// Demonstrate bounding polygonal contours with circles and rectangles. // DemoDisplay(const cv::Mat &s): source(s), bounds(s.size(), CV_8UC3), bar(100), maxBar(std::numeric_limits<uchar>::max()) { makeWindow("Original", source, 2); makeWindow("Bounds", bounds); makeTrackbar("Threshold:", "Original", &bar, maxBar); makeTrackbar("Threshold:", "Bounds", &bar, maxBar); cv::imshow("Original", source); }
// Return src after applying a default Gaussian blur with a kernel of size // (kernelSize x kernelSize) and converting to grayscale and showing the // results. // static cv::Mat showOriginalBlurGray(const cv::Mat &src, int kernelSize) { static const double sigmaX = 0.0; static const double sigmaY = 0.0; static const int borderKind = cv::BORDER_DEFAULT; const cv::Size kernel(kernelSize, kernelSize); makeWindow("Original", src, 2); cv::Mat blur; cv::GaussianBlur(src, blur, kernel, sigmaX, sigmaY, borderKind); makeWindow("Original Blur", blur); cv::Mat result; cv::cvtColor(blur, result, cv::COLOR_RGB2GRAY); makeWindow("Original Blurred Grayscale", result); return result; }
/* ** makeVisible(). ** We can't really make windows visible, or invisible. So we ** have to delete the entire window when making it visible, ** and create it again when making it visible. */ void makeVisible (TuiGenWinInfoPtr winInfo, int visible) { /* Don't tear down/recreate command window */ if (winInfo->type == CMD_WIN) return; if (visible) { if (!winInfo->isVisible) { makeWindow ( winInfo, (winInfo->type != CMD_WIN && !m_winIsAuxillary (winInfo->type))); winInfo->isVisible = TRUE; } tuiRefreshWin (winInfo); } else if (!visible && winInfo->isVisible && winInfo->handle != (WINDOW *) NULL) { winInfo->isVisible = FALSE; tuiClearWin (winInfo); tuiDelwin (winInfo->handle); winInfo->handle = (WINDOW *) NULL; } return; } /* makeVisible */
// Find and display contours in image s. // DemoDisplay(const cv::Mat &s): sourceImage(s), grayImage(grayScale(s)), bar(23), maxBar(100) { sourceImage.copyTo(cornersImage); makeWindow("Corners", cornersImage); makeTrackbar("Max Corners:", "Corners", &bar, maxBar); }
RuskWindow* makeRusk() { RuskWindow *rusk; if((rusk = malloc(sizeof(RuskWindow))) == NULL) { return NULL; } if(makeWindow(rusk) != 0) { return NULL; } if(setupWebView(rusk) != 0) { return NULL; } if(connectDataBase(rusk) != 0) { return NULL; } g_ruskCounter++; return rusk; }
// Show application of Laplacian() to src. // static void showLaplacian(const cv::Mat &src, int kernelSize) { static const int borderKind = cv::BORDER_DEFAULT; static const int depth = CV_16S; static const double scale = 1.0; static const double delta = 0.0; static const double alpha = 0.5; static const double beta = 0.5; static const double gamma = 0.0; cv::Mat dst, absDst; cv::Laplacian(src, dst, depth, kernelSize, scale, delta, borderKind); cv::convertScaleAbs(dst, absDst); makeWindow("Laplacian", absDst); }
ButtonRefWindow::ButtonRefWindow(QWidget *parent, QString const &typeName , qReal::models::LogicalModelAssistApi const &logicalModelAssistApi , int role, const QModelIndex &index , qReal::MainWindow *mainWindow) : QPushButton(parent) , mName(typeName) , mApi(logicalModelAssistApi.logicalRepoApi()) , mRole(role) , mIndex(index) , mMainWindow(mainWindow) { setText("Reference button"); connect(this, SIGNAL(clicked()), this, SLOT(makeWindow())); show(); }
// Display the count images in bgr and compute their HSV histograms. // Then compare each histogram to the first one and report results. // static void showHistogramComparisons(int count, const char *name[], const cv::Mat bgr[]) { std::vector<cv::Mat> hsv(count); std::vector<cv::Mat> histogram(count); for (int i = 0; i < count; ++i) { makeWindow(name[i], bgr[i]); cv::cvtColor(bgr[i], hsv[i], cv::COLOR_BGR2HSV); } for (int i = 0; i < histogram.size(); ++i) { histogram[i] = calculateHistogram(hsv[i]); } compareHistograms(histogram, name); std::cout << "Press a key to quit." << std::endl; cv::waitKey(0); }
// Set things up and run int main(int argc, char** argv) { makeWindow(argc, argv); acquireSharedOpenCLContext(); initObjects(); initPrograms(); initFramebuffers(); initShaders(); setupGlutCallbacks(); camera.pos = MakeVector(0, 0, -12); camera.up = MakeVector(0, 1, 0); camera.front = MakeVector(0, 0, 1); glutSetCursor(GLUT_CURSOR_NONE); glutMainLoop(); releaseSharedOpenCLContext(); }
void initializeGame(){ upperStateWindow = makeWindow(7, 100, 2, 5); myPlayGround = makeWindow(PLAY_WIDTH_SIZE, PLAY_HEIGHT_SIZE, PG_LINE_X, 51); settingMyPlayGround(myPlayGround); myScoreWindow = makeWindow(4, 24 + 12 + 2 + 2, 34, 51); myTempBlock = makeWindow(PLAY_WIDTH_SIZE, 12, PG_LINE_X, 53 + PLAY_WIDTH_SIZE + 2); otherPlayGround = makeWindow(PLAY_WIDTH_SIZE, PLAY_HEIGHT_SIZE, PG_LINE_X, 5); settingOtherPlayGround(otherPlayGround); otherScoreWIndow = makeWindow(4, 24 + 12 + 2 + 2, 34, 5); otherTempBlock = makeWindow(PLAY_WIDTH_SIZE, 12, PG_LINE_X, 7 + PLAY_WIDTH_SIZE + 2); chatWindow = makeWindow(28, 30, PG_LINE_X, 95); settingMyTemp(myTempBlock); settingChat(chatWindow); //otherPlayGround = makeWindow(40, 20, 25, 50); }
void Spectrum::initialize(sampleSizes s, PaSampleFormat b, int nr, QString dir) { nrig = nr; userDirectory = dir; sizes = s; sizeIQ = sizes.sample_length / 8; // 512 IQ phase/gain bins // initialize FFTW #ifdef Q_OS_WIN if (!fftwWinInit()) { return; } if (in) (fftw_freep) (in); if (out) (fftw_freep) (out); if (errfunc) (fftw_freep) (errfunc); if (plan) (fftw_destroy_planp) (plan); in = (fftw_complex *) (fftw_mallocp) (sizeof(fftw_complex) * sizes.sample_length); out = (fftw_complex *) (fftw_mallocp) (sizeof(fftw_complex) * sizes.sample_length); errfunc = (fftw_complex *) (fftw_mallocp) (sizeof(fftw_complex) * sizes.sample_length); plan = (fftw_plan_dft_1dp) (sizes.sample_length, in, out, FFTW_FORWARD, FFTW_MEASURE); #else if (in) fftw_free(in); if (out) fftw_free(out); if (errfunc) fftw_free(errfunc); if (plan) fftw_destroy_plan(plan); in = (fftw_complex *) fftw_malloc(sizeof(fftw_complex) * sizes.sample_length); out = (fftw_complex *) fftw_malloc(sizeof(fftw_complex) * sizes.sample_length); errfunc = (fftw_complex *) fftw_malloc(sizeof(fftw_complex) * sizes.sample_length); plan = fftw_plan_dft_1d(sizes.sample_length, in, out, FFTW_FORWARD, FFTW_MEASURE); #endif switch (b) { case paInt16: bits = 16; break; case paInt24: bits = 24; break; case paInt32: bits = 32; break; default: bits = 16; } if (output) delete [] output; output = new unsigned char[sizes.display_length]; for (int i = 0; i < SIG_N_AVG; i++) { if (peakAvg[i]) delete [] peakAvg[i]; peakAvg[i] = new double[sizes.spec_length]; } if (spec_smooth) delete [] spec_smooth; spec_smooth = new double[sizes.sample_length]; if (spec_tmp) delete [] spec_tmp; spec_tmp = new double[sizes.sample_length]; if (spec_tmp2) delete [] spec_tmp2; spec_tmp2 = new double[sizes.sample_length]; for (int i = 0; i < sizes.sample_length; i++) { spec_tmp[i] = 0.; spec_smooth[i] = 0.; spec_tmp2[i] = 0.; } if (tmp4) delete [] tmp4; tmp4 = new double[sizes.spec_length]; if (window) delete [] window; window = new double[sizes.sample_length]; makeWindow(); for (int i = 0; i < sizes.spec_length; i++) { tmp4[i] = 0.; } if (sigOnCnt) delete [] sigOnCnt; sigOnCnt = new int[sizes.sample_length]; if (sigOn) delete [] sigOn; sigOn = new bool[sizes.sample_length]; for (int i = 0; i < sizes.sample_length; i++) { sigOnCnt[i] = 2; sigOn[i] = false; } if (calibSigList) delete [] calibSigList; calibSigList = new CalibSignal[sizeIQ]; for (int i = 0; i < FIT_ORDER; i++) { aGain[i] = 0.; aPhase[i] = 0.; } addOffset=0; // intialize to unit gain and zero phase aGain[0] = 1.0; makeGainPhase(); readError(); calcError(true); }
int main (int argc, char **argv) { FILE *fp_out, *fp_f1plus, *fp_f1min; FILE *fp_gmin, *fp_gplus, *fp_f2, *fp_pmin; int i, j, l, ret, nshots, Nsyn, nt, nx, nts, nxs, ngath; int size, n1, n2, ntap, tap, di, ntraces, nb, ib; int nw, nw_low, nw_high, nfreq, *xnx, *xnxsyn, *synpos; int reci, mode, ixa, ixb, n2out, verbose, ntfft; int iter, niter, niterh, tracf, *muteW, pad, nt0, ampest, *hmuteW, *hxnxsyn; int hw, smooth, above, shift, *ixpossyn, npossyn, ix, first=1; float fmin, fmax, *tapersh, *tapersy, fxf, dxf, fxs2, *xsrc, *xrcv, *zsyn, *zsrc, *xrcvsyn; float *hzsyn, *hxsyn, *hxrcvsyn, *hG_d, xloc, zloc, *HomG; double t0, t1, t2, t3, tsyn, tread, tfft, tcopy, energyNi, *J; float d1, d2, f1, f2, fxs, ft, fx, *xsyn, dxsrc, Q, f0, *Costdet; float *green, *f2p, *pmin, *G_d, dt, dx, dxs, scl, mem, *Image, *Image2; float *f1plus, *f1min, *iRN, *Ni, *trace, *Gmin, *Gplus, *Gm0; float xmin, xmax, weight, tsq, *Gd, *amp, bstart, bend, db, *bdet, bp, b, bmin; complex *Refl, *Fop, *cshot; char *file_tinv, *file_shot, *file_green, *file_iter, *file_wav, *file_ray, *file_amp, *file_img, *file_cp, *file_rays, *file_amps; char *file_f1plus, *file_f1min, *file_gmin, *file_gplus, *file_f2, *file_pmin, *wavtype, *wavtype2, *file_homg, *file_tinvs; segy *hdrs_im, *hdrs_homg; WavePar WP,WPs; modPar mod; recPar rec; srcPar src; shotPar shot; rayPar ray; initargs(argc, argv); requestdoc(1); tsyn = tread = tfft = tcopy = 0.0; t0 = wallclock_time(); if (!getparstring("file_img", &file_img)) file_img = "img.su"; if (!getparstring("file_homg", &file_homg)) file_homg = NULL; if (!getparstring("file_shot", &file_shot)) file_shot = NULL; if (!getparstring("file_tinv", &file_tinv)) file_tinv = NULL; if (!getparstring("file_tinvs", &file_tinvs)) file_tinvs = NULL; if (!getparstring("file_f1plus", &file_f1plus)) file_f1plus = NULL; if (!getparstring("file_f1min", &file_f1min)) file_f1min = NULL; if (!getparstring("file_gplus", &file_gplus)) file_gplus = NULL; if (!getparstring("file_gmin", &file_gmin)) file_gmin = NULL; if (!getparstring("file_pplus", &file_f2)) file_f2 = NULL; if (!getparstring("file_f2", &file_f2)) file_f2 = NULL; if (!getparstring("file_pmin", &file_pmin)) file_pmin = NULL; if (!getparstring("file_iter", &file_iter)) file_iter = NULL; if (!getparstring("file_wav", &file_wav)) file_wav=NULL; if (!getparstring("file_ray", &file_ray)) file_ray=NULL; if (!getparstring("file_amp", &file_amp)) file_amp=NULL; if (!getparstring("file_rays", &file_rays)) file_rays=NULL; if (!getparstring("file_amps", &file_amps)) file_amps=NULL; if (!getparstring("file_cp", &file_cp)) file_cp = NULL; if (!getparint("verbose", &verbose)) verbose = 0; if (file_tinv == NULL && file_shot == NULL) verr("file_tinv and file_shot cannot be both input pipe"); if (!getparstring("file_green", &file_green)) { if (verbose) vwarn("parameter file_green not found, assume pipe"); file_green = NULL; } if (!getparfloat("fmin", &fmin)) fmin = 0.0; if (!getparfloat("fmax", &fmax)) fmax = 70.0; if (!getparint("ixa", &ixa)) ixa = 0; if (!getparint("ixb", &ixb)) ixb = ixa; // if (!getparint("reci", &reci)) reci = 0; reci=0; // source-receiver reciprocity is not yet fully build into the code if (!getparfloat("weight", &weight)) weight = 1.0; if (!getparfloat("tsq", &tsq)) tsq = 0.0; if (!getparfloat("Q", &Q)) Q = 0.0; if (!getparfloat("f0", &f0)) f0 = 0.0; if (!getparint("tap", &tap)) tap = 0; if (!getparint("ntap", &ntap)) ntap = 0; if (!getparint("pad", &pad)) pad = 0; if(!getparint("hw", &hw)) hw = 15; if(!getparint("smooth", &smooth)) smooth = 5; if(!getparint("above", &above)) above = 0; if(!getparint("shift", &shift)) shift=12; if(!getparint("ampest", &est)) ampest=0; if(!getparint("nb", &nb)) nb=0; if (!getparfloat("bstart", &bstart)) bstart = 1.0; if (!getparfloat("bend", &bend)) bend = 1.0; if (reci && ntap) vwarn("tapering influences the reciprocal result"); /* Reading in wavelet parameters */ if(!getparfloat("fpw", &WP.fp)) WP.fp = -1.0; if(!getparfloat("fminw", &WP.fmin)) WP.fmin = 10.0; if(!getparfloat("flefw", &WP.flef)) WP.flef = 20.0; if(!getparfloat("frigw", &WP.frig)) WP.frig = 50.0; if(!getparfloat("fmaxw", &WP.fmax)) WP.fmax = 60.0; else WP.fp = -1; if(!getparfloat("dbw", &WP.db)) WP.db = -20.0; if(!getparfloat("t0w", &WP.t0)) WP.t0 = 0.0; if(!getparint("shiftw", &WP.shift)) WP.shift = 0; if(!getparint("invw", &WP.inv)) WP.inv = 0; if(!getparfloat("epsw", &WP.eps)) WP.eps = 1.0; if(!getparfloat("scalew", &WP.scale)) WP.scale = 1.0; if(!getparint("scfftw", &WP.scfft)) WP.scfft = 1; if(!getparint("cmw", &WP.cm)) WP.cm = 10; if(!getparint("cnw", &WP.cn)) WP.cn = 1; if(!getparint("wav", &WP.wav)) WP.wav = 0; if(!getparstring("file_wav", &WP.file_wav)) WP.file_wav=NULL; if(!getparstring("w", &wavtype)) strcpy(WP.w, "g2"); else strcpy(WP.w, wavtype); if(!getparfloat("fpws", &WPs.fp)) WPs.fp = -1.0; if(!getparfloat("fminws", &WPs.fmin)) WPs.fmin = 10.0; if(!getparfloat("flefws", &WPs.flef)) WPs.flef = 20.0; if(!getparfloat("frigws", &WPs.frig)) WPs.frig = 50.0; if(!getparfloat("fmaxws", &WPs.fmax)) WPs.fmax = 60.0; else WPs.fp = -1; if(!getparfloat("dbw", &WPs.db)) WPs.db = -20.0; if(!getparfloat("t0ws", &WPs.t0)) WPs.t0 = 0.0; if(!getparint("shiftws", &WPs.shift)) WPs.shift = 0; if(!getparint("invws", &WPs.inv)) WPs.inv = 0; if(!getparfloat("epsws", &WPs.eps)) WPs.eps = 1.0; if(!getparfloat("scalews", &WPs.scale)) WPs.scale = 1.0; if(!getparint("scfftws", &WPs.scfft)) WPs.scfft = 1; if(!getparint("cmws", &WPs.cm)) WPs.cm = 10; if(!getparint("cnws", &WPs.cn)) WPs.cn = 1; if(!getparint("wavs", &WPs.wav)) WPs.wav = 0; if(!getparstring("file_wavs", &WPs.file_wav)) WPs.file_wav=NULL; if(!getparstring("ws", &wavtype2)) strcpy(WPs.w, "g2"); else strcpy(WPs.w, wavtype2); if(!getparint("niter", &niter)) niter = 10; if(!getparint("niterh", &niterh)) niterh = niter; /*================ Reading info about shot and initial operator sizes ================*/ ngath = 0; /* setting ngath=0 scans all traces; n2 contains maximum traces/gather */ if (file_ray!=NULL && file_tinv==NULL) { ret = getFileInfo(file_ray, &n2, &n1, &ngath, &d1, &d2, &f2, &f1, &xmin, &xmax, &scl, &ntraces); n1 = 1; ntraces = n2*ngath; scl = 0.0010; d1 = -1.0*xmin; xmin = -1.0*xmax; xmax = d1; WP.wav = 1; WP.xloc = -123456.0; WP.zloc = -123456.0; synpos = (int *)calloc(ngath,sizeof(int)); shot.nz = 1; shot.nx = ngath; shot.n = shot.nx*shot.nz; for (l=0; l<shot.nz; l++) { for (j=0; j<shot.nx; j++) { synpos[l*shot.nx+j] = j*shot.nz+l; } } } else if (file_ray==NULL && file_tinv==NULL) { getParameters(&mod, &rec, &src, &shot, &ray, verbose); n1 = 1; n2 = rec.n; ngath = shot.n; d1 = mod.dt; d2 = (rec.x[1]-rec.x[0])*mod.dx; f1 = 0.0; f2 = mod.x0+rec.x[0]*mod.dx; xmin = mod.x0+rec.x[0]*mod.dx; xmax = mod.x0+rec.x[rec.n-1]*mod.dx; scl = 0.0010; ntraces = n2*ngath; WP.wav = 1; WP.xloc = -123456.0; WP.zloc = -123456.0; synpos = (int *)calloc(ngath,sizeof(int)); for (l=0; l<shot.nz; l++) { for (j=0; j<shot.nx; j++) { synpos[l*shot.nx+j] = j*shot.nz+l; } } } else { ret = getFileInfo(file_tinv, &n1, &n2, &ngath, &d1, &d2, &f1, &f2, &xmin, &xmax, &scl, &ntraces); } Nsyn = ngath; nxs = n2; nts = n1; nt0 = n1; dxs = d2; fxs = f2; ngath = 0; /* setting ngath=0 scans all traces; nx contains maximum traces/gather */ ret = getFileInfo(file_shot, &nt, &nx, &ngath, &d1, &dx, &ft, &fx, &xmin, &xmax, &scl, &ntraces); nshots = ngath; assert (nxs >= nshots); if (!getparfloat("dt", &dt)) dt = d1; ntfft = optncr(MAX(nt+pad, nts+pad)); nfreq = ntfft/2+1; nw_low = (int)MIN((fmin*ntfft*dt), nfreq-1); nw_low = MAX(nw_low, 1); nw_high = MIN((int)(fmax*ntfft*dt), nfreq-1); nw = nw_high - nw_low + 1; scl = 1.0/((float)ntfft); if (nb > 1) { db = (bend-bstart)/((float)(nb-1)); } else if (nb == 1) { db = 0; bend = bstart; } /*================ Allocating all data arrays ================*/ green = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float)); f2p = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float)); pmin = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float)); f1plus = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float)); f1min = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float)); G_d = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float)); muteW = (int *)calloc(Nsyn*nxs,sizeof(int)); trace = (float *)malloc(ntfft*sizeof(float)); ixpossyn = (int *)malloc(nxs*sizeof(int)); xrcvsyn = (float *)calloc(Nsyn*nxs,sizeof(float)); xsyn = (float *)malloc(Nsyn*sizeof(float)); zsyn = (float *)malloc(Nsyn*sizeof(float)); xnxsyn = (int *)calloc(Nsyn,sizeof(int)); tapersy = (float *)malloc(nxs*sizeof(float)); Refl = (complex *)malloc(nw*nx*nshots*sizeof(complex)); tapersh = (float *)malloc(nx*sizeof(float)); xsrc = (float *)calloc(nshots,sizeof(float)); zsrc = (float *)calloc(nshots,sizeof(float)); xrcv = (float *)calloc(nshots*nx,sizeof(float)); xnx = (int *)calloc(nshots,sizeof(int)); /*================ Read and define mute window based on focusing operator(s) ================*/ /* G_d = p_0^+ = G_d (-t) ~ Tinv */ WPs.nt = ntfft; WPs.dt = dt; WP.nt = ntfft; WP.dt = dt; if (file_ray!=NULL || file_cp!=NULL) { makeWindow(WP, file_ray, file_amp, dt, xrcvsyn, xsyn, zsyn, xnxsyn, Nsyn, nxs, ntfft, mode, muteW, G_d, hw, verbose); } else { mode=-1; /* apply complex conjugate to read in data */ readTinvData(file_tinv, dt, xrcvsyn, xsyn, zsyn, xnxsyn, Nsyn, nxs, ntfft, mode, muteW, G_d, hw, verbose); } /* reading data added zero's to the number of time samples to be the same as ntfft */ nts = ntfft; /* define tapers to taper edges of acquisition */ if (tap == 1 || tap == 3) { for (j = 0; j < ntap; j++) tapersy[j] = (cos(PI*(j-ntap)/ntap)+1)/2.0; for (j = ntap; j < nxs-ntap; j++) tapersy[j] = 1.0; for (j = nxs-ntap; j < nxs; j++) tapersy[j] =(cos(PI*(j-(nxs-ntap))/ntap)+1)/2.0; } else { for (j = 0; j < nxs; j++) tapersy[j] = 1.0; } if (tap == 1 || tap == 3) { if (verbose) vmess("Taper for operator applied ntap=%d", ntap); for (l = 0; l < Nsyn; l++) { for (i = 0; i < nxs; i++) { for (j = 0; j < nts; j++) { G_d[l*nxs*nts+i*nts+j] *= tapersy[i]; } } } } /* check consistency of header values */ dxf = (xrcvsyn[nxs-1] - xrcvsyn[0])/(float)(nxs-1); if (NINT(dxs*1e3) != NINT(fabs(dxf)*1e3)) { vmess("dx in hdr.d1 (%.3f) and hdr.gx (%.3f) not equal",d2, dxf); if (dxf != 0) dxs = fabs(dxf); vmess("dx in operator => %f", dxs); } if (xrcvsyn[0] != 0 || xrcvsyn[1] != 0 ) fxs = xrcvsyn[0]; fxs2 = fxs + (float)(nxs-1)*dxs; /*================ Reading shot records ================*/ mode=1; readShotData(file_shot, xrcv, xsrc, zsrc, xnx, Refl, nw, nw_low, ngath, nx, nx, ntfft, mode, weight, tsq, Q, f0, verbose); tapersh = (float *)malloc(nx*sizeof(float)); if (tap == 2 || tap == 3) { for (j = 0; j < ntap; j++) tapersh[j] = (cos(PI*(j-ntap)/ntap)+1)/2.0; for (j = ntap; j < nx-ntap; j++) tapersh[j] = 1.0; for (j = nx-ntap; j < nx; j++) tapersh[j] =(cos(PI*(j-(nx-ntap))/ntap)+1)/2.0; } else { for (j = 0; j < nx; j++) tapersh[j] = 1.0; } if (tap == 2 || tap == 3) { if (verbose) vmess("Taper for shots applied ntap=%d", ntap); for (l = 0; l < nshots; l++) { for (j = 1; j < nw; j++) { for (i = 0; i < nx; i++) { Refl[l*nx*nw+j*nx+i].r *= tapersh[i]; Refl[l*nx*nw+j*nx+i].i *= tapersh[i]; } } } } free(tapersh); /* check consistency of header values */ fxf = xsrc[0]; if (nx > 1) dxf = (xrcv[0] - xrcv[nx-1])/(float)(nx-1); else dxf = d2; if (NINT(dx*1e3) != NINT(fabs(dxf)*1e3)) { vmess("dx in hdr.d1 (%.3f) and hdr.gx (%.3f) not equal",dx, dxf); if (dxf != 0) dx = fabs(dxf); else verr("gx hdrs not set"); vmess("dx used => %f", dx); } dxsrc = (float)xsrc[1] - xsrc[0]; if (dxsrc == 0) { vwarn("sx hdrs are not filled in!!"); dxsrc = dx; } /*================ Check the size of the files ================*/ if (NINT(dxsrc/dx)*dx != NINT(dxsrc)) { vwarn("source (%.2f) and receiver step (%.2f) don't match",dxsrc,dx); if (reci == 2) vwarn("step used from operator (%.2f) ",dxs); } di = NINT(dxf/dxs); if ((NINT(di*dxs) != NINT(dxf)) && verbose) vwarn("dx in receiver (%.2f) and operator (%.2f) don't match",dx,dxs); if (nt != nts) vmess("Time samples in shot (%d) and focusing operator (%d) are not equal",nt, nts); if (verbose) { vmess("Number of focusing operators = %d", Nsyn); vmess("Number of receivers in focusop = %d", nxs); vmess("number of shots = %d", nshots); vmess("number of receiver/shot = %d", nx); vmess("first model position = %.2f", fxs); vmess("last model position = %.2f", fxs2); vmess("first source position fxf = %.2f", fxf); vmess("source distance dxsrc = %.2f", dxsrc); vmess("last source position = %.2f", fxf+(nshots-1)*dxsrc); vmess("receiver distance dxf = %.2f", dxf); vmess("direction of increasing traces = %d", di); vmess("number of time samples (nt,nts) = %d (%d,%d)", ntfft, nt, nts); vmess("time sampling = %e ", dt); if (ampest > 0) vmess("Amplitude correction estimation is switched on"); if (nb > 0) vmess("Scaling estimation in %d step(s) from %.3f to %.3f (db=%.3f)",nb,bstart,bend,db); if (file_green != NULL) vmess("Green output file = %s ", file_green); if (file_gmin != NULL) vmess("Gmin output file = %s ", file_gmin); if (file_gplus != NULL) vmess("Gplus output file = %s ", file_gplus); if (file_pmin != NULL) vmess("Pmin output file = %s ", file_pmin); if (file_f2 != NULL) vmess("f2 (=pplus) output file = %s ", file_f2); if (file_f1min != NULL) vmess("f1min output file = %s ", file_f1min); if (file_f1plus != NULL)vmess("f1plus output file = %s ", file_f1plus); if (file_iter != NULL) vmess("Iterations output file = %s ", file_iter); } /*================ initializations ================*/ if (ixa || ixb) n2out = ixa + ixb + 1; else if (reci) n2out = nxs; else n2out = nshots; mem = Nsyn*n2out*ntfft*sizeof(float)/1048576.0; if (verbose) { vmess("number of output traces = %d", n2out); vmess("number of output samples = %d", ntfft); vmess("Size of output data/file = %.1f MB", mem); } //memcpy(Ni, G_d, Nsyn*nxs*ntfft*sizeof(float)); if (file_homg!=NULL) { hG_d = (float *)calloc(nxs*ntfft,sizeof(float)); hmuteW = (int *)calloc(nxs,sizeof(int)); hxrcvsyn = (float *)calloc(nxs,sizeof(float)); hxsyn = (float *)calloc(1,sizeof(float)); hzsyn = (float *)calloc(1,sizeof(float)); hxnxsyn = (int *)calloc(1,sizeof(int)); cshot = (complex *)calloc(nxs*nfreq,sizeof(complex)); if(!getparfloat("xloc", &WPs.xloc)) WPs.xloc = -123456.0; if(!getparfloat("zloc", &WPs.zloc)) WPs.zloc = -123456.0; if (WPs.xloc == -123456.0 && WPs.zloc == -123456.0) file_cp = NULL; if (WPs.xloc == -123456.0) WPs.xloc = 0.0; if (WPs.zloc == -123456.0) WPs.zloc = 0.0; xloc = WPs.xloc; zloc = WPs.zloc; ngath = 1; if (file_rays!=NULL || file_cp!=NULL) { WPs.wav=1; makeWindow(WPs, file_rays, file_amps, dt, hxrcvsyn, hxsyn, hzsyn, hxnxsyn, ngath, nxs, ntfft, mode, hmuteW, hG_d, hw, verbose); } else { mode=-1; /* apply complex conjugate to read in data */ readTinvData(file_tinvs, dt, hxrcvsyn, hxsyn, hzsyn, hxnxsyn, ngath, nxs, ntfft, mode, hmuteW, hG_d, hw, verbose); } WPs.xloc = -123456.0; WPs.zloc = -123456.0; if (tap == 1 || tap == 3) { if (verbose) vmess("Taper for operator applied ntap=%d", ntap); for (i = 0; i < nxs; i++) { for (j = 0; j < nts; j++) { hG_d[i*nts+j] *= tapersy[i]; } } } ngath = omp_get_max_threads(); synthesisPosistions(nx, nt, nxs, nts, dt, hxsyn, 1, xrcv, xsrc, fxs2, fxs, dxs, dxsrc, dx, ixa, ixb, reci, nshots, ixpossyn, &npossyn, verbose); iterations(Refl,nx,nt,nxs,nts,dt,hxsyn,1,xrcv,xsrc,fxs2,fxs,dxs,dxsrc,dx,ixa,ixb, ntfft,nw,nw_low,nw_high,mode,reci,nshots,ixpossyn,npossyn,pmin,f1min,f1plus, f2p,hG_d,hmuteW,smooth,shift,above,pad,nt0,&first,niterh,verbose); /* compute full Green's function G = int R * f2(t) + f2(-t) = Pplus + Pmin */ for (i = 0; i < npossyn; i++) { j = 0; /* set green to zero if mute-window exceeds nt/2 */ if (hmuteW[ixpossyn[i]] >= nts/2) { memset(&green[i*nts],0, sizeof(float)*nt); continue; } green[i*nts+j] = f2p[i*nts+j] + pmin[i*nts+j]; for (j = 1; j < nts; j++) { green[i*nts+j] = f2p[i*nts+nts-j] + pmin[i*nts+j]; } } applyMute(green, hmuteW, smooth, 4, 1, nxs, nts, ixpossyn, npossyn, shift, pad, nt0); omp_set_num_threads(ngath); /* Transform the green position to the frequency domain */ /*for (i = 0; i < npossyn; i++) { rc1fft(&green[i*nts],&cshot[i*nfreq],ntfft,-1); }*/ //free(hG_d);free(hmuteW);free(hxrcvsyn); free(hmuteW);free(hxrcvsyn); free(hxsyn);free(hzsyn);free(hxnxsyn);free(cshot); } /* dry-run of synthesis to get all x-positions calcalated by the integration */ synthesisPosistions(nx, nt, nxs, nts, dt, xsyn, Nsyn, xrcv, xsrc, fxs2, fxs, dxs, dxsrc, dx, ixa, ixb, reci, nshots, ixpossyn, &npossyn, verbose); if (verbose) { vmess("synthesisPosistions: nshots=%d npossyn=%d", nshots, npossyn); } t1 = wallclock_time(); tread = t1-t0; iterations(Refl,nx,nt,nxs,nts,dt,xsyn,Nsyn,xrcv,xsrc,fxs2,fxs,dxs,dxsrc,dx,ixa,ixb, ntfft,nw,nw_low,nw_high,mode,reci,nshots,ixpossyn,npossyn,pmin,f1min,f1plus, f2p,G_d,muteW,smooth,shift,above,pad,nt0,&first,niter,verbose); /*if (niter==0) { for (l = 0; l < Nsyn; l++) { for (i = 0; i < npossyn; i++) { j = 0; ix = ixpossyn[i]; f2p[l*nxs*nts+i*nts+j] = G_d[l*nxs*nts+ix*nts+j]; f1plus[l*nxs*nts+i*nts+j] = G_d[l*nxs*nts+ix*nts+j]; for (j = 1; j < nts; j++) { f2p[l*nxs*nts+i*nts+j] = G_d[l*nxs*nts+ix*nts+j]; f1plus[l*nxs*nts+i*nts+j] = G_d[l*nxs*nts+ix*nts+j]; } } } }*/ if (niterh==0) { for (l = 0; l < Nsyn; l++) { for (i = 0; i < npossyn; i++) { j = 0; ix = ixpossyn[i]; green[i*nts+j] = hG_d[ix*nts+j]; for (j = 1; j < nts; j++) { green[i*nts+j] = hG_d[ix*nts+nts-j]; } } } } if (file_img!=NULL) { /*================ set variables for output data ================*/ hdrs_im = (segy *) calloc(shot.nx,sizeof(segy)); if (hdrs_im == NULL) verr("allocation for hdrs_out"); Image = (float *)calloc(Nsyn,sizeof(float)); first=0; imaging(Image,WPs,Refl,nx,nt,nxs,nts,dt,xsyn,Nsyn,xrcv,xsrc,fxs2,fxs,dxs,dxsrc,dx,ixa,ixb, ntfft,nw,nw_low,nw_high,mode,reci,nshots,ixpossyn,npossyn,pmin,f1min,f1plus, f2p,G_d,muteW,smooth,shift,above,pad,nt0,synpos,verbose); /*============= write output files ================*/ fp_out = fopen(file_img, "w+"); for (i = 0; i < shot.nx; i++) { hdrs_im[i].fldr = 1; hdrs_im[i].tracl = 1; hdrs_im[i].tracf = i+1; hdrs_im[i].scalco = -1000; hdrs_im[i].scalel = -1000; hdrs_im[i].sdepth = 0; hdrs_im[i].trid = 1; hdrs_im[i].ns = shot.nz; hdrs_im[i].trwf = shot.nx; hdrs_im[i].ntr = hdrs_im[i].fldr*hdrs_im[i].trwf; hdrs_im[i].f1 = zsyn[0]; hdrs_im[i].f2 = xsyn[0]; hdrs_im[i].dt = dt*(1E6); hdrs_im[i].d1 = (float)zsyn[shot.nx]-zsyn[0]; hdrs_im[i].d2 = (float)xsyn[1]-xsyn[0]; hdrs_im[i].sx = (int)roundf(xsyn[0] + (i*hdrs_im[i].d2)); hdrs_im[i].gx = (int)roundf(xsyn[0] + (i*hdrs_im[i].d2)); hdrs_im[i].offset = (hdrs_im[i].gx - hdrs_im[i].sx)/1000.0; } ret = writeData(fp_out, &Image[0], hdrs_im, shot.nz, shot.nx); if (ret < 0 ) verr("error on writing output file."); fclose(fp_out); } if (file_homg!=NULL) { /*================ set variables for output data ================*/ hdrs_homg = (segy *) calloc(shot.nx,sizeof(segy)); if (hdrs_homg == NULL) verr("allocation for hdrs_out"); HomG = (float *)calloc(Nsyn*ntfft,sizeof(float)); homogeneousg(HomG,green,Refl,nx,nt,nxs,nts,dt,xsyn,Nsyn,xrcv,xsrc,fxs2,fxs,dxs,dxsrc,dx,ixa,ixb, ntfft,nw,nw_low,nw_high,mode,reci,nshots,ixpossyn,npossyn,pmin,f1min,f1plus, f2p,G_d,muteW,smooth,shift,above,pad,nt0,synpos,verbose); /*============= write output files ================*/ fp_out = fopen(file_homg, "w+"); for (j = 0; j < ntfft; j++) { for (i = 0; i < shot.nx; i++) { hdrs_homg[i].fldr = j+1; hdrs_homg[i].tracl = j*shot.nx+i+1; hdrs_homg[i].tracf = i+1; hdrs_homg[i].scalco = -1000; hdrs_homg[i].scalel = -1000; hdrs_homg[i].sdepth = (int)(zloc*1000.0); hdrs_homg[i].trid = 1; hdrs_homg[i].ns = shot.nz; hdrs_homg[i].trwf = shot.nx; hdrs_homg[i].ntr = hdrs_homg[i].fldr*hdrs_homg[i].trwf; hdrs_homg[i].f1 = zsyn[0]; hdrs_homg[i].f2 = xsyn[0]; hdrs_homg[i].dt = dt*(1E6); hdrs_homg[i].d1 = (float)zsyn[shot.nx]-zsyn[0]; hdrs_homg[i].d2 = (float)xsyn[1]-xsyn[0]; hdrs_homg[i].sx = (int)roundf(xsyn[0] + (i*hdrs_homg[i].d2)); hdrs_homg[i].gx = (int)roundf(xsyn[0] + (i*hdrs_homg[i].d2)); hdrs_homg[i].offset = (hdrs_homg[i].gx - hdrs_homg[i].sx)/1000.0; } ret = writeData(fp_out, &HomG[j*shot.n], hdrs_homg, shot.nz, shot.nx); if (ret < 0 ) verr("error on writing output file."); } fclose(fp_out); } if (verbose) { t1 = wallclock_time(); vmess("and CPU-time write data = %.3f", t1-t2); } free(tapersy); exit(0); }
int main(int argc, char *argv[]) { signal(SIGALRM, timeOutHandler); // bind the timeOutHandler with the timer object. // int sockfd, newsockfd, cwnd_length, portno, pid; int newsockfd, cwnd_length, portno, pid; //float ploss, pcorr; char* tail; char* hi = "Received your message"; // socklen_t clilen; //struct sockaddr_in serv_addr, cli_addr; if (argc < 5 && argc!=2) { fprintf(stderr,"ERROR, proper use: ./sender <port number> <cwnd> <p_loss> <p_corrupt>\n"); exit(1); } if (argc==2){ test=true; } if(test==false){ sockfd = socket(AF_INET, SOCK_DGRAM, 0); if (sockfd < 0) error("ERROR opening socket"); bzero((char *) &serv_addr, sizeof(serv_addr)); portno = atoi(argv[1]); cwnd_length = atoi(argv[2]); ploss = strtof(argv[3], &tail); pcorr = strtof(argv[4], &tail); printf( "Probability of Loss: %f\n",ploss); printf( "Probability of Corruption: %f\n\n", pcorr); serv_addr.sin_family = AF_INET; serv_addr.sin_addr.s_addr = INADDR_ANY; serv_addr.sin_port = htons(portno); if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0) //ANDREW CHANGE #2: casted &serv_addr to (struct sockaddr *) instead of (struct sockaddr_in*) error("ERROR on binding"); clilen = sizeof(cli_addr); } FILE* requestFile; // FIXME: Read the document about allocate a new file in ram char* testInput; if (test==false){ //if not a test, read socket input into buffer while (1) { int n; char buffer[256]; bzero(buffer, 256); n = recvfrom(sockfd, buffer, sizeof(buffer), 0, (struct sockaddr*) &cli_addr, (socklen_t *) &clilen); //ANDREW CHANGE #3: casted &cli_addr to (struct sockaddr *) if (n < 0) error("ERROR reading from socket"); else { // fprintf(stdout, buffer); requestFile = findFile(buffer); break; // break out the initial round of request // FIXME: if the file is not found, send something to client } } /* end of while */ } else{ //if a test, read "test" into buffer testInput = argv[1]; printf( "\n\n\nmain()\n----------\nRequested Filename: %s\n\n\n",testInput); requestFile = findFile(testInput); } /* init window */ //FIRST BURST OF COMMANDS makeWindow(requestFile); //allocate and construct window //if(test==true){ if(1){ printWindow(); } //FIXME: Not sure if anything missing int commandLength; //single pointer to a single integer that saves the length of lastCommand() int* lastCommand = prepareToSend(&commandLength); printf( "Preparing to send\n{ "); int p=0; for (p=0; p < commandLength; p++){ if (p == commandLength - 1) printf( "%d }\n",lastCommand[p]); else printf( "%d, ",lastCommand[p]); } sendPacket(lastCommand, commandLength, sockfd, (struct sockaddr*)&cli_addr, clilen); // first send // TODO: free the lastCommand; free(lastCommand); commandLength=0; printWindow(); alarm(1); // start timming cycle. while(1){ //if timeout, resend if(resend == true){ printf( "About to resend\n"); lastCommand = prepareToSend(&commandLength); if(commandLength>0){ printf( "Preparing to resend:\n{ "); printf( "%d }\n",lastCommand[0]); sendPacket(lastCommand, commandLength, sockfd, (struct sockaddr*)&cli_addr, clilen); } free(lastCommand); resend=false; } // receving acks from recever: int n; char buffer[256]; // buffer for acks bzero(buffer, 256); n = recvfrom(sockfd, buffer, sizeof(buffer), 0, (struct sockaddr*)&cli_addr, (socklen_t *) &clilen); if (n < 0) error("ERROR reading from socket"); else { int ack = 0; // check if done if(strncmp("done", buffer, 4) == 0) { printf("Receiver signaled final fully sent! Terminating...\n"); exit(0); } // TODO: parse the acks from buffer: ack = atoi(buffer); updateOnAcked(ack); printWindow(); if (isFinished()){ printf( "Send complete! \n\n"); break; } lastCommand = prepareToSend(&commandLength); if(commandLength>0){ printf( "Preparing to send:\n{ "); int p=0; for (p=0; p < commandLength; p++){ if (p == commandLength - 1) printf( "%d }\n",lastCommand[p]); else printf( "%d, ",lastCommand[p]); } sendPacket(lastCommand, commandLength, sockfd, (struct sockaddr*)&cli_addr, clilen); // first send // TODO: free the lastCommand; } else printf( "Nothing to Send \n\n"); printWindow(); free(lastCommand); commandLength=0; //TODO: free the lastCommand // free(lastCommand); } } return 0; /* we never get here */ }
int CAppBase::InitWindow(HINSTANCE hInstance) { return makeWindow(hInstance); }
int main() { auto window = makeWindow(); // Asset loader setup auto assets = std::make_shared<sfr::AssetTable>(); auto assetLoader = std::make_shared<sfr::AssetLoader>(assets); // Renderer setup auto deferredRenderer = std::make_shared<sfr::DeferredRenderer>(assets); auto transformUpdater = std::make_shared<sfr::TransformUpdater>(); // Scene setup auto scene = std::make_shared<sfr::Scene>(); // Set up a camera positioned at (1, 0, 1) and looking at (0, 0, 0). The // camera's up vector is the y-axis. auto up = sfr::Vector(0, 1.f, 0); auto origin = sfr::Vector(1.f, 0, 1.f); auto target = sfr::Vector(0, 0, 0); auto cameraNode = scene->root()->childIs<sfr::Transform>("camera"); cameraNode->transformIs(sfr::Matrix::look(origin, target, up)); auto camera = cameraNode->childIs<sfr::Camera>(); camera->viewportWidthIs(window->getSize().x); camera->viewportWidthIs(window->getSize().y); scene->cameraIs(camera); // set this camera to the active camera // Place the car mesh (loaded from the asset loader) at (0, 0, 0) auto car = assets->assetIs<sfr::Transform>("meshes/Lexus.obj"); scene->root()->childIs(car); // Place a spotlight at (0, 16, 0) and point it down towards the car. The // spotlight's position is determined from the parent transform. auto lightNode = scene->root()->childIs<sfr::Transform>("light"); lightNode->positionIs(sfr::Vector(0, 16.f, 0)); auto light = lightNode->childIs<sfr::SpotLight>(); light->spotCutoffIs(20.f); // set spot light to spread by 20 degrees light->spotPowerIs(40.f); // larger spotPower results in sharper beam edges light->constantAttenuationIs(1.f); light->linearAttenuationIs(0); light->quadraticAttenuationIs(0); light->specularColorIs(sfr::Color(1.f, 1.f, 1.f, 1.f)); light->diffuseColorIs(sfr::Color(3.f, 3.f, 3.f, 3.f)); // really bright light light->directionIs(sfr::Vector(0, -1.f, 0)); // point the light down the y-axis // Enable shadows for the light light->shadowMapIs(std::make_shared<sfr::DepthRenderTarget>(1024, 1024)); // Run the render loop. This code differs depending on what windowing // library you use. The parts that will always remain the same are: // 1. glClear // 2. transformUpdater->operator(): Updates the scene graph world transforms // 3. deferredRenderer->operator()): Renders the scene while (window->isOpen()) { sf::Event evt; while (window->pollEvent(evt)) { switch (evt.type) { case sf::Event::Closed: exit(0); break; default: break; } } glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT); transformUpdater->operator()(scene); deferredRenderer->operator()(scene); window->display(); } return 0; }
void Draft::makeBoard(Team *arr, vector<NodeData*>& a, int teams) { int sY = 8, sX = 0, w = 14, h = 4, ch, j = 0, z = 0; string tName; WINDOW *board[BOARD_SIZE]; //timer + players + menu + roster + titles + title + teams(2) //ar[34] arr[33] ar[32] ar[31] arr[20-29] ar[30] ar[0-19] initscr(); //start curses cbreak(); //line buffer off keypad(stdscr, TRUE); //to use f1 printw("Press cntr+c to exit"); //print refresh(); //output board[TITLE] = createWin(4, 100, 1, 0); //title wattron(board[TITLE], A_BOLD); mvwprintw(board[TITLE], 1, 10, "John Zoeller Draft"); //print T wrefresh(board[TITLE]); //output board[34] = createWin(4, 40, 1, 101); //timer wattron(board[34], A_BOLD); mvwprintw(board[34], 1, 1, "ROUND"); //print time wrefresh(board[34]); //output for(int k = 0; k < 10; k++){ //team names board[k + 20] = createWin(3, 14, 5, (sX + (w * k))); wattron(board[k + 20], A_BOLD); if(arr[k].getUser()){ tName = to_string(arr[k].getPosition()) + " " + arr[k].getName(); wattron(board[k + 20], A_UNDERLINE); } else tName = to_string(k + 1) + " Auto"; mvwprintw(board[k + 20], 1, 1, tName.c_str()); wrefresh(board[k + 20]); } for(int i = 0; i < 10; i++) board[i] = createWin(h, w, (sY + (h * j)), (sX + (w * i))); j++; for(int a = 19; a >= 10; a--){ board[a] = createWin(h, w, (sY + (h * j)), (sX + (w * z))); z++; } int dims[] = { 22, 45, 16, 0 }; makeWindow("PLAYERS", dims, PLAYERS_AVAILABLE); board[33] = createWin(22, 45, 16, 0); //players wattron(board[33], A_BOLD); mvwprintw(board[33], 1, 1, "PLAYERS"); //print title wattroff(board[33], A_BOLD); wrefresh(board[33]); //output board[32] = createWin(10, 45, 16, 46); //menu wattron(board[32], A_BOLD); mvwprintw(board[32], 1, 1, "MENU"); //print title wattroff(board[32], A_BOLD); wrefresh(board[32]); //output board[31] = createWin(22, 45, 16, 92); //roster wattron(board[31], A_BOLD); mvwprintw(board[31], 1, 1, "MY ROSTER"); //print title wattroff(board[31], A_BOLD); wrefresh(board[31]); //output while((ch = getch()) != KEY_F(1)){ //drafting startDraft(arr, a, teams, board); } for(int i = 0; i < 35; i++){ //delete windows if(board[i] != NULL) destroy_win(board[i]); } endwin(); }