatComplex));
            cudaMemset(d_T2, 0, N*N*sizeof(magmaFloatComplex));
        
            lwork = -1;
            lapackf77_cgeqrf(&M, &N, NULL, &M, NULL, tmp, &lwork, &info);
            lwork = (magma_int_t)MAGMA_C_REAL( tmp[0] );
            lwork = max(lwork, N*N);
        
            TESTING_MALLOC_CPU( h_work, magmaFloatComplex, lwork );

            /* Initialize the matrix */
            lapackf77_clarnv( &ione, ISEED, &n2, h_A );
            lapackf77_clacpy( MagmaUpperLowerStr, &M, &N, h_A, &lda, h_R, &lda );
            magma_csetmatrix( M, N, h_R, lda,  d_A, ldda );
            magma_csetmatrix( M, N, h_R, lda, d_A2, ldda );
    
            /* ====================================================================
               Performs operation using MAGMA
               =================================================================== */
            gpu_time = magma_sync_wtime(0);
    
            if (opts.version == 1)
                magma_cgeqr2x_gpu(M, N, d_A, ldda, dtau, d_T, ddA, dwork, &info);
            else if (opts.version == 2)
                magma_cgeqr2x2_gpu(M, N, d_A, ldda, dtau, d_T, ddA, dwork, &info);
            else if (opts.version == 3)
                magma_cgeqr2x3_gpu(M, N, d_A, ldda, dtau, d_T, ddA, dwork, &info);
            else {
                printf( "call magma_cgeqr2x4_gpu\n" );
                /*
                  Going through NULL stream is faster
                  Going through any stream is slower
                  Doing two streams in parallel is slower than doing them sequentially
                  Queuing happens on the NULL stream - user defined buffers are smaller?
                */
                magma_cgeqr2x4_gpu(M, N, d_A, ldda, dtau, d_T, ddA, dwork, &info, NULL);
                //magma_cgeqr2x4_gpu(M, N, d_A, ldda, dtau, d_T, ddA, dwork, &info, stream[1]);
                //magma_cgeqr2x4_gpu(M, N, d_A2, ldda, dtau2, d_T2, ddA2, dwork2, &info, stream[0]);
                //magma_cgeqr2x4_gpu(M, N, d_A2, ldda, dtau2, d_T2, ddA2, dwork2, &info, NULL);
                //gflops *= 2;
            }
            gpu_time = magma_sync_wtime(0) - gpu_time;
            gpu_perf = gflops / gpu_time;

            if (info != 0) {
                printf("magma_cgeqr2x_gpu version %d returned error %d: %s.\n",
                       (int) opts.version, (int) info, magma_strerror( info ));
            } 
            else {
                if ( opts.check ) {
                    /* =====================================================================
                       Performs operation using LAPACK
                       =================================================================== */
                    cpu_time = magma_wtime();
                    lapackf77_cgeqrf(&M, &N, h_A, &lda, tau, h_work, &lwork, &info);
                    lapackf77_clarft( MagmaForwardStr, MagmaColumnwiseStr,
                                     &M, &N, h_A, &lda, tau, h_work, &N);
                    //magma_cgeqr2(&M, &N, h_A, &lda, tau, h_work, &info);
                    cpu_time = magma_wtime() - cpu_time;
                    cpu_perf = gflops / cpu_time;
                    if (info != 0)
                        printf("lapackf77_cgeqrf returned error %d: %s.\n",
                               (int) info, magma_strerror( info ));
                
                    /* =====================================================================
                       Check the result compared to LAPACK
                       =================================================================== */
                    magma_cgetmatrix( M, N, d_A, ldda, h_R, M );
                    magma_cgetmatrix( N, N, ddA, N,    h_T, N );
    
                    // Restore the upper triangular part of A before the check
                    for(int col=0; col < N; col++){
                        for(int row=0; row <= col; row++)
                            h_R[row + col*M] = h_T[row + col*N];
                    }
                
                    error = lapackf77_clange("M", &M, &N, h_A, &lda, work);
                    blasf77_caxpy(&n2, &c_neg_one, h_A, &ione, h_R, &ione);
                    error = lapackf77_clange("M", &M, &N, h_R, &lda, work) / (N * error);
     
                    // Check if T is the same
                    magma_cgetmatrix( N, N, d_T, N, h_T, N );
    
                    float terr = 0.;
                    for(int col=0; col < N; col++)
                        for(int row=0; row <= col; row++)
                            terr += (  MAGMA_C_ABS(h_work[row + col*N] - h_T[row + col*N])*
                                       MAGMA_C_ABS(h_work[row + col*N] - h_T[row + col*N])  );
                    terr = magma_ssqrt(terr);
    
                    printf("%5d %5d   %7.2f (%7.2f)   %7.2f (%7.2f)     %8.2e     %8.2e   %s\n",
                           (int) M, (int) N, cpu_perf, 1000.*cpu_time, gpu_perf, 1000.*gpu_time,
                           error, terr, (error < tol ? "ok" : "failed") );
                    status += ! (error < tol);
                }
                else {
                    printf("%5d %5d     ---   (  ---  )   %7.2f (%7.2f)     ---  \n",
                           (int) M, (int) N, gpu_perf, 1000.*gpu_time);
                }
            }
            
            TESTING_FREE_CPU( tau    );
            TESTING_FREE_CPU( h_A    );
            TESTING_FREE_CPU( h_T    );
            TESTING_FREE_CPU( h_work );
            
            TESTING_FREE_PIN( h_R    );
        
            TESTING_FREE_DEV( d_A   );
            TESTING_FREE_DEV( d_T   );
            TESTING_FREE_DEV( ddA   );
            TESTING_FREE_DEV( dtau  );
            TESTING_FREE_DEV( dwork );
        
            TESTING_FREE_DEV( d_A2   );
            TESTING_FREE_DEV( d_T2   );
            TESTING_FREE_DEV( ddA2   );
            TESTING_FREE_DEV( dtau2  );
            TESTING_FREE_DEV( dwork2 );
            fflush( stdout );
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
    }
    
    magma_queue_destroy( stream[0] );
    magma_queue_destroy( stream[1] );

    TESTING_FINALIZE();
    return status;
}