void stabilisation_wing_cascade_stabilise(stabilisation_wing_t* stabilisation_wing)
{
    float rpyt_errors[4];
    control_command_t input;
    int32_t i;
    float feedforward[4];
    float nav_heading, current_heading, heading_error;
    float gps_speed_global[3], gps_speed_semi_local[3];
    float input_turn_rate;
    float input_roll_angle;
    aero_attitude_t attitude, attitude_yaw;
    quat_t q_rot;
    float airspeed_desired;
    float clipping_factor;

    // Get up vector in body frame
    quat_t up = {0.0f, {UPVECTOR_X, UPVECTOR_Y, UPVECTOR_Z}};
    quat_t up_vec = quaternions_global_to_local(stabilisation_wing->ahrs->qe,
                    up);

    // set the controller input
    input= *stabilisation_wing->controls;
    switch (stabilisation_wing->controls->control_mode) 
    {
    case VELOCITY_COMMAND_MODE:
        // Get current attitude
        attitude_yaw = coord_conventions_quat_to_aero(stabilisation_wing->ahrs->qe);
    
        /////////////
        // HEADING //
        /////////////
        // Compute the heading angle corresponding to the given input velocity vector (input from remote/vector field should be in semi-local frame).
        nav_heading = heading_from_velocity_vector(input.tvel);
        // Overwrite command if in remote
        if(stabilisation_wing->controls->yaw_mode == YAW_RELATIVE)
        {
            nav_heading = maths_calc_smaller_angle(input.rpy[YAW] - attitude_yaw.rpy[YAW]);
        }
        
        // Compute current heading
        gps_speed_global[X] = stabilisation_wing->gps->velocity_lf()[0];
        gps_speed_global[Y] = stabilisation_wing->gps->velocity_lf()[1];
        gps_speed_global[Z] = stabilisation_wing->pos_est->vel[Z];
        
        // Transform global to semi-local
        attitude_yaw.rpy[0] = 0.0f;
        attitude_yaw.rpy[1] = 0.0f;
        attitude_yaw.rpy[2] = -attitude_yaw.rpy[2];
        q_rot = coord_conventions_quaternion_from_aero(attitude_yaw);
        quaternions_rotate_vector(q_rot, gps_speed_global, gps_speed_semi_local);
        
        current_heading = heading_from_velocity_vector(gps_speed_semi_local);
        
        // Compute heading error
        heading_error = maths_calc_smaller_angle(nav_heading - current_heading);
        
        
        ///////////////
        // PID INPUT //
        ///////////////
        // Vector field normalize vector in plane x-y to cruise_speed value ==> airspeed should be done only on the x-y composants
        airspeed_desired = sqrtf(input.tvel[X]*input.tvel[X] + input.tvel[Y]*input.tvel[Y]);
        
        // Compute errors
        rpyt_errors[0] = heading_error;                                                             // Heading
        rpyt_errors[1] = input.tvel[Z] - gps_speed_global[Z];                                       // Vertical speed
        rpyt_errors[2] = 0.0f;
        rpyt_errors[3] = airspeed_desired - stabilisation_wing->airspeed_analog->get_airspeed();    // Airspeed
        
        // Compute the feedforward
        feedforward[0] = 0.0f;
        feedforward[1] = 0.0f;
        feedforward[2] = 0.0f;
        feedforward[3] = (airspeed_desired - 13.0f)/8.0f + 0.2f;
        
        // run PID update on all velocity controllers
        stabilisation_run_feedforward(&stabilisation_wing->stabiliser_stack.velocity_stabiliser, stabilisation_wing->ahrs->dt_s, rpyt_errors, feedforward);
        
        
        ////////////////
        // PID OUTPUT //
        ////////////////
        // Get turn rate command and transform it into a roll angle command for next layer
        input_turn_rate = stabilisation_wing->stabiliser_stack.velocity_stabiliser.output.rpy[0];
        // TODO: Fix this in case of bad airspeed readings...
        clipping_factor = stabilisation_wing->max_roll_angle / (PI/2.0f);
        if(clipping_factor == 0.0f)
        {
            input_roll_angle = 0.0f;
        }
        else
        {
            input_roll_angle = clipping_factor * atanf( (1.0f/clipping_factor) * (stabilisation_wing->airspeed_analog->get_airspeed() * input_turn_rate / 9.81f) );
        }
        
        // Set input for next layer
        input = stabilisation_wing->stabiliser_stack.velocity_stabiliser.output;
        input.rpy[0] = input_roll_angle;
        input.rpy[1] = - stabilisation_wing->stabiliser_stack.velocity_stabiliser.output.rpy[1];
        input.thrust = stabilisation_wing->stabiliser_stack.velocity_stabiliser.output.thrust;
        
        // Overwrite the commands during different key phases (take-off and landing)
        if(stabilisation_wing->navigation->internal_state_ == Navigation::NAV_TAKEOFF)
        {
            // Take-off: fixed 0 roll angle, fixed defined pitch angle and fixed defined constant thrust value.
            input.rpy[0] = 0.0f;
            input.rpy[1] = stabilisation_wing->take_off_pitch;
            input.thrust = stabilisation_wing->take_off_thrust;
        }
        else if(stabilisation_wing->navigation->internal_state_ == Navigation::NAV_LANDING)
        {
            // Landing: Limit the roll computed by the velocity layer (navigation), shut down the motor and impose a little pitch down to assure gliding without stall.
            if(input.rpy[0] > stabilisation_wing->landing_max_roll)
            {
                input.rpy[0] = stabilisation_wing->landing_max_roll;
            }
            else if(input.rpy[0] < -stabilisation_wing->landing_max_roll)
            {
                input.rpy[0] = -stabilisation_wing->landing_max_roll;
            }
            input.rpy[1] = stabilisation_wing->landing_pitch;
            input.thrust = -1.0f;
        }
        
    // -- no break here  - we want to run the lower level modes as well! -- 
    
    case ATTITUDE_COMMAND_MODE:
        // Add "a priori on the pitch" to fly horizontally and to compensate for roll angle
        attitude = coord_conventions_quat_to_aero(stabilisation_wing->ahrs->qe);
        input.rpy[1] += stabilisation_wing->pitch_angle_apriori;    // Constant compensation for horizontal
        if(maths_f_abs(attitude.rpy[ROLL]) < PI/2.0f)                       // Compensation for the roll bank angle
        {
            input.rpy[1] += stabilisation_wing->pitch_angle_apriori_gain * maths_f_abs(input.rpy[0]*input.rpy[0]*input.rpy[0]);
        }
        
        // run absolute attitude_filter controller
        rpyt_errors[0]= sinf(input.rpy[0]) + up_vec.v[1];                               // Roll
        rpyt_errors[1]= sinf(input.rpy[1]) - up_vec.v[0];                               // Pitch
        rpyt_errors[2]= 0.0f;                                                           // Yaw
        rpyt_errors[3]= input.thrust;       // no feedback for thrust at this level
        
        // run PID update on all attitude_filter controllers
        stabilisation_run(&stabilisation_wing->stabiliser_stack.attitude_stabiliser, stabilisation_wing->ahrs->dt_s, rpyt_errors);
        
        // use output of attitude_filter controller to set rate setpoints for rate controller 
        input = stabilisation_wing->stabiliser_stack.attitude_stabiliser.output;
    
    // -- no break here  - we want to run the lower level modes as well! -- 
    
    case RATE_COMMAND_MODE: // this level is always run
        // get rate measurements from IMU (filtered angular rates)
        for (i=0; i<3; i++)
        {
            rpyt_errors[i]= input.rpy[i]- stabilisation_wing->ahrs->angular_speed[i];
        }
        rpyt_errors[3] = input.thrust ;  // no feedback for thrust at this level
        
        // run PID update on all rate controllers
        stabilisation_run(&stabilisation_wing->stabiliser_stack.rate_stabiliser, stabilisation_wing->ahrs->dt_s, rpyt_errors);
    }

    stabilisation_wing->torque_command->xyz[0] = stabilisation_wing->stabiliser_stack.rate_stabiliser.output.rpy[ROLL];
    stabilisation_wing->torque_command->xyz[1] = stabilisation_wing->stabiliser_stack.rate_stabiliser.output.rpy[PITCH];
    stabilisation_wing->thrust_command->thrust = stabilisation_wing->stabiliser_stack.rate_stabiliser.output.thrust;
}
void stabilisation_copter_cascade_stabilise(stabilisation_copter_t* stabilisation_copter)
{
	float rpyt_errors[4];
	control_command_t input;
	int32_t i;
	quat_t qtmp, q_rot;
	aero_attitude_t attitude_yaw_inverse;
	
	// set the controller input
	input= *stabilisation_copter->controls;
	switch (stabilisation_copter->controls->control_mode) 
	{
	case VELOCITY_COMMAND_MODE:
		
		attitude_yaw_inverse = coord_conventions_quat_to_aero(stabilisation_copter->ahrs->qe);
		attitude_yaw_inverse.rpy[0] = 0.0f;
		attitude_yaw_inverse.rpy[1] = 0.0f;
		attitude_yaw_inverse.rpy[2] = attitude_yaw_inverse.rpy[2];
		
		//qtmp=quaternions_create_from_vector(input.tvel);
		//quat_t input_global = quaternions_local_to_global(stabilisation_copter->ahrs->qe, qtmp);
		
		q_rot = coord_conventions_quaternion_from_aero(attitude_yaw_inverse);
		
		quat_t input_global;
		quaternions_rotate_vector(q_rot, input.tvel, input_global.v);
		
		input.tvel[X] = input_global.v[X];
		input.tvel[Y] = input_global.v[Y];
		input.tvel[Z] = input_global.v[Z];
		
		rpyt_errors[X] = input.tvel[X] - stabilisation_copter->pos_est->vel[X];
		rpyt_errors[Y] = input.tvel[Y] - stabilisation_copter->pos_est->vel[Y];
		rpyt_errors[3] = -(input.tvel[Z] - stabilisation_copter->pos_est->vel[Z]);
		
		if (stabilisation_copter->controls->yaw_mode == YAW_COORDINATED) 
		{
			float rel_heading_coordinated;
			if ((maths_f_abs(stabilisation_copter->pos_est->vel_bf[X])<0.001f)&&(maths_f_abs(stabilisation_copter->pos_est->vel_bf[Y])<0.001f))
			{
				rel_heading_coordinated = 0.0f;
			}
			else
			{
				rel_heading_coordinated = atan2(stabilisation_copter->pos_est->vel_bf[Y], stabilisation_copter->pos_est->vel_bf[X]);
			}
			
			float w = 0.5f * (maths_sigmoid(vectors_norm(stabilisation_copter->pos_est->vel_bf)-stabilisation_copter->stabiliser_stack.yaw_coordination_velocity) + 1.0f);
			input.rpy[YAW] = (1.0f - w) * input.rpy[YAW] + w * rel_heading_coordinated;
		}

		rpyt_errors[YAW]= input.rpy[YAW];
		
		// run PID update on all velocity controllers
		stabilisation_run(&stabilisation_copter->stabiliser_stack.velocity_stabiliser, stabilisation_copter->imu->dt, rpyt_errors);
		
		//velocity_stabiliser.output.thrust = maths_f_min(velocity_stabiliser.output.thrust,stabilisation_param.controls->thrust);
		stabilisation_copter->stabiliser_stack.velocity_stabiliser.output.thrust += stabilisation_copter->thrust_hover_point;
		stabilisation_copter->stabiliser_stack.velocity_stabiliser.output.theading = input.theading;
		input = stabilisation_copter->stabiliser_stack.velocity_stabiliser.output;
		
		qtmp=quaternions_create_from_vector(stabilisation_copter->stabiliser_stack.velocity_stabiliser.output.rpy);
		//quat_t rpy_local = quaternions_global_to_local(stabilisation_copter->ahrs->qe, qtmp);
		
		quat_t rpy_local;
		quaternions_rotate_vector(quaternions_inverse(q_rot), qtmp.v, rpy_local.v);
		
		input.rpy[ROLL] = rpy_local.v[Y];
		input.rpy[PITCH] = -rpy_local.v[X];
		//input.thrust = stabilisation_copter->controls->tvel[Z];
		
	// -- no break here  - we want to run the lower level modes as well! -- 
	
	case ATTITUDE_COMMAND_MODE:
		// run absolute attitude_filter controller
		rpyt_errors[0]= input.rpy[0] - ( - stabilisation_copter->ahrs->up_vec.v[1] ); 
		rpyt_errors[1]= input.rpy[1] - stabilisation_copter->ahrs->up_vec.v[0];
		
		if ((stabilisation_copter->controls->yaw_mode == YAW_ABSOLUTE) ) 
		{
			rpyt_errors[2] =maths_calc_smaller_angle(input.theading- stabilisation_copter->pos_est->local_position.heading);
		}
		else
		{ // relative yaw
			rpyt_errors[2]= input.rpy[2];
		}
		
		rpyt_errors[3]= input.thrust;       // no feedback for thrust at this level
		
		// run PID update on all attitude_filter controllers
		stabilisation_run(&stabilisation_copter->stabiliser_stack.attitude_stabiliser, stabilisation_copter->imu->dt, rpyt_errors);
		
		// use output of attitude_filter controller to set rate setpoints for rate controller 
		input = stabilisation_copter->stabiliser_stack.attitude_stabiliser.output;
	
	// -- no break here  - we want to run the lower level modes as well! -- 
	
	case RATE_COMMAND_MODE: // this level is always run
		// get rate measurements from IMU (filtered angular rates)
		for (i=0; i<3; i++)
		{
			rpyt_errors[i]= input.rpy[i]- stabilisation_copter->ahrs->angular_speed[i];
		}
		rpyt_errors[3] = input.thrust ;  // no feedback for thrust at this level
		
		// run PID update on all rate controllers
		stabilisation_run(&stabilisation_copter->stabiliser_stack.rate_stabiliser, stabilisation_copter->imu->dt, rpyt_errors);
	}
	
	// mix to servo outputs depending on configuration
	if( stabilisation_copter->motor_layout == QUADCOPTER_MOTOR_LAYOUT_DIAG )
	{
		stabilisation_copter_mix_to_servos_diag_quad(&stabilisation_copter->stabiliser_stack.rate_stabiliser.output, stabilisation_copter->servos);
	}
	else if( stabilisation_copter->motor_layout == QUADCOPTER_MOTOR_LAYOUT_CROSS )
	{
		stabilisation_copter_mix_to_servos_cross_quad(&stabilisation_copter->stabiliser_stack.rate_stabiliser.output, stabilisation_copter->servos);

	}
}