Example #1
0
static void
huge_ralloc_no_move_similar(void *ptr, size_t oldsize, size_t usize,
    size_t size, size_t extra, bool zero)
{
	size_t usize_next;
	extent_node_t *node;
	arena_t *arena;
	chunk_purge_t *chunk_purge;
	bool zeroed;

	/* Increase usize to incorporate extra. */
	while (usize < s2u(size+extra) && (usize_next = s2u(usize+1)) < oldsize)
		usize = usize_next;

	if (oldsize == usize)
		return;

	node = huge_node_get(ptr);
	arena = extent_node_arena_get(node);

	malloc_mutex_lock(&arena->lock);
	chunk_purge = arena->chunk_purge;
	malloc_mutex_unlock(&arena->lock);

	/* Fill if necessary (shrinking). */
	if (oldsize > usize) {
		size_t sdiff = oldsize - usize;
		zeroed = !chunk_purge_wrapper(arena, chunk_purge, ptr, usize,
		    sdiff);
		if (config_fill && unlikely(opt_junk_free)) {
			memset((void *)((uintptr_t)ptr + usize), 0x5a, sdiff);
			zeroed = false;
		}
	} else
		zeroed = true;

	malloc_mutex_lock(&arena->huge_mtx);
	/* Update the size of the huge allocation. */
	assert(extent_node_size_get(node) != usize);
	extent_node_size_set(node, usize);
	/* Clear node's zeroed field if zeroing failed above. */
	extent_node_zeroed_set(node, extent_node_zeroed_get(node) && zeroed);
	malloc_mutex_unlock(&arena->huge_mtx);

	arena_chunk_ralloc_huge_similar(arena, ptr, oldsize, usize);

	/* Fill if necessary (growing). */
	if (oldsize < usize) {
		if (zero || (config_fill && unlikely(opt_zero))) {
			if (!zeroed) {
				memset((void *)((uintptr_t)ptr + oldsize), 0,
				    usize - oldsize);
			}
		} else if (config_fill && unlikely(opt_junk_alloc)) {
			memset((void *)((uintptr_t)ptr + oldsize), 0xa5, usize -
			    oldsize);
		}
	}
}
Example #2
0
static void
ctl_refresh(void)
{
	unsigned i;
	VARIABLE_ARRAY(arena_t *, tarenas, ctl_stats.narenas);

	if (config_stats) {
		malloc_mutex_lock(&chunks_mtx);
		ctl_stats.chunks.current = stats_chunks.curchunks;
		ctl_stats.chunks.total = stats_chunks.nchunks;
		ctl_stats.chunks.high = stats_chunks.highchunks;
		malloc_mutex_unlock(&chunks_mtx);

		malloc_mutex_lock(&huge_mtx);
		ctl_stats.huge.allocated = huge_allocated;
		ctl_stats.huge.nmalloc = huge_nmalloc;
		ctl_stats.huge.ndalloc = huge_ndalloc;
		malloc_mutex_unlock(&huge_mtx);
	}

	/*
	 * Clear sum stats, since they will be merged into by
	 * ctl_arena_refresh().
	 */
	ctl_stats.arenas[ctl_stats.narenas].nthreads = 0;
	ctl_arena_clear(&ctl_stats.arenas[ctl_stats.narenas]);

	malloc_mutex_lock(&arenas_lock);
	memcpy(tarenas, arenas, sizeof(arena_t *) * ctl_stats.narenas);
	for (i = 0; i < ctl_stats.narenas; i++) {
		if (arenas[i] != NULL)
			ctl_stats.arenas[i].nthreads = arenas[i]->nthreads;
		else
			ctl_stats.arenas[i].nthreads = 0;
	}
	malloc_mutex_unlock(&arenas_lock);
	for (i = 0; i < ctl_stats.narenas; i++) {
		bool initialized = (tarenas[i] != NULL);

		ctl_stats.arenas[i].initialized = initialized;
		if (initialized)
			ctl_arena_refresh(tarenas[i], i);
	}

	if (config_stats) {
		ctl_stats.allocated =
		    ctl_stats.arenas[ctl_stats.narenas].allocated_small
		    + ctl_stats.arenas[ctl_stats.narenas].astats.allocated_large
		    + ctl_stats.huge.allocated;
		ctl_stats.active =
		    (ctl_stats.arenas[ctl_stats.narenas].pactive << LG_PAGE)
		    + ctl_stats.huge.allocated;
		ctl_stats.mapped = (ctl_stats.chunks.current << opt_lg_chunk);
	}

	ctl_epoch++;
}
Example #3
0
static bool
huge_ralloc_no_move_expand(void *ptr, size_t oldsize, size_t size, bool zero) {
	size_t usize;
	extent_node_t *node;
	arena_t *arena;
	bool is_zeroed_subchunk, is_zeroed_chunk;

	usize = s2u(size);
	if (usize == 0) {
		/* size_t overflow. */
		return (true);
	}

	node = huge_node_get(ptr);
	arena = extent_node_arena_get(node);
	malloc_mutex_lock(&arena->huge_mtx);
	is_zeroed_subchunk = extent_node_zeroed_get(node);
	malloc_mutex_unlock(&arena->huge_mtx);

	/*
	 * Copy zero into is_zeroed_chunk and pass the copy to chunk_alloc(), so
	 * that it is possible to make correct junk/zero fill decisions below.
	 */
	is_zeroed_chunk = zero;

	if (arena_chunk_ralloc_huge_expand(arena, ptr, oldsize, usize,
	     &is_zeroed_chunk))
		return (true);

	malloc_mutex_lock(&arena->huge_mtx);
	/* Update the size of the huge allocation. */
	extent_node_size_set(node, usize);
	malloc_mutex_unlock(&arena->huge_mtx);

	if (zero || (config_fill && unlikely(opt_zero))) {
		if (!is_zeroed_subchunk) {
			memset((void *)((uintptr_t)ptr + oldsize), 0,
			    CHUNK_CEILING(oldsize) - oldsize);
		}
		if (!is_zeroed_chunk) {
			memset((void *)((uintptr_t)ptr +
			    CHUNK_CEILING(oldsize)), 0, usize -
			    CHUNK_CEILING(oldsize));
		}
	} else if (config_fill && unlikely(opt_junk_alloc)) {
		memset((void *)((uintptr_t)ptr + oldsize), 0xa5, usize -
		    oldsize);
	}

	return (false);
}
Example #4
0
static int
thread_arena_ctl(const size_t *mib, size_t miblen, void *oldp, size_t *oldlenp,
    void *newp, size_t newlen)
{
	int ret;
	unsigned newind, oldind;

	malloc_mutex_lock(&ctl_mtx);
	newind = oldind = choose_arena(NULL)->ind;
	WRITE(newind, unsigned);
	READ(oldind, unsigned);
	if (newind != oldind) {
		arena_t *arena;

		if (newind >= ctl_stats.narenas) {
			/* New arena index is out of range. */
			ret = EFAULT;
			goto label_return;
		}

		/* Initialize arena if necessary. */
		malloc_mutex_lock(&arenas_lock);
		if ((arena = arenas[newind]) == NULL && (arena =
		    arenas_extend(newind)) == NULL) {
			malloc_mutex_unlock(&arenas_lock);
			ret = EAGAIN;
			goto label_return;
		}
		assert(arena == arenas[newind]);
		arenas[oldind]->nthreads--;
		arenas[newind]->nthreads++;
		malloc_mutex_unlock(&arenas_lock);

		/* Set new arena association. */
		if (config_tcache) {
			tcache_t *tcache;
			if ((uintptr_t)(tcache = *tcache_tsd_get()) >
			    (uintptr_t)TCACHE_STATE_MAX) {
				tcache_arena_dissociate(tcache);
				tcache_arena_associate(tcache, arena);
			}
		}
		arenas_tsd_set(&arena);
	}

	ret = 0;
label_return:
	malloc_mutex_unlock(&ctl_mtx);
	return (ret);
}
Example #5
0
void
huge_dalloc(void *ptr, bool unmap)
{
	extent_node_t *node, key;

	malloc_mutex_lock(&huge_mtx);

	/* Extract from tree of huge allocations. */
	key.addr = ptr;
	node = extent_tree_ad_search(&huge, &key);
	assert(node != NULL);
	assert(node->addr == ptr);
	extent_tree_ad_remove(&huge, node);

	if (config_stats) {
		stats_cactive_sub(node->size);
		huge_ndalloc++;
		huge_allocated -= node->size;
	}

	malloc_mutex_unlock(&huge_mtx);

	if (unmap && config_fill && config_dss && opt_junk)
		memset(node->addr, 0x5a, node->size);

	chunk_dealloc(node->addr, node->size, unmap);

	base_node_dealloc(node);
}
Example #6
0
static int
swap_prezeroed_ctl(const size_t *mib, size_t miblen, void *oldp,
    size_t *oldlenp, void *newp, size_t newlen)
{
	int ret;

	malloc_mutex_lock(&ctl_mtx);
	if (swap_enabled) {
		READONLY();
	} else {
		/*
		 * swap_prezeroed isn't actually used by the swap code until it
		 * is set during a successful chunk_swap_enabled() call.  We
		 * use it here to store the value that we'll pass to
		 * chunk_swap_enable() in a swap.fds mallctl().  This is not
		 * very clean, but the obvious alternatives are even worse.
		 */
		WRITE(swap_prezeroed, bool);
	}

	READ(swap_prezeroed, bool);

	ret = 0;
RETURN:
	malloc_mutex_unlock(&ctl_mtx);
	return (ret);
}
Example #7
0
void
huge_dalloc(void *ptr, bool unmap)
{
	extent_node_t *node, key;

	malloc_mutex_lock(&huge_mtx);

	/* Extract from tree of huge allocations. */
	key.addr = ptr;
	node = extent_tree_ad_search(&huge, &key);
	assert(node != NULL);
	assert(node->addr == ptr);
	extent_tree_ad_remove(&huge, node);

#ifdef JEMALLOC_STATS
	huge_ndalloc++;
	huge_allocated -= node->size;
#endif

	malloc_mutex_unlock(&huge_mtx);

	if (unmap) {
	/* Unmap chunk. */
#ifdef JEMALLOC_FILL
#if (defined(JEMALLOC_SWAP) || defined(JEMALLOC_DSS))
		if (opt_junk)
			memset(node->addr, 0x5a, node->size);
#endif
#endif
		chunk_dealloc(node->addr, node->size);
	}

	base_node_dealloc(node);
}
Example #8
0
void *
huge_palloc(tsd_t *tsd, arena_t *arena, size_t usize, size_t alignment,
    bool zero, tcache_t *tcache)
{
	void *ret;
	extent_node_t *node;
	bool is_zeroed;

	/* Allocate one or more contiguous chunks for this request. */

	/* Allocate an extent node with which to track the chunk. */
	node = ipallocztm(tsd, CACHELINE_CEILING(sizeof(extent_node_t)),
	    CACHELINE, false, tcache, true, arena);
	if (node == NULL)
		return (NULL);

	/*
	 * Copy zero into is_zeroed and pass the copy to chunk_alloc(), so that
	 * it is possible to make correct junk/zero fill decisions below.
	 */
	is_zeroed = zero;
	/* ANDROID change */
#if !defined(__LP64__)
	/* On 32 bit systems, using a per arena cache can exhaust
	 * virtual address space. Force all huge allocations to
	 * always take place in the first arena.
	 */
	arena = a0get();
#else
	arena = arena_choose(tsd, arena);
#endif
	/* End ANDROID change */
	if (unlikely(arena == NULL) || (ret = arena_chunk_alloc_huge(arena,
	    usize, alignment, &is_zeroed)) == NULL) {
		idalloctm(tsd, node, tcache, true);
		return (NULL);
	}

	extent_node_init(node, arena, ret, usize, is_zeroed);

	if (huge_node_set(ret, node)) {
		arena_chunk_dalloc_huge(arena, ret, usize);
		idalloctm(tsd, node, tcache, true);
		return (NULL);
	}

	/* Insert node into huge. */
	malloc_mutex_lock(&arena->huge_mtx);
	ql_elm_new(node, ql_link);
	ql_tail_insert(&arena->huge, node, ql_link);
	malloc_mutex_unlock(&arena->huge_mtx);

	if (zero || (config_fill && unlikely(opt_zero))) {
		if (!is_zeroed)
			memset(ret, 0, usize);
	} else if (config_fill && unlikely(opt_junk_alloc))
		memset(ret, 0xa5, usize);

	return (ret);
}
Example #9
0
static int
prof_active_ctl(const size_t *mib, size_t miblen, void *oldp, size_t *oldlenp,
    void *newp, size_t newlen)
{
	int ret;
	bool oldval;

	if (config_prof == false)
		return (ENOENT);

	malloc_mutex_lock(&ctl_mtx); /* Protect opt_prof_active. */
	oldval = opt_prof_active;
	if (newp != NULL) {
		/*
		 * The memory barriers will tend to make opt_prof_active
		 * propagate faster on systems with weak memory ordering.
		 */
		mb_write();
		WRITE(opt_prof_active, bool);
		mb_write();
	}
	READ(oldval, bool);

	ret = 0;
label_return:
	malloc_mutex_unlock(&ctl_mtx);
	return (ret);
}
Example #10
0
static int
arenas_initialized_ctl(const size_t *mib, size_t miblen, void *oldp,
    size_t *oldlenp, void *newp, size_t newlen)
{
	int ret;
	unsigned nread, i;

	malloc_mutex_lock(&ctl_mtx);
	READONLY();
	if (*oldlenp != narenas * sizeof(bool)) {
		ret = EINVAL;
		nread = (*oldlenp < narenas * sizeof(bool))
		    ? (*oldlenp / sizeof(bool)) : narenas;
	} else {
		ret = 0;
		nread = narenas;
	}

	for (i = 0; i < nread; i++)
		((bool *)oldp)[i] = ctl_stats.arenas[i].initialized;

label_return:
	malloc_mutex_unlock(&ctl_mtx);
	return (ret);
}
Example #11
0
static rtree_node_elm_t *
rtree_node_init(tsdn_t *tsdn, rtree_t *rtree, unsigned level,
    atomic_p_t *elmp) {
	malloc_mutex_lock(tsdn, &rtree->init_lock);
	/*
	 * If *elmp is non-null, then it was initialized with the init lock
	 * held, so we can get by with 'relaxed' here.
	 */
	rtree_node_elm_t *node = atomic_load_p(elmp, ATOMIC_RELAXED);
	if (node == NULL) {
		node = rtree_node_alloc(tsdn, rtree, ZU(1) <<
		    rtree_levels[level].bits);
		if (node == NULL) {
			malloc_mutex_unlock(tsdn, &rtree->init_lock);
			return NULL;
		}
		/*
		 * Even though we hold the lock, a later reader might not; we
		 * need release semantics.
		 */
		atomic_store_p(elmp, node, ATOMIC_RELEASE);
	}
	malloc_mutex_unlock(tsdn, &rtree->init_lock);

	return node;
}
Example #12
0
void *
base_alloc(size_t size)
{
	void *ret;
	size_t csize;

	/* Round size up to nearest multiple of the cacheline size. */
	csize = CACHELINE_CEILING(size);

	malloc_mutex_lock(&base_mtx);
	/* Make sure there's enough space for the allocation. */
	if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) {
		if (base_pages_alloc(csize)) {
			malloc_mutex_unlock(&base_mtx);
			return (NULL);
		}
	}
	/* Allocate. */
	ret = base_next_addr;
	base_next_addr = (void *)((uintptr_t)base_next_addr + csize);
	malloc_mutex_unlock(&base_mtx);
	VALGRIND_MAKE_MEM_UNDEFINED(ret, csize);

	return (ret);
}
Example #13
0
void *
chunk_alloc_swap(size_t size, bool *zero)
{
    void *ret;

    assert(swap_enabled);

    ret = chunk_recycle_swap(size, zero);
    if (ret != NULL)
        return (ret);

    malloc_mutex_lock(&swap_mtx);
    if ((uintptr_t)swap_end + size <= (uintptr_t)swap_max) {
        ret = swap_end;
        swap_end = (void *)((uintptr_t)swap_end + size);
#ifdef JEMALLOC_STATS
        swap_avail -= size;
#endif
        malloc_mutex_unlock(&swap_mtx);

        if (swap_prezeroed)
            *zero = true;
        else if (*zero)
            memset(ret, 0, size);
    } else {
        malloc_mutex_unlock(&swap_mtx);
        return (NULL);
    }

    return (ret);
}
Example #14
0
static rtree_leaf_elm_t *
rtree_leaf_init(tsdn_t *tsdn, rtree_t *rtree, atomic_p_t *elmp) {
	malloc_mutex_lock(tsdn, &rtree->init_lock);
	/*
	 * If *elmp is non-null, then it was initialized with the init lock
	 * held, so we can get by with 'relaxed' here.
	 */
	rtree_leaf_elm_t *leaf = atomic_load_p(elmp, ATOMIC_RELAXED);
	if (leaf == NULL) {
		leaf = rtree_leaf_alloc(tsdn, rtree, ZU(1) <<
		    rtree_levels[RTREE_HEIGHT-1].bits);
		if (leaf == NULL) {
			malloc_mutex_unlock(tsdn, &rtree->init_lock);
			return NULL;
		}
		/*
		 * Even though we hold the lock, a later reader might not; we
		 * need release semantics.
		 */
		atomic_store_p(elmp, leaf, ATOMIC_RELEASE);
	}
	malloc_mutex_unlock(tsdn, &rtree->init_lock);

	return leaf;
}
Example #15
0
prof_ctx_t *
huge_prof_ctx_get(const void *ptr)
{
	prof_ctx_t *ret = NULL;
	int i;
	extent_node_t *node, key;

	for (i = 0; i < POOLS_MAX; ++i) {
		pool_t *pool = pools[i];
		if (pool == NULL)
			continue;
		malloc_mutex_lock(&pool->huge_mtx);

		/* Extract from tree of huge allocations. */
		key.addr = __DECONST(void *, ptr);
		node = extent_tree_ad_search(&pool->huge, &key);
		if (node != NULL)
			ret = node->prof_ctx;

		malloc_mutex_unlock(&pool->huge_mtx);
		if (ret != NULL)
			break;
	}

	return (ret);
}
Example #16
0
size_t
huge_salloc(const void *ptr
#ifdef JEMALLOC_ENABLE_MEMKIND
, unsigned partition
#endif
)
{
	size_t ret;
	extent_node_t *node, key;

	malloc_mutex_lock(&huge_mtx);

	/* Extract from tree of huge allocations. */
	key.addr = __DECONST(void *, ptr);
#ifdef JEMALLOC_ENABLE_MEMKIND
	key.partition = partition - 1;
	do {
		key.partition++;
#endif
		node = extent_tree_ad_search(&huge, &key);
#ifdef JEMALLOC_ENABLE_MEMKIND
	} while((node == NULL || node->partition != key.partition) &&
		key.partition < 256); /* FIXME hard coding partition max to 256 */
#endif

	assert(node != NULL);

	ret = node->size;

	malloc_mutex_unlock(&huge_mtx);

	return (ret);
}
Example #17
0
void
arena_extent_cache_dalloc(tsdn_t *tsdn, arena_t *arena,
    extent_hooks_t **r_extent_hooks, extent_t *extent)
{
	malloc_mutex_lock(tsdn, &arena->lock);
	arena_extent_cache_dalloc_locked(tsdn, arena, r_extent_hooks, extent);
	malloc_mutex_unlock(tsdn, &arena->lock);
}
Example #18
0
static void
huge_ralloc_no_move_similar(void *ptr, size_t oldsize, size_t usize_min,
    size_t usize_max, bool zero)
{
	size_t usize, usize_next;
	extent_node_t *node;
	arena_t *arena;
	chunk_hooks_t chunk_hooks = CHUNK_HOOKS_INITIALIZER;
	bool pre_zeroed, post_zeroed;

	/* Increase usize to incorporate extra. */
	for (usize = usize_min; usize < usize_max && (usize_next = s2u(usize+1))
	    <= oldsize; usize = usize_next)
		; /* Do nothing. */

	if (oldsize == usize)
		return;

	node = huge_node_get(ptr);
	arena = extent_node_arena_get(node);
	pre_zeroed = extent_node_zeroed_get(node);

	/* Fill if necessary (shrinking). */
	if (oldsize > usize) {
		size_t sdiff = oldsize - usize;
		if (config_fill && unlikely(opt_junk_free)) {
			memset((void *)((uintptr_t)ptr + usize), 0x5a, sdiff);
			post_zeroed = false;
		} else {
			post_zeroed = !chunk_purge_wrapper(arena, &chunk_hooks,
			    ptr, CHUNK_CEILING(oldsize), usize, sdiff);
		}
	} else
		post_zeroed = pre_zeroed;

	malloc_mutex_lock(&arena->huge_mtx);
	/* Update the size of the huge allocation. */
	assert(extent_node_size_get(node) != usize);
	extent_node_size_set(node, usize);
	/* Update zeroed. */
	extent_node_zeroed_set(node, post_zeroed);
	malloc_mutex_unlock(&arena->huge_mtx);

	arena_chunk_ralloc_huge_similar(arena, ptr, oldsize, usize);

	/* Fill if necessary (growing). */
	if (oldsize < usize) {
		if (zero || (config_fill && unlikely(opt_zero))) {
			if (!pre_zeroed) {
				memset((void *)((uintptr_t)ptr + oldsize), 0,
				    usize - oldsize);
			}
		} else if (config_fill && unlikely(opt_junk_alloc)) {
			memset((void *)((uintptr_t)ptr + oldsize), 0xa5, usize -
			    oldsize);
		}
	}
}
Example #19
0
void
base_node_dealloc(extent_node_t *node)
{
	VALGRIND_MAKE_MEM_UNDEFINED(node, sizeof(extent_node_t));
	malloc_mutex_lock(&base_mtx);
	*(extent_node_t **)node = base_nodes;
	base_nodes = node;
	malloc_mutex_unlock(&base_mtx);
}
Example #20
0
void
base_node_dealloc(extent_node_t *node)
{

	malloc_mutex_lock(&base_mtx);
	*(extent_node_t **)node = base_nodes;
	base_nodes = node;
	malloc_mutex_unlock(&base_mtx);
}
Example #21
0
void *
chunk_alloc_dss(size_t size, bool *zero)
{
	void *ret;

	ret = chunk_recycle_dss(size, zero);
	if (ret != NULL)
		return (ret);

	/*
	 * sbrk() uses a signed increment argument, so take care not to
	 * interpret a huge allocation request as a negative increment.
	 */
	if ((intptr_t)size < 0)
		return (NULL);

	malloc_mutex_lock(&dss_mtx);
	if (dss_prev != (void *)-1) {
		intptr_t incr;

		/*
		 * The loop is necessary to recover from races with other
		 * threads that are using the DSS for something other than
		 * malloc.
		 */
		do {
			/* Get the current end of the DSS. */
			dss_max = sbrk(0);

			/*
			 * Calculate how much padding is necessary to
			 * chunk-align the end of the DSS.
			 */
			incr = (intptr_t)size
			    - (intptr_t)CHUNK_ADDR2OFFSET(dss_max);
			if (incr == (intptr_t)size)
				ret = dss_max;
			else {
				ret = (void *)((intptr_t)dss_max + incr);
				incr += size;
			}

			dss_prev = sbrk(incr);
			if (dss_prev == dss_max) {
				/* Success. */
				dss_max = (void *)((intptr_t)dss_prev + incr);
				malloc_mutex_unlock(&dss_mtx);
				*zero = true;
				return (ret);
			}
		} while (dss_prev != (void *)-1);
	}
	malloc_mutex_unlock(&dss_mtx);

	return (NULL);
}
Example #22
0
void *
huge_palloc(tsd_t *tsd, arena_t *arena, size_t size, size_t alignment,
    bool zero, tcache_t *tcache)
{
	void *ret;
	size_t usize;
	extent_node_t *node;
	bool is_zeroed;

	/* Allocate one or more contiguous chunks for this request. */

	usize = sa2u(size, alignment);
	if (unlikely(usize == 0))
		return (NULL);
	assert(usize >= chunksize);

	/* Allocate an extent node with which to track the chunk. */
	node = ipallocztm(tsd, CACHELINE_CEILING(sizeof(extent_node_t)),
	    CACHELINE, false, tcache, true, arena);
	if (node == NULL)
		return (NULL);

	/*
	 * Copy zero into is_zeroed and pass the copy to chunk_alloc(), so that
	 * it is possible to make correct junk/zero fill decisions below.
	 */
	is_zeroed = zero;
	arena = arena_choose(tsd, arena);
	if (unlikely(arena == NULL) || (ret = arena_chunk_alloc_huge(arena,
	    size, alignment, &is_zeroed)) == NULL) {
		idalloctm(tsd, node, tcache, true, true);
		return (NULL);
	}

	extent_node_init(node, arena, ret, size, is_zeroed, true);

	if (huge_node_set(ret, node)) {
		arena_chunk_dalloc_huge(arena, ret, size);
		idalloctm(tsd, node, tcache, true, true);
		return (NULL);
	}

	/* Insert node into huge. */
	malloc_mutex_lock(&arena->huge_mtx);
	ql_elm_new(node, ql_link);
	ql_tail_insert(&arena->huge, node, ql_link);
	malloc_mutex_unlock(&arena->huge_mtx);

	if (zero || (config_fill && unlikely(opt_zero))) {
		if (!is_zeroed)
			memset(ret, 0, size);
	} else if (config_fill && unlikely(opt_junk_alloc))
		memset(ret, 0xa5, size);

	return (ret);
}
Example #23
0
void *
huge_palloc(size_t size, size_t alignment, bool zero)
{
	void *ret;
	size_t csize;
	extent_node_t *node;
	bool is_zeroed;

	/* Allocate one or more contiguous chunks for this request. */

	csize = CHUNK_CEILING(size);
	if (csize == 0) {
		/* size is large enough to cause size_t wrap-around. */
		return (NULL);
	}

	/* Allocate an extent node with which to track the chunk. */
	node = base_node_alloc();
	if (node == NULL)
		return (NULL);

	/*
	 * Copy zero into is_zeroed and pass the copy to chunk_alloc(), so that
	 * it is possible to make correct junk/zero fill decisions below.
	 */
	is_zeroed = zero;
	ret = chunk_alloc(csize, alignment, false, &is_zeroed,
	    chunk_dss_prec_get());
	if (ret == NULL) {
		base_node_dealloc(node);
		return (NULL);
	}

	/* Insert node into huge. */
	node->addr = ret;
	node->size = csize;

	malloc_mutex_lock(&huge_mtx);
	extent_tree_ad_insert(&huge, node);
	if (config_stats) {
		stats_cactive_add(csize);
		huge_nmalloc++;
		huge_allocated += csize;
	}
	malloc_mutex_unlock(&huge_mtx);

	if (config_fill && zero == false) {
		if (opt_junk)
			memset(ret, 0xa5, csize);
		else if (opt_zero && is_zeroed == false)
			memset(ret, 0, csize);
	}

	return (ret);
}
Example #24
0
bool
chunk_dss_prec_set(dss_prec_t dss_prec)
{

	if (!have_dss)
		return (dss_prec != dss_prec_disabled);
	malloc_mutex_lock(&dss_mtx);
	dss_prec_default = dss_prec;
	malloc_mutex_unlock(&dss_mtx);
	return (false);
}
Example #25
0
void *
huge_palloc(arena_t *arena, size_t size, size_t alignment, bool zero)
{
	void *ret;
	size_t csize;
	extent_node_t *node;
	bool is_zeroed;
	pool_t *pool;

	/* Allocate one or more contiguous chunks for this request. */

	csize = CHUNK_CEILING(size);
	if (csize == 0) {
		/* size is large enough to cause size_t wrap-around. */
		return (NULL);
	}

	/*
	 * Copy zero into is_zeroed and pass the copy to chunk_alloc(), so that
	 * it is possible to make correct junk/zero fill decisions below.
	 */
	is_zeroed = zero;
	arena = choose_arena(arena);
	pool = arena->pool;

	/* Allocate an extent node with which to track the chunk. */
	node = base_node_alloc(pool);
	if (node == NULL)
		return (NULL);

	ret = arena_chunk_alloc_huge(arena, csize, alignment, &is_zeroed);
	if (ret == NULL) {
		base_node_dalloc(pool, node);
		return (NULL);
	}

	/* Insert node into huge. */
	node->addr = ret;
	node->size = csize;
	node->arena = arena;

	malloc_mutex_lock(&pool->huge_mtx);
	extent_tree_ad_insert(&pool->huge, node);
	malloc_mutex_unlock(&pool->huge_mtx);

	if (config_fill && zero == false) {
		if (opt_junk)
			memset(ret, 0xa5, csize);
		else if (opt_zero && is_zeroed == false)
			memset(ret, 0, csize);
	}

	return (ret);
}
Example #26
0
bool
chunk_dss_prec_set(dss_prec_t dss_prec)
{

	if (config_dss == false)
		return (true);
	malloc_mutex_lock(&dss_mtx);
	dss_prec_default = dss_prec;
	malloc_mutex_unlock(&dss_mtx);
	return (false);
}
Example #27
0
dss_prec_t
chunk_dss_prec_get(void)
{
	dss_prec_t ret;

	if (config_dss == false)
		return (dss_prec_disabled);
	malloc_mutex_lock(&dss_mtx);
	ret = dss_prec_default;
	malloc_mutex_unlock(&dss_mtx);
	return (ret);
}
Example #28
0
dss_prec_t
chunk_dss_prec_get(void)
{
	dss_prec_t ret;

	if (!have_dss)
		return (dss_prec_disabled);
	malloc_mutex_lock(&dss_mtx);
	ret = dss_prec_default;
	malloc_mutex_unlock(&dss_mtx);
	return (ret);
}
Example #29
0
void
huge_prof_tctx_set(const void *ptr, prof_tctx_t *tctx)
{
	extent_node_t *node;
	arena_t *arena;

	node = huge_node_get(ptr);
	arena = extent_node_arena_get(node);
	malloc_mutex_lock(&arena->huge_mtx);
	extent_node_prof_tctx_set(node, tctx);
	malloc_mutex_unlock(&arena->huge_mtx);
}
Example #30
0
void
base_stats_get(tsdn_t *tsdn, size_t *allocated, size_t *resident,
    size_t *mapped)
{

	malloc_mutex_lock(tsdn, &base_mtx);
	assert(base_allocated <= base_resident);
	assert(base_resident <= base_mapped);
	*allocated = base_allocated;
	*resident = base_resident;
	*mapped = base_mapped;
	malloc_mutex_unlock(tsdn, &base_mtx);
}