// ------------------------------------------------------------ // Solve A * X = B, where A and X are stored in CPU host memory. // Internally, MAGMA transfers data to the GPU device // and uses a hybrid CPU + GPU algorithm. void cpu_interface( magma_int_t n, magma_int_t nrhs ) { magmaDoubleComplex *A=NULL, *X=NULL; magma_int_t *ipiv=NULL; magma_int_t lda = n; magma_int_t ldx = lda; magma_int_t info = 0; // magma_*malloc_cpu routines for CPU memory are type-safe and align to memory boundaries, // but you can use malloc or new if you prefer. magma_zmalloc_cpu( &A, lda*n ); magma_zmalloc_cpu( &X, ldx*nrhs ); magma_imalloc_cpu( &ipiv, n ); if ( A == NULL || X == NULL || ipiv == NULL ) { fprintf( stderr, "malloc failed\n" ); goto cleanup; } // Replace these with your code to initialize A and X zfill_matrix( n, n, A, lda ); zfill_rhs( n, nrhs, X, ldx ); magma_zgesv( n, 1, A, lda, ipiv, X, lda, &info ); if ( info != 0 ) { fprintf( stderr, "magma_zgesv failed with info=%d\n", info ); } // TODO: use result in X cleanup: magma_free_cpu( A ); magma_free_cpu( X ); magma_free_cpu( ipiv ); }
void MAGMAF_ZGESV ( magma_int_t *n, magma_int_t *nrhs, cuDoubleComplex *A, magma_int_t *lda, magma_int_t *ipiv, cuDoubleComplex *B, magma_int_t *ldb, magma_int_t *info) { magma_zgesv( *n, *nrhs, A, *lda, ipiv, B, *ldb, info); }
BOOST_FORCEINLINE result_type operator()(A0& a0, A1& a1, A2& a2) const { result_type that; nt2_la_int n = std::min(nt2::height(a0),nt2::width(a0)); nt2_la_int lda = n; nt2_la_int nhrs = nt2::width(a2); nt2_la_int ldb = a2.leading_size(); a1.resize(nt2::of_size(n,1)); magma_zgesv(n,nhrs,(cuDoubleComplex*)a0.data(),lda,a1.data() ,(cuDoubleComplex*)a2.data(),ldb,&that); return that; }
/* //////////////////////////////////////////////////////////////////////////// -- Testing zgesv */ int main(int argc, char **argv) { real_Double_t gflops, cpu_perf, cpu_time, gpu_perf, gpu_time; double error, Rnorm, Anorm, Xnorm, *work; magmaDoubleComplex c_one = MAGMA_Z_ONE; magmaDoubleComplex c_neg_one = MAGMA_Z_NEG_ONE; magmaDoubleComplex *h_A, *h_LU, *h_B, *h_X; magma_int_t *ipiv; magma_int_t N, nrhs, lda, ldb, info, sizeA, sizeB; magma_int_t ione = 1; magma_int_t ISEED[4] = {0,0,0,1}; magma_int_t status = 0; /* Initialize */ magma_queue_t queue[2]; magma_device_t device[ MagmaMaxGPUs ]; int num = 0; magma_err_t err; magma_init(); magma_opts opts; parse_opts( argc, argv, &opts ); double tol = opts.tolerance * lapackf77_dlamch("E"); nrhs = opts.nrhs; err = magma_get_devices( device, MagmaMaxGPUs, &num ); if ( err != 0 || num < 1 ) { fprintf( stderr, "magma_get_devices failed: %d\n", err ); exit(-1); } // Create two queues on device opts.device err = magma_queue_create( device[ opts.device ], &queue[0] ); if ( err != 0 ) { fprintf( stderr, "magma_queue_create failed: %d\n", err ); exit(-1); } err = magma_queue_create( device[ opts.device ], &queue[1] ); if ( err != 0 ) { fprintf( stderr, "magma_queue_create failed: %d\n", err ); exit(-1); } printf("ngpu %d\n", (int) opts.ngpu ); printf(" N NRHS CPU Gflop/s (sec) GPU GFlop/s (sec) ||B - AX|| / N*||A||*||X||\n"); printf("================================================================================\n"); for( int i = 0; i < opts.ntest; ++i ) { for( int iter = 0; iter < opts.niter; ++iter ) { N = opts.nsize[i]; lda = N; ldb = lda; gflops = ( FLOPS_ZGETRF( N, N ) + FLOPS_ZGETRS( N, nrhs ) ) / 1e9; TESTING_MALLOC_CPU( h_A, magmaDoubleComplex, lda*N ); TESTING_MALLOC_CPU( h_LU, magmaDoubleComplex, lda*N ); TESTING_MALLOC_CPU( h_B, magmaDoubleComplex, ldb*nrhs ); TESTING_MALLOC_CPU( h_X, magmaDoubleComplex, ldb*nrhs ); TESTING_MALLOC_CPU( work, double, N ); TESTING_MALLOC_CPU( ipiv, magma_int_t, N ); /* Initialize the matrices */ sizeA = lda*N; sizeB = ldb*nrhs; lapackf77_zlarnv( &ione, ISEED, &sizeA, h_A ); lapackf77_zlarnv( &ione, ISEED, &sizeB, h_B ); // copy A to LU and B to X; save A and B for residual lapackf77_zlacpy( "F", &N, &N, h_A, &lda, h_LU, &lda ); lapackf77_zlacpy( "F", &N, &nrhs, h_B, &ldb, h_X, &ldb ); /* ==================================================================== Performs operation using MAGMA =================================================================== */ gpu_time = magma_wtime(); magma_zgesv( N, nrhs, h_LU, lda, ipiv, h_X, ldb, &info, queue ); gpu_time = magma_wtime() - gpu_time; gpu_perf = gflops / gpu_time; if (info != 0) printf("magma_zgesv returned error %d: %s.\n", (int) info, magma_strerror( info )); //===================================================================== // Residual //===================================================================== Anorm = lapackf77_zlange("I", &N, &N, h_A, &lda, work); Xnorm = lapackf77_zlange("I", &N, &nrhs, h_X, &ldb, work); blasf77_zgemm( MagmaNoTransStr, MagmaNoTransStr, &N, &nrhs, &N, &c_one, h_A, &lda, h_X, &ldb, &c_neg_one, h_B, &ldb); Rnorm = lapackf77_zlange("I", &N, &nrhs, h_B, &ldb, work); error = Rnorm/(N*Anorm*Xnorm); status |= ! (error < tol); /* ==================================================================== Performs operation using LAPACK =================================================================== */ if ( opts.lapack ) { cpu_time = magma_wtime(); lapackf77_zgesv( &N, &nrhs, h_A, &lda, ipiv, h_B, &ldb, &info ); cpu_time = magma_wtime() - cpu_time; cpu_perf = gflops / cpu_time; if (info != 0) printf("lapackf77_zgesv returned error %d: %s.\n", (int) info, magma_strerror( info )); printf( "%5d %5d %7.2f (%7.2f) %7.2f (%7.2f) %8.2e%s\n", (int) N, (int) nrhs, cpu_perf, cpu_time, gpu_perf, gpu_time, error, (error < tol ? "" : " failed")); } else { printf( "%5d %5d --- ( --- ) %7.2f (%7.2f) %8.2e%s\n", (int) N, (int) nrhs, gpu_perf, gpu_time, error, (error < tol ? "" : " failed")); } TESTING_FREE_CPU( h_A ); TESTING_FREE_CPU( h_LU ); TESTING_FREE_CPU( h_B ); TESTING_FREE_CPU( h_X ); TESTING_FREE_CPU( work ); TESTING_FREE_CPU( ipiv ); } if ( opts.niter > 1 ) { printf( "\n" ); } } magma_queue_destroy( queue[0] ); magma_queue_destroy( queue[1] ); magma_finalize(); return status; }