void MAGMAF_ZGEQRF2_GPU(magma_int_t *m, magma_int_t *n, devptr_t *dA, magma_int_t *ldda, cuDoubleComplex *tau, magma_int_t *info) { magma_zgeqrf2_gpu(*m, *n, DEVPTR(dA), *ldda, tau, info); }
extern "C" magma_int_t magma_zgeqrf_ooc(magma_int_t m, magma_int_t n, magmaDoubleComplex *a, magma_int_t lda, magmaDoubleComplex *tau, magmaDoubleComplex *work, magma_int_t lwork, magma_int_t *info ) { /* -- MAGMA (version 1.4.0) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver August 2013 Purpose ======= ZGEQRF_OOC computes a QR factorization of a COMPLEX_16 M-by-N matrix A: A = Q * R. This version does not require work space on the GPU passed as input. GPU memory is allocated in the routine. This is an out-of-core (ooc) version that is similar to magma_zgeqrf but the difference is that this version can use a GPU even if the matrix does not fit into the GPU memory at once. Arguments ========= M (input) INTEGER The number of rows of the matrix A. M >= 0. N (input) INTEGER The number of columns of the matrix A. N >= 0. A (input/output) COMPLEX_16 array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, the elements on and above the diagonal of the array contain the min(M,N)-by-N upper trapezoidal matrix R (R is upper triangular if m >= n); the elements below the diagonal, with the array TAU, represent the orthogonal matrix Q as a product of min(m,n) elementary reflectors (see Further Details). Higher performance is achieved if A is in pinned memory, e.g. allocated using magma_malloc_pinned. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU (output) COMPLEX_16 array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). WORK (workspace/output) COMPLEX_16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. Higher performance is achieved if WORK is in pinned memory, e.g. allocated using magma_malloc_pinned. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= N*NB, where NB can be obtained through magma_get_zgeqrf_nb(M). If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value or another error occured, such as memory allocation failed. Further Details =============== The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(k), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v' where tau is a complex scalar, and v is a complex vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i). ===================================================================== */ #define a_ref(a_1,a_2) ( a+(a_2)*(lda) + (a_1)) #define da_ref(a_1,a_2) (da+(a_2)*ldda + (a_1)) magmaDoubleComplex *da, *dwork; magmaDoubleComplex c_one = MAGMA_Z_ONE; int k, lddwork, ldda; *info = 0; int nb = magma_get_zgeqrf_nb(min(m, n)); int lwkopt = n * nb; work[0] = MAGMA_Z_MAKE( (double)lwkopt, 0 ); int lquery = (lwork == -1); if (m < 0) { *info = -1; } else if (n < 0) { *info = -2; } else if (lda < max(1,m)) { *info = -4; } else if (lwork < max(1,n) && ! lquery) { *info = -7; } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } else if (lquery) return *info; /* Check how much memory do we have */ size_t freeMem, totalMem; cudaMemGetInfo( &freeMem, &totalMem ); freeMem /= sizeof(magmaDoubleComplex); magma_int_t IB, NB = (magma_int_t)(0.8*freeMem/m); NB = (NB / nb) * nb; if (NB >= n) return magma_zgeqrf(m, n, a, lda, tau, work, lwork, info); k = min(m,n); if (k == 0) { work[0] = c_one; return *info; } lddwork = ((NB+31)/32)*32+nb; ldda = ((m+31)/32)*32; if (MAGMA_SUCCESS != magma_zmalloc( &da, (NB + nb)*ldda + nb*lddwork )) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } magma_queue_t stream[2]; magma_queue_create( &stream[0] ); magma_queue_create( &stream[1] ); // magmablasSetKernelStream(stream[1]); magmaDoubleComplex *ptr = da + ldda * NB; dwork = da + ldda*(NB + nb); /* start the main loop over the blocks that fit in the GPU memory */ for(int i=0; i<n; i+=NB) { IB = min(n-i, NB); //printf("Processing %5d columns -- %5d to %5d ... \n", IB, i, i+IB); /* 1. Copy the next part of the matrix to the GPU */ magma_zsetmatrix_async( (m), IB, a_ref(0,i), lda, da_ref(0,0), ldda, stream[0] ); magma_queue_sync( stream[0] ); /* 2. Update it with the previous transformations */ for(int j=0; j<min(i,k); j+=nb) { magma_int_t ib = min(k-j, nb); /* Get a panel in ptr. */ // 1. Form the triangular factor of the block reflector // 2. Send it to the GPU. // 3. Put 0s in the upper triangular part of V. // 4. Send V to the GPU in ptr. // 5. Update the matrix. // 6. Restore the upper part of V. magma_int_t rows = m-j; lapackf77_zlarft( MagmaForwardStr, MagmaColumnwiseStr, &rows, &ib, a_ref(j,j), &lda, tau+j, work, &ib); magma_zsetmatrix_async( ib, ib, work, ib, dwork, lddwork, stream[1] ); zpanel_to_q(MagmaUpper, ib, a_ref(j,j), lda, work+ib*ib); magma_zsetmatrix_async( rows, ib, a_ref(j,j), lda, ptr, rows, stream[1] ); magma_queue_sync( stream[1] ); magma_zlarfb_gpu( MagmaLeft, MagmaConjTrans, MagmaForward, MagmaColumnwise, rows, IB, ib, ptr, rows, dwork, lddwork, da_ref(j, 0), ldda, dwork+ib, lddwork); zq_to_panel(MagmaUpper, ib, a_ref(j,j), lda, work+ib*ib); } /* 3. Do a QR on the current part */ if (i<k) magma_zgeqrf2_gpu(m-i, IB, da_ref(i,0), ldda, tau+i, info); /* 4. Copy the current part back to the CPU */ magma_zgetmatrix_async( (m), IB, da_ref(0,0), ldda, a_ref(0,i), lda, stream[0] ); } magma_queue_sync( stream[0] ); magma_queue_destroy( stream[0] ); magma_queue_destroy( stream[1] ); magma_free( da ); return *info; } /* magma_zgeqrf_ooc */
void MAGMA_ZGEQRF2_GPU( magma_int_t *m, magma_int_t *n, double2 *A, magma_int_t *lda, double2 *tau, magma_int_t *info) { magma_zgeqrf2_gpu( *m, *n, A, *lda, tau, info); }
extern "C" magma_int_t magma_zgelqf( magma_int_t m, magma_int_t n, magmaDoubleComplex *a, magma_int_t lda, magmaDoubleComplex *tau, magmaDoubleComplex *work, magma_int_t lwork, magma_int_t *info) { /* -- MAGMA (version 1.4.1) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver December 2013 Purpose ======= ZGELQF computes an LQ factorization of a COMPLEX_16 M-by-N matrix A: A = L * Q. Arguments ========= M (input) INTEGER The number of rows of the matrix A. M >= 0. N (input) INTEGER The number of columns of the matrix A. N >= 0. A (input/output) COMPLEX_16 array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, the elements on and below the diagonal of the array contain the m-by-min(m,n) lower trapezoidal matrix L (L is lower triangular if m <= n); the elements above the diagonal, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors (see Further Details). Higher performance is achieved if A is in pinned memory, e.g. allocated using magma_malloc_pinned. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU (output) COMPLEX_16 array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). WORK (workspace/output) COMPLEX_16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. Higher performance is achieved if WORK is in pinned memory, e.g. allocated using magma_malloc_pinned. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= max(1,M). For optimum performance LWORK >= M*NB, where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value if INFO = -10 internal GPU memory allocation failed. Further Details =============== The matrix Q is represented as a product of elementary reflectors Q = H(k) . . . H(2) H(1), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v' where tau is a complex scalar, and v is a complex vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n), and tau in TAU(i). ===================================================================== */ #define a_ref(a_1,a_2) ( a+(a_2)*(lda) + (a_1)) magmaDoubleComplex *dA, *dAT; magmaDoubleComplex c_one = MAGMA_Z_ONE; magma_int_t maxm, maxn, maxdim, nb; magma_int_t iinfo, ldda; int lquery; /* Function Body */ *info = 0; nb = magma_get_zgelqf_nb(m); work[0] = MAGMA_Z_MAKE( (double)(m*nb), 0 ); lquery = (lwork == -1); if (m < 0) { *info = -1; } else if (n < 0) { *info = -2; } else if (lda < max(1,m)) { *info = -4; } else if (lwork < max(1,m) && ! lquery) { *info = -7; } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } else if (lquery) { return *info; } /* Quick return if possible */ if (min(m, n) == 0) { work[0] = c_one; return *info; } maxm = ((m + 31)/32)*32; maxn = ((n + 31)/32)*32; maxdim = max(maxm, maxn); if (maxdim*maxdim < 2*maxm*maxn) { ldda = maxdim; if (MAGMA_SUCCESS != magma_zmalloc( &dA, maxdim*maxdim )) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } magma_zsetmatrix( m, n, a, lda, dA, ldda ); dAT = dA; magmablas_ztranspose_inplace( ldda, dAT, ldda ); } else { ldda = maxn; if (MAGMA_SUCCESS != magma_zmalloc( &dA, 2*maxn*maxm )) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } magma_zsetmatrix( m, n, a, lda, dA, maxm ); dAT = dA + maxn * maxm; magmablas_ztranspose2( dAT, ldda, dA, maxm, m, n ); } magma_zgeqrf2_gpu(n, m, dAT, ldda, tau, &iinfo); if (maxdim*maxdim < 2*maxm*maxn) { magmablas_ztranspose_inplace( ldda, dAT, ldda ); magma_zgetmatrix( m, n, dA, ldda, a, lda ); } else { magmablas_ztranspose2( dA, maxm, dAT, ldda, n, m ); magma_zgetmatrix( m, n, dA, maxm, a, lda ); } magma_free( dA ); return *info; } /* magma_zgelqf */