Example #1
0
void mcxDiagnosticsAttractor
(  const char*          ffn_attr
,  const mclMatrix*     clus2elem
,  const mcxDumpParam   dumpParam
)
   {  int         n_nodes     =  clus2elem->n_range
   ;  int         n_written   =  dumpParam->n_written
   ;  mclMatrix*  mtx_Ascore  =  mclxAllocZero(n_written, n_nodes)
   ;  mcxIO*      xfOut       =  mcxIOnew(ffn_atr, "w")
   ;  dim         d           =  0

   ;  if (mcxIOopen(xfOut, RETURN_ON_FAIL) == STATUS_FAIL)
      {  mclxFree(&mtx_Ascore)
      ;  mcxIOfree(&xfOut)
      ;  return
   ;  }

   ;  for(d=0; d<n_written; d++)
      {  mclMatrix*  iterand     =  *(dumpParam->iterands+d)
      ;  mclVector*  vec_Ascore  =  NULL

      ;  if (iterands->n_cols != n_nodes || iterand->n_range != n_nodes)
         {  fprintf(stderr, "mcxDiagnosticsAttractor: dimension error\n")
         ;  mcxExit(1)
      ;  }

         vec_Ascore  =  mcxAttractivityScale(iterand)
      ;  mclvRenew((mtx_Ascore->cols+d), vec_Ascore->ivps, vec_Ascore->n_ivps)
      ;  mclvFree(&vec_Ascore)
   ;  }

      mclxbWrite(mtx_Ascore, xfOut, RETURN_ON_FAIL)
   ;  mclxFree(mtx_Ascore)
;  }
Example #2
0
static mclx* control_test
(  mclx* clnext
,  const mclx* clctrl
)
   {  if (!clctrl)
      return clnext

   ;  {  mclx* meet = clmMeet(clctrl, clnext)
      ;  dim dist_ctrl_curr, dist_curr_ctrl
      ;  clmSJDistance
         (clnext, clctrl, NULL, NULL, &dist_curr_ctrl, &dist_ctrl_curr)
      ;  mcxLog
         (  MCX_LOG_APP
         ,  me
         ,  "distance to control: %lu %lu %lu"
         ,  (ulong) (dist_curr_ctrl + dist_ctrl_curr)
         ,  (ulong) dist_curr_ctrl
         ,  (ulong) dist_ctrl_curr
         )
      ;  if (dist_curr_ctrl <= dist_ctrl_curr)
         {  mclxFree(&clnext)
         ;  clnext = meet
      ;  }
         else
         mclxFree(&meet)
   ;  }
      return clnext
;  }
Example #3
0
void test_for_cycles
(  mclx* mx
)
   {  mclx* tp = mclxTranspose(mx)
   ;  mclv* fwd = mclxColSizes(mx, MCL_VECTOR_COMPLETE)
   ;  mclv* bwd = mclxColSizes(tp, MCL_VECTOR_COMPLETE)
   ;  dim i, n_cycle = 0

   ;  for (i=0;i<bwd->n_ivps;i++)
      {  ofs level_up = fire_node(mx, i, NULL)
      ;  ofs level_dn = fire_node(tp, i, NULL)
      ;  if (level_up < 0 || level_dn < 0)
            fprintf(stderr, " [%lu cycle]", (ulong) i)
         ,  n_cycle++
   ;  }

      if (n_cycle)
      fputc('\n', stderr)
   ;  mclvFree(&bwd)
   ;  mclvFree(&fwd)
   ;  mclxFree(&tp)
   ;  fprintf
      (  stderr
      ,  "file with %lu edges has %d cycles\n"
      ,  (ulong) mclxNrofEntries(mx)
      ,  (int) n_cycle
      )
   ;  exit(n_cycle ? 1 : 0)
;  }
Example #4
0
static int test_cycle
(  const mclx* mx
,  dim n_limit
)
   {  mclv* starts = run_through(mx), *starts2
   ;  if (starts->n_ivps)
      {  dim i
      ;  if (n_limit)
         {  mclx* mxt = mclxTranspose(mx)
         ;  starts2 = run_through(mxt)
         ;  mclxFree(&mxt)
         ;  mclvBinary(starts, starts2, starts, fltMultiply)

         ;  mcxErr
            (me, "cycles detected (%u nodes)", (unsigned) starts->n_ivps)

         ;  if (starts->n_ivps)
            {  fprintf(stdout, "%lu", (ulong) starts->ivps[0].idx)
            ;  for (i=1; i<MCX_MIN(starts->n_ivps, n_limit); i++)
               fprintf(stdout, " %lu", (ulong) starts->ivps[i].idx)
            ;  fputc('\n', stdout)
         ;  }
            else
            mcxErr(me, "strange, no nodes selected")
      ;  }
         else
         mcxErr(me, "cycles detected")
      ;  return 1
   ;  }

      mcxTell(me, "no cycles detected")
   ;  return 0
;  }
Example #5
0
int mclDagTest
(  const mclMatrix* dag
)
   {  mclv* v_transient =  mclvCopy(NULL, dag->dom_cols)
   ;  mclx* m_transient =  NULL
   ;  int maxdepth      =  0
   ;  dim d

   ;  mclvMakeCharacteristic(v_transient)
   ;  for (d=0;d<N_COLS(dag);d++)
      {  mclv* col = dag->cols+d
      ;  if (mclvGetIvp(col, col->vid, NULL))   /* deemed attractor */
         mclvInsertIdx(v_transient, col->vid, 0.25)
   ;  }

      mclvSelectGqBar(v_transient, 0.5)

   ;  m_transient = mclxSub(dag, v_transient, v_transient)
;if(0)mclxDebug("-", m_transient, 3, "transient")
   ;  maxdepth = calc_depth(m_transient)

   ;  mclxFree(&m_transient)
   ;  mclvFree(&v_transient)
   ;  return maxdepth
;  }
Example #6
0
static mclx* get_coarse
(  const mclx* mxbase
,  mclx* clprev
,  mcxbool add_transpose
)
   {  mclx* blockc   =  mclxBlocksC(mxbase, clprev)
   ;  mclx* clprevtp =  mclxTranspose(clprev)
   ;  mclx *p1       =  NULL     /* p_roduct */
   ;  mclx* mx_coarse=  NULL

   ;  mclxMakeStochastic(clprev)

/****************** <EXPERIMENTAL CRAP>  ************************************/
   ;  if (hdp_g)
      mclxUnary(clprev, fltxPower, &hdp_g)
                        /* parameter: use mxbase rather than blockc */
   ;  if (getenv("MCLCM_BLOCK_STOCHASTIC")) /* this works very badly! */
      mclxMakeStochastic(blockc)

   ;  else if (getenv("MCLCM_BASE_UNSCALE") && start_col_sums_g)
      {  dim i
      ;  for (i=0;i<N_COLS(blockc);i++)
         {  double f = start_col_sums_g->ivps[i].val
         ;  mclvUnary(blockc->cols+i, fltxMul, &f)
      ;  }
   ;  }
/****************** </EXPERIMENTAL> *****************************************/

      p1 = mclxCompose(blockc, clprev, 0)
;if (0)
{mcxIO* t = mcxIOnew("-", "w")
;mclxWrite(blockc, t, MCLXIO_VALUE_GETENV, EXIT_ON_FAIL)
;
}
   ;  mclxFree(&blockc)
   ;  mx_coarse = mclxCompose(clprevtp, p1, 0) 
   ;  if (add_transpose)
      mclxAddTranspose(mx_coarse, 0.0)
   ;  mclxAdjustLoops(mx_coarse, mclxLoopCBremove, NULL)

   ;  mclxFree(&p1)
   ;  mclxFree(&clprevtp)

   ;  mclxMakeCharacteristic(clprev)
   ;  return mx_coarse
;  }
Example #7
0
mclMatrix* mclInterpret
(  mclMatrix* dag
)
   {  mclv* v_attr = mclvCopy(NULL, dag->dom_cols)
   ;  mclx* m_attr = NULL, *m_cls = NULL, *m_clst = NULL
   ;  dim d

   ;  mclvMakeCharacteristic(v_attr)

   ;  for (d=0;d<N_COLS(dag);d++)
      {  mclv* col = dag->cols+d
      ;  if (mclvGetIvp(col, col->vid, NULL))   /* deemed attractor */
         mclvInsertIdx(v_attr, col->vid, 2.0)
   ;  }

      mclvSelectGqBar(v_attr, 1.5)

   ;  m_attr = mclxSub(dag, v_attr, v_attr)
   ;  mclxAddTranspose(m_attr, 1.0)

   ;  m_cls = clmUGraphComponents(m_attr, NULL) /* attractor systems as clusters */
   ;  mclvCopy(m_cls->dom_rows, dag->dom_cols)  /* add all nodes to this cluster matrix */
   ;  m_clst = mclxTranspose(m_cls)             /* nodes(columns) with zero neighbours need to be classified */
   ;  mclgUnionvReset(dag)                      /* make mx->dom-rows characteristic */
   ;  mclxFree(&m_cls)

   ;  for (d=0;d<N_COLS(dag);d++)
      {  mclv* closure, *clsids
      ;  if (mclvGetIvp(v_attr, dag->cols[d].vid, NULL))
         continue                               /* attractor already classified */

      ;  closure =   get_closure(dag, dag->cols+d)  /* take all [neighbours of [neighbours of [..]]] */
      ;  clsids  =   mclgUnionv(m_clst, closure, NULL, SCRATCH_READY, NULL)

      ;  mclvAdd(m_clst->cols+d, clsids, m_clst->cols+d)
      ;  mclvFree(&clsids)
      ;  mclvFree(&closure)
   ;  }

      m_cls = mclxTranspose(m_clst)
   ;  mclxFree(&m_attr)
   ;  mclxFree(&m_clst)
   ;  mclvFree(&v_attr)
   ;  return m_cls
;  }
Example #8
0
static void tf_do_mcl
(  mclx* mx
,  double infl
,  mcxbool add_transpose
)
   {  mclx* mx2 = NULL, *mx3 = NULL, *cl = NULL
   ;  mclAlgParam* mlp = NULL
   ;  char* argv2[] =  { NULL }
   ;  mcxstatus s

   ;  if (add_transpose)
      {  mx2 = mclxCopy(mx)
      ;  mclxAddTranspose(mx2, 0.0)
   ;  }

      s  =  mclAlgInterface
            (  &mlp
            ,  argv2
            ,  0
            ,  NULL
            ,  add_transpose ? mx2 : mx
            ,  ALG_CACHE_INPUT 
            )
   ;  do
      {  if (s)
         {  mcxErr("tf-mcl", "unexpected failure")
         ;  break
      ;  }
         mlp->mpp->mainInflation = infl   
      ;  if (mclAlgorithm(mlp) == STATUS_FAIL)
         break
      ;  if (!(cl = mclAlgParamRelease(mlp, mlp->cl_result)))
         break
      ;  mclAlgParamRelease(mlp, mlp->mx_input)    /* now we own it again, either mx2 or mx */
      ;  mx3 = mclxBlockUnion2(mx, cl)
      ;  mclxTransplant(mx, &mx3)      /* this frees mx3 */
   ;  }
      while (0)
   ;  mclxFree(&cl)
   ;  mclxFree(&mx2)
   ;  mclAlgParamFree(&mlp, TRUE)
;  }
Example #9
0
static void write_coarse
(  mcxIO* xf_coarse
,  mclx*  mx_coarse
)
   {  mclx* tmp = mclxCopy(mx_coarse)
   ;  double mv = mclxMaxValue(tmp)
   ;  double sc = mv ? mv / 100.0 : 1.0
   ;  mclxUnary(tmp, fltxScale, &sc)
   ;  mclxaWrite(tmp, xf_coarse, 4, RETURN_ON_FAIL)
   ;  mclxFree(&tmp)
;  }
Example #10
0
static int calc_depth
(  mclx* m_transient
)
{   mclx* m_inverse = mclxTranspose(m_transient)
                      ;
    dim c, depth = 0

                   ;
    if(0)puts("")

        ;
    for (c=0; c<N_COLS(m_inverse); c++)
    {   dim this_depth = 0
                         ;
        if (!m_inverse->cols[c].n_ivps)    /* no incoming nodes */
        {   mclv* next = mclxGetVector(m_transient, m_inverse->cols[c].vid, RETURN_ON_FAIL, NULL)
                         ;
            if (!next)
                continue
                ;
            mclgUnionvInitList(m_transient, next)
            ;
            do
            {   mclv* next2 = mclgUnionv(m_transient, next, NULL, SCRATCH_UPDATE, NULL)
                              ;
                if (0 && next->ivps)
                    fprintf(stdout, "chain %d ->\n", (int) m_inverse->cols[c].vid)
                    ,  mclvaDump(next, stdout, -1, " ", 0)
                    ;
                if (this_depth)   /* otherwise starting vector in matrix */
                    mclvFree(&next)
                    ;
                next = next2
                       ;
                this_depth++
                ;
            }
            while (next->n_ivps)
                ;
            mclvFree(&next)      /* did loop at least once, so not the starting vector */
            ;
            mclgUnionvReset(m_transient)
            ;
        }
        if (this_depth > depth)
            depth = this_depth
                    ;
    }

    mclxFree(&m_inverse)
    ;
    return depth
           ;
}
Example #11
0
static void integrate_results
(  mclxCat* cat
)
   {  dim i
   ;  qsort(cat->level, cat->n_level, sizeof(mclxAnnot), annot_cmp_coarse_first)
   ;  for (i=1;i<cat->n_level;i++)
      {  mclx* meet = clmMeet(cat->level[i-1].mx, cat->level[i].mx)
      ;  mclxFree(&(cat->level[i].mx))
      ;  cat->level[i].mx = meet
   ;  }
      mclxCatReverse(cat)
;  }
Example #12
0
void write_clustering
(  mclx* cl
,  const mclx* clprev
,  mcxIO* xfcone
,  mcxIO* xfstack
,  const char* plexprefix
,  int multiplex_idx
,  const mclAlgParam* mlp
)
   {  
                        /* this branch is also taken for dispatch mode */
      if (plexprefix)
      {  mcxTing* clname = mcxTingPrint(NULL, "%s.%03d", plexprefix, multiplex_idx)
      ;  mcxIO* xfout = mcxIOnew(clname->str, "w")

      ;  if (dispatch_g && mlp && !mcxIOopen(xfout, RETURN_ON_FAIL))
         fprintf(xfout->fp, "# %s\n", mlp->cline->str)  

      ;  mclxaWrite(cl, xfout, MCLXIO_VALUE_NONE, RETURN_ON_FAIL)
      ;  mcxTingFree(&clname)
      ;  mcxIOfree(&xfout)
   ;  }
      
      if (subcluster_g || dispatch_g)
      return

   ;  if (xfstack)
      mclxaWrite(cl, xfstack, MCLXIO_VALUE_NONE, RETURN_ON_FAIL)

   ;  if (xfcone && !clprev)
      mclxaWrite(cl, xfcone, MCLXIO_VALUE_NONE, RETURN_ON_FAIL)
   ;  else if (xfcone)
      {  mclx* clprevt = mclxTranspose(clprev)
      ;  mclx* contracted = mclxCompose(clprevt, cl, 0)
      ;  mclxMakeCharacteristic(contracted)
      ;  mclxaWrite(contracted, xfcone, MCLXIO_VALUE_NONE, RETURN_ON_FAIL)
      ;  mclxFree(&clprevt)
      ;  mclxFree(&contracted)
   ;  }
   }
Example #13
0
int main
(  int                  argc
,  const char*          argv[]
)  
   {  mcxIO* xf1, *xf2
   ;  mclx* mx1, *mx2
   ;  mcxbits modes = 0

   ;  mcxLogLevel =
      MCX_LOG_AGGR | MCX_LOG_MODULE | MCX_LOG_IO | MCX_LOG_GAUGE | MCX_LOG_WARN
   ;  mclx_app_init(stdout)

   ;  if (argc < 4)
         mcxUsage(stdout, me, usagelines)
      ,  mcxExit(0)

   ;  modes =  atoi(argv[1])
   ;  xf1   =  mcxIOnew(argv[2], "r")
   ;  xf2   =  mcxIOnew(argv[3], "r")

   ;  mx1   =  mclxRead(xf1, EXIT_ON_FAIL)
   ;  mx2   =  mclxRead(xf2, EXIT_ON_FAIL)

   ;  pairwise_setops(mx1, mx2, modes)

   ;  if (modes & MMM_DUMPMX)
      {  mcxIO* xo = mcxIOnew("out.mmm", "w")
      ;  mclxWrite(mx1, xo, MCLXIO_VALUE_GETENV, RETURN_ON_FAIL)
   ;  }

      mclxFree(&mx1)
   ;  mclxFree(&mx2)
   ;  mcxIOfree(&xf1)
   ;  mcxIOfree(&xf2)
   ;  return 0
;  }
Example #14
0
static void mclg_tf_step
(  mclx* mx
,  dim i
)
   {  dim j
   ;  mclx* input = mx
   ;  for (j=0;j<i;j++)
      {  mclx* st = mclxCompose(mx, mx, 0)
      ;  if (j)
         mclxFree(&mx)
      ;  mx = st
   ;  }
      if (i)
      mclxTransplant(input, &mx)
;  }
Example #15
0
mclx* handle_query
(  mclx*    mx
,  mcxIO*   xfmx
,  mcxTing* sa
,  mcxTing* sb
)
   {  if (!strcmp(sa->str, ":top"))
      handle_top(mx, sb)
   ;  else if (!strcmp(sa->str, ":list"))
      handle_list(mx, sb)
   ;  else if (!strcmp(sa->str, ":reread"))
      {  mclxFree(&mx)
      ;  if (xfabc_g)
         {  streamer_g.tab_sym_in = tab_g
         ;  
            mx
         =  mclxIOstreamIn
            (  xfabc_g
            ,     MCLXIO_STREAM_ABC
               |  (input_status != 'd' ? MCLXIO_STREAM_MIRROR : 0)
               |  MCLXIO_STREAM_SYMMETRIC
               |  MCLXIO_STREAM_GTAB_RESTRICT         /* docme/fixme need to check for tab_g ? */
            ,  NULL
            ,  mclpMergeMax
            ,  &streamer_g    /* has tab, if present */
            ,  EXIT_ON_FAIL
            )
         ;  mcxIOclose(xfabc_g)
      ;  }
         else
         {  mx
            =  mclxReadx
               (xfmx, EXIT_ON_FAIL, MCLX_REQUIRE_GRAPH | MCLX_REQUIRE_CANONICAL)
         ;  mcxIOclose(xfmx)
      ;  }
         mclxAdjustLoops(mx, mclxLoopCBremove, NULL)
   ;  }
      else if (!strcmp(sa->str, ":clcf"))
      handle_clcf(mx, sb)
   ;  else if (!strcmp(sa->str, ":tf"))
      {  handle_tf(mx, sb)
      ;  mcxTell(me, "graph now has %lu arcs", (ulong) mclxNrofEntries(mx))
   ;  }
      else
      fprintf(stderr, "(error unknown-query (:clcf#1 :list#1 :reread :top#1))\n")
   ;  return mx
;  }
Example #16
0
void dag_diff_select 
(  mclx* mx
,  mclTab* tab
,  mcxIO* xfdiff
,  double child_diff_lq
,  double parent_diff_gq
)
   {  dim i
   ;  mclx* dag = mclxAllocClone(mx)
   ;  for (i=0;i<N_COLS(mx); i++)
      {  mclv* v = mx->cols+i
      ;  dim j
      ;  for (j=0;j<v->n_ivps;j++)
         {  dim idx     = v->ivps[j].idx
         ;  double valv = v->ivps[j].val
         ;  mclv* t = mclxGetVector(mx, idx, EXIT_ON_FAIL, NULL)
         ;  mclp* p = mclvGetIvp(t, v->vid, NULL)
         ;  double valt = p ? p->val : 0.0
         ;  double delta = valv - valt
         ;  double lg = valv, sm = valt
         ;  double child_diff, parent_diff
         ;  int v_is_child = 0

         ;  if (delta < 0)
               delta = -delta
            ,  lg=valt, sm=valv
            ,  v_is_child = 1

         ;  child_diff = sm
         ;  parent_diff = lg

;if(0 && i==111)
fprintf(stderr, "nb %d delta %g\n", (int) idx, delta)
         ;  if (child_diff > child_diff_lq || parent_diff < parent_diff_gq)
            NOTHING
         ;  else
            {  if (v_is_child)
               mclvInsertIdx(dag->cols+i, idx, delta)
            ;  else
               mclvInsertIdx(dag->cols+(t-mx->cols), v->vid, delta)
         ;  }
         }
      }
   ;  mclxWrite(dag, xfdiff, MCLXIO_VALUE_GETENV, EXIT_ON_FAIL)
   ;  mclxFree(&dag)
;  }
Example #17
0
int main
(  int                  argc
,  const char*          argv[]
)  
   {  mcxIO
         *xfcl    =  NULL
      ,  *xfctrl  =  NULL
      ,  *xfcoarse=  NULL
      ,  *xfbase  =  NULL
      ,  *xfcone  =  NULL
      ,  *xfstack =  NULL

   ;  mclx* mxbase, *cl, *cl_coarse, *clprev, *clctrl = NULL

   ;  mcxTing* shared = mcxTingNew("-I 4 -overlap split")
   ;  mcxbool root = TRUE
   ;  mcxbool have_bootstrap = FALSE
   ;  const char* plexprefix = NULL
   ;  const char* stem = "mcl"
   ;  mcxbool same = FALSE
   ;  mcxbool plex = TRUE
   ;  mcxbool add_transpose = FALSE
   ;  const char* b2opts = NULL
   ;  const char* b1opts = NULL
   ;  mcxbits write_modes = 0

   ;  mclAlgParam* mlp        =  NULL
   ;  mcxstatus status        =  STATUS_OK
   ;  mcxstatus parse_status  =  STATUS_OK
   ;  int multiplex_idx = 1
   ;  int N = 0
   ;  int n_ite = 0
   ;  dim n_components = 0, n_cls = 0


   ;  int a =  1, i= 0
   ;  int n_arg_read = 0
   ;  int delta = 0
   ;  mcxOption* opts, *opt
   ;  mcxTing* cline = mcxOptArgLine(argv+1, argc-1, '\'')
   ;  mclgTF* transform  =  NULL
   ;  mcxTing* transform_spec = NULL


   ;  double iaf = 0.84

   ;  mclx_app_init(stderr)

   ;  if (0)
      mcxLogLevel =
      MCX_LOG_AGGR | MCX_LOG_MODULE | MCX_LOG_IO | MCX_LOG_GAUGE | MCX_LOG_WARN
   ;  else
      mcxLogLevelSetByString("xf4g1")

   ;  mcxOptAnchorSortById(options, sizeof(options)/sizeof(mcxOptAnchor) -1)

   ;  if (argc == 2 && argv[1][0] == '-' && mcxOptIsInfo(argv[1], options))
      delta = 1
   ;  else if (argc < 2)
      {  help(options, shared)
      ;  exit(0)
   ;  }

      opts = mcxOptExhaust
            (options, (char**) argv, argc, 2-delta, &n_arg_read, &parse_status)

   ;  if (parse_status != STATUS_OK)
      {  mcxErr(me, "initialization failed")
      ;  exit(1)
   ;  }

   ;  for (opt=opts;opt->anch;opt++)
      {  mcxOptAnchor* anch = opt->anch

      ;  switch(anch->id)
         {  case MY_OPT_HELP
         :  help(options, shared)
         ;  exit(0)
         ;

            case MY_OPT_APROPOS
         :  help(options, shared)
         ;  exit(0)
         ;  break
         ;

            case MY_OPT_NMAX
         :  N = atoi(opt->val)
         ;  break
         ;

            case MY_OPT_Z
         :  help(NULL, shared)
         ;  exit(0)
         ;  break
         ;

            case MY_OPT_SHARED
         :  mcxTingPrintAfter(shared, " %s", opt->val)
         ;  break
         ;

            case MY_OPT_TRANSFORM
         :  transform_spec = mcxTingNew(opt->val)
         ;  break
         ;

            case MY_OPT_B1
         :  b1opts = opt->val
         ;  break
         ;

            case MY_OPT_B2
         :  b2opts = opt->val
         ;  break
         ;

            case ALG_OPT_SETENV
         :  mcxSetenv(opt->val)
         ;  break
         ;

            case ALG_OPT_QUIET
         :  mcxLogLevelSetByString(opt->val)
         ;  break
         ;

            case MY_OPT_HDP
         :  hdp_g = atof(opt->val)
         ;  break
         ;

            case MY_OPT_ADDTP
         :  add_transpose = TRUE
         ;  break
         ;

            case MY_OPT_ANNOT       /* only used in command-line copying */
         :  break
         ;

            case MY_OPT_IAF
         :  iaf = atof(opt->val) / 100
         ;  break
         ;

            case MY_OPT_WRITE
         :  if (strstr(opt->val, "stack"))
            write_modes |= OUTPUT_STACK
         ;  if (strstr(opt->val, "cone"))
            write_modes |= OUTPUT_CONE
         ;  if (strstr(opt->val, "levels"))
            write_modes |= OUTPUT_STEPS
         ;  if (strstr(opt->val, "coarse"))
            write_modes |= OUTPUT_COARSE
         ;  if (strstr(opt->val, "base"))
            write_modes |= OUTPUT_BASE
         ;  break
         ;

            case MY_OPT_BASENAME
         :  xfbase = mcxIOnew(opt->val, "w")
         ;  break
         ;

            case MY_OPT_COARSE
         :  xfcoarse = mcxIOnew(opt->val, "w")
         ;  break
         ;

            case MY_OPT_CONE
         :  xfcone = mcxIOnew(opt->val, "w")
         ;  break
         ;

            case MY_OPT_ROOT
         :  root = strchr("1yY", (u8) opt->val[0]) ? TRUE : FALSE
         ;  break
         ;

            case MY_OPT_STACK
         :  xfstack = mcxIOnew(opt->val, "w")
         ;  break
         ;

            case MY_OPT_STEM
         :  stem = opt->val
         ;  break
         ;

            case MY_OPT_MULTIPLEX
         :  plex = strchr("yY1", (unsigned char) opt->val[0]) ? TRUE : FALSE
         ;  break
         ;

            case MY_OPT_DISPATCH
         :  dispatch_g = TRUE
         ;  break
         ;

            case MY_OPT_INTEGRATE
         :  integrate_g = TRUE
         ;  break
         ;

            case MY_OPT_CONTRACT
         :  break
         ;

            case MY_OPT_SUBCLUSTERX
         :  subclusterx_g = TRUE,  subcluster_g = TRUE
         ;  break
         ;

            case MY_OPT_SUBCLUSTER
         :  subcluster_g = TRUE
         ;  break
         ;

            case MY_OPT_CONTROL
         :  xfctrl = mcxIOnew(opt->val, "r")
         ;  break
         ;

            case MY_OPT_CL
         :  xfcl = mcxIOnew(opt->val, "r")
         ;  have_bootstrap = TRUE
         ;  break
         ;

            case MY_OPT_VERSION
         :  app_report_version(me)
         ;  exit(0)
         ;

            default
         :  mcxExit(1)
         ;
         }
      }

      mcxOptFree(&opts)

   ;  a = 2 + n_arg_read

   ;  if (a < argc)
      {  if (strcmp(argv[a], "--"))
         mcxDie
         (  1
         ,  me
         ,  "trailing %s options require standalone '--' separator (found %s)"
         ,  integrate_g ? "integrate" : "mcl"
         ,  argv[a]
         )
      ;  a++
   ;  }

      if (subcluster_g + dispatch_g + integrate_g > 1)
      mcxDie(1, me, "too many modes!")

   ;  if (N && N < argc-a)
      mcxErr(me, "-n argument leaves spurious option specifications")

   ;  srandom(mcxSeed(89315))
   ;  signal(SIGALRM, mclSigCatch)

   ;  if (dispatch_g)
      plexprefix = "dis"
   ;  else if (!write_modes || (write_modes & OUTPUT_STEPS))
      plexprefix = stem

   ;  {  mcxTing* tg = mcxTingEmpty(NULL, 30)
      ;  if ((write_modes & OUTPUT_COARSE) && !xfcoarse)
            mcxTingPrint(tg, "%s.%s", stem, "coarse")
         ,  xfcoarse = mcxIOnew(tg->str, "w")

      ;  if ((write_modes & OUTPUT_BASE) && !xfbase)
            mcxTingPrint(tg, "%s.%s", stem, "base")
         ,  xfbase = mcxIOnew(tg->str, "w")

      ;  if
         (  (!write_modes || (write_modes & OUTPUT_CONE))
         && !xfcone
         )
         {  mcxTingPrint(tg, "%s.%s", stem, "cone")
         ;  xfcone = mcxIOnew(tg->str, "w")
         ;  mcxIOopen(xfcone, EXIT_ON_FAIL)
         ;  fprintf(xfcone->fp, "# %s %s\n", argv[0], cline->str)
      ;  }

         if ((write_modes & OUTPUT_STACK) && !xfstack)
         {  mcxTingPrint(tg, "%s.%s", stem, "stack")
         ;  xfstack = mcxIOnew(tg->str, "w")
         ;  mcxIOopen(xfstack, EXIT_ON_FAIL)
         ;  fprintf(xfstack->fp, "# %s %s\n", argv[0], cline->str)
      ;  }

         mcxTingFree(&tg)
   ;  }

      if (integrate_g)
      {  for (i=a;i<argc;i++)
         {  mcxIO* xf = mcxIOnew(argv[i], "r")
         ;  mclx* cl = mclxRead(xf, EXIT_ON_FAIL)
         ;  mclxCatPush(&stck_g, cl, NULL, NULL, mclxCBdomStack, NULL, "dummy-integrate", n_cls++)
      ;  }

         integrate_results(&stck_g)

      ;  if (xfstack)
         mclxCatWrite(xfstack, &stck_g, MCLXIO_VALUE_NONE, RETURN_ON_FAIL)

      ;  if (xfcone)
            mclxCatConify(&stck_g)
         ,  mclxCatWrite(xfcone, &stck_g, MCLXIO_VALUE_NONE, RETURN_ON_FAIL)

      ;  return 0
   ;  }

      for (i=a;i<argc;i++)
      {  if (get_interface(NULL, argv[1], shared->str, argv[i], NULL, 0, RETURN_ON_FAIL))
         mcxDie(1, me, "error while testing mcl options viability (%s)", argv[i])
   ;  }


      mcxLog(MCX_LOG_APP, me, "pid %ld", (long) getpid())

                        /* make sure clusters align with this cluster
                         * status: does not seem promising.
                        */
   ;  if (xfctrl)
      clctrl = mclxRead(xfctrl, EXIT_ON_FAIL)
   ;

                        /*
                         * Below: compute cl and mxbase.
                        */
   ;  if (xfcl)
      {  cl = mclxRead(xfcl, EXIT_ON_FAIL)
      ;  write_clustering
         (cl, NULL, xfcone, xfstack, plexprefix, multiplex_idx++, NULL)

      ;  if (subcluster_g || dispatch_g)
         mclxCatPush(&stck_g, cl, NULL, NULL, mclxCBdomStack, NULL, "dummy-mclcm", n_cls++)

      ;  mcxIOfree(&xfcl)
      ;  if (!b1opts && !b2opts)
         b1opts = ""
      ;  mxbase = get_base(argv[1], NULL, b1opts, b2opts)
   ;  }
      else
      {  mcxbits CACHE  =     b1opts || b2opts
                           ?  ALG_CACHE_INPUT       /* cache, transform later */
                           :  ALG_CACHE_START
      ;  get_interface
         (  &mlp
         ,  argv[1]
         ,  shared->str
         ,  a < argc ? argv[a] : NULL
         ,  NULL
         ,  CACHE
         ,  EXIT_ON_FAIL
         )
      ;  if (a < argc)
         a++

      ;  if ((status = mclAlgorithm(mlp)) == STATUS_FAIL)
         {  mcxErr(me, "failed at initial run")
         ;  exit(1)
      ;  }

         cl_coarse =  mclAlgParamRelease(mlp, mlp->cl_result)
      ;  cl_coarse =  control_test(cl_coarse, clctrl)

      ;  write_clustering
         (cl_coarse, NULL, xfcone, xfstack, plexprefix, multiplex_idx++, mlp)

      ;  if (subcluster_g || dispatch_g)
         mclxCatPush(&stck_g, cl_coarse, NULL, NULL, mclxCBdomStack, NULL, "dummy-mclcm", n_cls++)

      ;  cl = cl_coarse
      ;  n_ite++

      ;  if (b1opts || b2opts)
         {  mclx* mx_input =  mclAlgParamRelease(mlp, mlp->mx_input)
         ;  mxbase = get_base(NULL, mx_input, b1opts, b2opts)
                           /* ^ get_base frees mx_input */
      ;  }
         else
         mxbase =  mclAlgParamRelease(mlp, mlp->mx_start)
   ;  }

      clprev = cl

   ;  mclAlgParamFree(&mlp, TRUE)

   ;  if (xfbase)
      {  dim nre = mclxNrofEntries(mxbase)
      ;  mcxLog(MCX_LOG_APP, me, "base has %lu entries", (ulong) nre)
      ;  mclxaWrite(mxbase, xfbase, MCLXIO_VALUE_GETENV, EXIT_ON_FAIL)
      ;  mcxIOclose(xfbase)
   ;  }

      if (subcluster_g || dispatch_g)
      iaf = iaf ? 1/iaf : 1.414

   ;  while
      (  (!dispatch_g && (!N || n_ite < N))
      || (dispatch_g && a < argc)
      )
      {  mclx* mx_coarse   =  NULL, *clnext = NULL

      ;  dim dist_new_prev = 0, dist_prev_new = 0
      ;  mclx* clnew = NULL
      ;  mcxbool faith = FALSE
      ;  double inflation = -1.0

      ;  if (subcluster_g)
         mx_coarse
         =     subclusterx_g
            ?  mclxBlockPartition(mxbase, clprev, 50)
            :  mclxBlockUnion(mxbase, clprev)

                  /* have to copy mxbase as mx_coarse is freed.
                   * Even if it were not freed, it is probably transformed.
                  */
      ;  else if (dispatch_g)
         mx_coarse = mclxCopy(mxbase)

      ;  else
         {  mx_coarse = get_coarse(mxbase, clprev, add_transpose)

         ;  if (n_ite == 1)
            {  mclx* cc = clmUGraphComponents(mx_coarse, NULL)   /* fixme; mx_coarse garantueed UD ? */
            ;  n_components = N_COLS(cc)
            ;  mclxFree(&cc)
         ;  }
         }

         if (xfcoarse)
         write_coarse(xfcoarse, mx_coarse)

      ;  get_interface
         (  &mlp
         ,  NULL
         ,  shared->str
         ,  a < argc ? argv[a] : NULL
         ,  mx_coarse
         ,  ALG_CACHE_START
         ,  EXIT_ON_FAIL
         )

      ;  inflation = mlp->mpp->mainInflation
      ;  BIT_OFF(mlp->modes, ALG_DO_SHOW_PID | ALG_DO_SHOW_JURY)

      ;  if ((status = mclAlgorithm(mlp)) == STATUS_FAIL)
         {  mcxErr(me, "failed")
         ;  mcxExit(1)
      ;  }

         cl_coarse = mclAlgParamRelease(mlp, mlp->cl_result)

      ;  if (xfcoarse)
         mclxaWrite(cl_coarse, xfcoarse, MCLXIO_VALUE_NONE, RETURN_ON_FAIL)

      ;  if (dispatch_g || subcluster_g)
         clnext = cl_coarse
      ;  else
            clnext = mclxCompose(clprev, cl_coarse, 0)
         ,  clnext = control_test(clnext, clctrl)
         ,  mclxFree(&cl_coarse)

      ;  clmSJDistance
         (clprev, clnext, NULL, NULL, &dist_prev_new, &dist_new_prev)

      ;  if (dist_prev_new + dist_new_prev)
         {  write_clustering
            (clnext, clprev, xfcone, xfstack, plexprefix, multiplex_idx++, mlp)
         ;  clnew = clnext

         ;  if (subcluster_g || dispatch_g)
            mclxCatPush(&stck_g, clnext, NULL, NULL, mclxCBdomStack, NULL, "dummy-mclcm", n_cls++)
         ;  else
            mclxFree(&clprev)

         ;  clprev = clnew
      ;  }
         else if
         (  N_COLS(clnext) > n_components
         && inflation * iaf > 1.2
         && inflation * iaf < 10
         )
         {  mclxFree(&clnext)
         ;  inflation *= iaf
         ;  mcxTingPrintAfter(shared, " -I %.2f", inflation)
         ;  mcxLog(MCX_LOG_APP, me, "setting inflation to %.2f", inflation)
         ;  faith = TRUE
      ;  }
                                       /* i.e. vanilla mode, contraction */
         else if (!subcluster_g && !dispatch_g)
         {  mclx* cc
         ;  mclxFree(&clnext)

         ;  mclxAddTranspose(mx_coarse, 1.0)
         ;  cc = clmUGraphComponents(mx_coarse, NULL)  

         ;  if (N_COLS(cc) < N_COLS(clprev))
            {  mclx* ccback = mclxCompose(clprev, cc, 0)
            ;  write_clustering
               (ccback, clprev, xfcone, xfstack, plexprefix, multiplex_idx++, NULL)
            ;  mclxFree(&clprev)
            ;  clprev = ccback
            ;  mcxTell(me, "connected components added as root clustering")
         ;  }

            if (root && N_COLS(cc) > 1)
            {  mclx* root =   mclxCartesian
                              (  mclvCanonical(NULL, 1, 0)
                              ,  mclvCopy(NULL, mxbase->dom_cols)
                              ,  1.0
                              )
            ;  write_clustering
               (root, clprev, xfcone, xfstack, plexprefix, multiplex_idx++, NULL)

            ;  mclxFree(&clprev)

            ;  mcxTell(me, "universe added as root clustering")
            ;  clprev = root
            ;  clnew = NULL
         ;  }

            mclxFree(&cc)
      ;  }
         else if (subcluster_g || dispatch_g)
         mclxFree(&clnext)

      ;  mclAlgParamFree(&mlp, TRUE)                        /* frees mx_coarse */

      ;  if (!clnew && !faith)
         {  same = TRUE
         ;  break
      ;  }

         a++

      ;  if (dispatch_g && a == argc)
         break

      ;  n_ite++
   ;  }

      if (same)
      mcxLog(MCX_LOG_MODULE, me, "no further contraction: halting")

   ;  if (dispatch_g)
      integrate_results(&stck_g)
   ;  else if (subcluster_g)
      mclxCatReverse(&stck_g)

   ;  if (dispatch_g || subcluster_g)
      {  dim j
      ;  if (xfstack)
         mclxCatWrite(xfstack, &stck_g, MCLXIO_VALUE_NONE, RETURN_ON_FAIL)
      ;  if (xfcone && ! mclxCatConify(&stck_g))
         mclxCatWrite(xfcone, &stck_g, MCLXIO_VALUE_NONE, RETURN_ON_FAIL)
      ;  for (j=0;j<stck_g.n_level;j++)
         {  mclxAnnot* an = stck_g.level+j
         ;  mclxFree(&an->mx)
      ;  }
         mcxFree(stck_g.level)
   ;  }

      mcxIOfree(&xfcoarse)
   ;  mcxIOfree(&xfbase)
   ;  mcxIOfree(&xfcone)
   ;  mcxIOfree(&xfstack)

   ;  mcxTingFree(&shared)

   ;  if (!dispatch_g && !subcluster_g)          /* fixme fixme fixme */
      mclxFree(&clprev)

   ;  mclxFree(&mxbase)
   ;  mclvFree(&start_col_sums_g)
   ;  mcxTingFree(&cline)
   ;  helpful_reminder()
   ;  return STATUS_OK
;  }
Example #18
0
static dim clm_clm_adjust
(  mclx* mx
,  mclx* cl
,  dim cls_size_max
,  mclx** cl_adjustedpp
,  mclv** cid_affectedpp
,  mclv** nid_affectedpp
)
   {  dim i, j, n_adjusted = 0
   ;  mclx* cl_adj = mclxCopy(cl)

   ;  mclv* cid_affected = mclvClone(cl->dom_cols)
   ;  mclv* nid_affected = mclvClone(mx->dom_cols)
   ;  double bar_affected = 1.5

   ;  const char* e1 = getenv("MCL_ADJ_FMAX")
   ;  const char* e2 = getenv("MCL_ADJ_EMASS")
   
   ;  double f1 = e1 ? atof(e1) : 2
   ;  double f2 = e2 ? atof(e2) : 3

   ;  mcxbool loggit = mcxLogGet( MCX_LOG_CELL | MCX_LOG_INFO )

   ;  clmVScore sc

   ;  mclx *el_to_cl = NULL
   ;  mclx *el_on_cl = NULL
   ;  mclx *cl_on_cl = NULL
   ;  mclx *cl_on_el = NULL

   ;  *cl_adjustedpp = NULL
   ;  *cid_affectedpp = NULL
   ;  *nid_affectedpp = NULL

   ;  clmCastActors
      (&mx, &cl, &el_to_cl, &el_on_cl, &cl_on_cl, &cl_on_el, 0.95)

   ;  mclxFree(&cl_on_cl)
   ;  mclxFree(&cl_on_el)

   ;  mclvMakeConstant(cid_affected, 1.0)
   ;  mclvMakeConstant(nid_affected, 1.0)


   ;  for (i=0;i<N_COLS(cl_adj);i++)
      cl_adj->cols[i].val = 0.5

                     /*    Proceed with smallest clusters first.
                      *    Caller has to take care of mclxColumnsRealign
                     */
   ;  for (i=0;i<N_COLS(cl);i++)
      {  mclv* clself = cl->cols+i

                     /*    Only consider nodes in clusters of
                      *    size <= cls_size_max
                     */
      ;  if (cls_size_max && clself->n_ivps > cls_size_max)
         break
                     /*    Clusters that have been marked for inclusion
                      *    cannot play.
                     */
      ;  if (cl_adj->cols[i].val > 1)
         continue

      ;  for (j=0;j<clself->n_ivps;j++)
         {  long nid  = clself->ivps[j].idx
         ;  long nos  = mclvGetIvpOffset(mx->dom_cols, nid, -1)
         ;  mclv* clidvec  =  mclxGetVector(el_on_cl, nid, RETURN_ON_FAIL, NULL)

         ;  double eff_alien_bsf = 0.0, eff_alien_max_bsf = 0.0 /* best so far*/
         ;  double eff_self = 0.0, eff_self_max = 0.0
         ;  long cid_alien  = -1, cid_self = -1
         ;  clmVScore sc_self = { 0 }, sc_alien = { 0 }
         ;  dim f

         ;  if (nos < 0 || !clidvec)
            {  mcxErr
               ("clmDumpNodeScores panic", "node <%ld> does not belong", nid)
            ;  continue
         ;  }

            clmVScanDomain(mx->cols+nos, clself, &sc)
         ;  clmVScoreCoverage(&sc, &eff_self, &eff_self_max)
         ;  cid_self = clself->vid
         ;  sc_self  = sc

         ;  if (loggit)
            mcxLog2
            (  us
            ,  "node %ld in cluster %ld eff %.3f,%.3f sum %.3f"
            ,  nid
            ,  cid_self
            ,  eff_self
            ,  eff_self_max
            ,  sc.sum_i
            )

         ;  for (f=0;f<clidvec->n_ivps;f++)
            {  long cid = clidvec->ivps[f].idx
            ;  mclv* clvec = mclxGetVector(cl, cid, RETURN_ON_FAIL, NULL)
                          /* ^ overdoing: cid == clvec->vid */
            ;  double eff, eff_max
            ;  if (!clvec)
               {  mcxErr
                  (  "clmAdjust panic"
                  ,  "cluster <%ld> node <%ld> mishap"
                  ,  cid
                  ,  nid
                  )
               ;  continue
            ;  }


                        /* fixme: document or remove first condition
                         *
                        */
               if ((0 && clvec->n_ivps <= clself->n_ivps) || clvec->vid == cid_self)
               continue

            ;  clmVScanDomain(mx->cols+nos, clvec, &sc)
            ;  clmVScoreCoverage(&sc, &eff, &eff_max)

#if 0
#  define PIVOT eff > eff_alien_bsf
#else
#  define PIVOT eff_max > eff_alien_max_bsf
#endif

            ;  if
               (  PIVOT
               || sc.sum_i >= 0.5
               )
                  eff_alien_bsf = eff
               ,  eff_alien_max_bsf = eff_max
               ,  cid_alien = clvec->vid
               ,  sc_alien = sc

            ;  if (sc.sum_i >= 0.5)
               break
         ;  }

            if (loggit)
            mcxLog2
            (  us
            ,  " -> best alien %ld eff %.3f,%.3f sum %.3f"
            ,  cid_alien
            ,  eff_alien_bsf
            ,  eff_alien_max_bsf
            ,  sc_alien.sum_i
            )

                  /* below: use sum_i as mass fraction
                   * (clmAdjust framework uses stochastic * matrix)
                  */
         ;  if
            (  cid_alien >= 0
            && cid_self >= 0
            && f1 * sc_alien.max_i >= sc_self.max_i
            && (  (  eff_alien_bsf > eff_self
                  && sc_alien.sum_i > sc_self.sum_i
                  )
               || (  pow(sc_alien.sum_i, f2) >= sc_self.sum_i
                  && pow(eff_self, f2) <= eff_alien_bsf
                  )
               )
                  /* So, if max is reasonable
                   * and efficiency is better and mass is better
                   * or if mass is ridiculously better -> move
                   * Somewhat intricate and contrived, yes.
                  */
            )
            {  mclv* acceptor
               =  mclxGetVector(cl_adj, cid_alien, RETURN_ON_FAIL, NULL)
            ;  mclv* donor
               =  mclxGetVector(cl_adj, cid_self,  RETURN_ON_FAIL, NULL)
            ;  if (!donor || !acceptor || acceptor == donor)
               continue

            ;  mclvInsertIdx(donor, nid, 0.0)
            ;  mclvInsertIdx(acceptor, nid, 1.0)
            ;  acceptor->val = 1.5

            ;  if (mcxLogGet(MCX_LOG_LIST))
               {  mclv* nb = mx->cols+nos
               ;  double mxv = mclvMaxValue(nb)
               ;  double avg = nb->n_ivps ? mclvSum(nb) / nb->n_ivps : -1.0
               ;  mcxLog
                  (  MCX_LOG_LIST
                  ,  us
                  ,  "mov %ld (%ld %.2f %.2f)"
                     " %ld (cv=%.2f cm=%.2f s=%.2f m=%.2f #=%lu)"
                     " to %ld (cv=%.2f cm=%.2f s=%.2f m=%.2f #=%lu)"
                  ,  nid
                  ,     (long) nb->n_ivps, mxv, avg
                  ,  cid_self
                  ,     eff_self, eff_self_max, sc_self.sum_i, sc_self.max_i
                  ,              (ulong) (sc_self.n_meet + sc_self.n_ddif)
                  ,  cid_alien
                  ,     eff_alien_bsf, eff_alien_max_bsf, sc_alien.sum_i, sc_alien.max_i
                  ,              (ulong) (sc_alien.n_meet + sc_alien.n_ddif)
                  )
            ;  }

               n_adjusted++                  
            ;  mclvInsertIdx(cid_affected, cid_alien, 2.0)
            ;  mclvInsertIdx(cid_affected, cid_self, 2.0)
            ;  mclvInsertIdx(nid_affected, nid, 2.0)
         ;  }
         }
      }
      mclxFree(&el_on_cl)
   ;  mclxFree(&el_to_cl)

   ;  for (i=0;i<N_COLS(cl_adj);i++)
      cl_adj->cols[i].val = 0.0

   ;  mclxMakeCharacteristic(cl)

   ;  if (!n_adjusted)
      {  mclxFree(&cl_adj)
      ;  mclvFree(&cid_affected)
      ;  mclvFree(&nid_affected)
      ;  return 0
   ;  }

      mclxUnary(cl_adj, fltxCopy, NULL)
   ;  mclxMakeCharacteristic(cl_adj)   
                     /* FIRST REMOVE ENTRIES set to zero (sssst now .. */
                     /* ...) and THEN make it characteristic again     */

   ;  mclvUnary(cid_affected, fltxGT, &bar_affected)
   ;  mclvUnary(nid_affected, fltxGT, &bar_affected)

   ;  *cl_adjustedpp  =  cl_adj
   ;  *cid_affectedpp =  cid_affected
   ;  *nid_affectedpp =  nid_affected

   ;  return n_adjusted
;  }
Example #19
0
dim clmAdjust
(  mclx* mx
,  mclx* cl
,  dim cls_size_max
,  mclx** cl_adjustedpp
,  mclv** ls_adjustedpp    /* nodes that moved around */
,  dim*  sjd_left
,  dim*  sjd_right
)
   {  dim sum_adjusted = 0, n_ite = 0
   ;  dim dist_curr_adj = 0, dist_adj_curr = 0
   ;  mclx* cl_adj = NULL
   ;  mclx* cl_curr = cl
   ;  mclv* ls_adjusted = mclvInit(NULL)
   ;  clmXScore score_curr, score_adj
   ;  const char* me = "clmAdjust"

   ;  *cl_adjustedpp = NULL
   ;  *ls_adjustedpp = NULL

   ;  while (1)
      {  dim n_adjusted
      ;  double cov_curr, cov_adj, frac_curr = 0.0, frac_adj = 0.0
      ;  mclv* cid_affected = NULL, *nid_affected = NULL
      ;  dim o, m, e

      ;  if (n_ite++ >= 100)
         break

      ;  mclxColumnsRealign(cl_curr, mclvSizeCmp)

      ;  if
         ( !(n_adjusted
         =   clm_clm_adjust
             (mx, cl_curr, cls_size_max, &cl_adj, &cid_affected, &nid_affected)
            )
         )
         break

      ;  mcxTell
         (  me
         ,  "assembled %lu nodes with %lu clusters affected"
         ,  (ulong) n_adjusted
         ,  (ulong) cid_affected->n_ivps
         )

      ;  clmXScanInit(&score_curr)
      ;  clmXScanInit(&score_adj)

      ;  clmXScanDomainSet(mx, cl_curr,cid_affected, &score_curr)
      ;  clmXScanDomainSet(mx, cl_adj, cid_affected, &score_adj)

      ;  clmXScoreCoverage(&score_curr, &cov_curr, NULL)
      ;  clmXScoreCoverage(&score_adj , &cov_adj , NULL)

      ;  if (score_curr.n_hits && score_adj.n_hits)
            frac_curr = score_curr.sum_i / score_curr.n_hits
         ,  frac_adj  = score_adj.sum_i  / score_adj.n_hits

      ;  mcxLog
         (  MCX_LOG_LIST
         ,  me
         ,  "consider (%.5f|%.5f|%lu) vs (%.5f|%.5f|%lu)"
         ,  cov_adj, frac_adj, (ulong) score_adj.n_hits
         ,  cov_curr, frac_curr, (ulong) score_curr.n_hits
         )
                           /* experience tells us that mcl's funneling
                            * worsens frac
                           */
      ;  if (frac_adj <=  frac_curr)
         {  mclvFree(&cid_affected)
         ;  mclvFree(&nid_affected)
         ;  break
      ;  }
         
         clmEnstrict(cl_adj, &o, &m, &e, 0)
      ;  clmSJDistance(cl_curr, cl_adj, NULL, NULL, &dist_curr_adj, &dist_adj_curr)

      ;  mcxLog
         (  MCX_LOG_AGGR
         ,  me
         ,  "distance %lu|%lu"
         ,  (ulong) dist_curr_adj, (ulong) dist_adj_curr
         )

      ;  mclvAdd(ls_adjusted, nid_affected, ls_adjusted)

      ;  if (cl_curr != cl)
         mclxFree(&cl_curr)

      ;  cl_curr = cl_adj
      ;  sum_adjusted += n_adjusted

      ;  mclvFree(&cid_affected)
      ;  mclvFree(&nid_affected)
   ;  }

      if (cl_curr != cl)            /* fixme free logic */
      {  mclxColumnsRealign(cl_curr, mclvSizeRevCmp)
      ;  *cl_adjustedpp = cl_curr
      ;  *ls_adjustedpp = ls_adjusted
      ;  clmSJDistance
         (cl, cl_curr, NULL, NULL, &dist_curr_adj, &dist_adj_curr)
      ;  if (sjd_left)
            *sjd_left  = dist_curr_adj
         ,  *sjd_right = dist_adj_curr
   ;  }
      else
      {  if (sjd_left)
            *sjd_left = 0
         ,  *sjd_right = 0
      ;  mclvFree(&ls_adjusted)
   ;  }

      mcxLog
      (  MCX_LOG_AGGR
      ,  me
      ,  "total adjusted %lu, final distance %lu|%lu"
      ,  (ulong) sum_adjusted 
      ,  (ulong) dist_curr_adj
      ,  (ulong) dist_adj_curr
      )

   ;  mclxColumnsRealign(cl, mclvSizeRevCmp)
   ;  return sum_adjusted
;  }
Example #20
0
static mcxstatus meetMain
(  int                  argc
,  const char*          argv[]
)
   {  mcxIO          **xfmcs        =  NULL

   ;  mclMatrix      *lft           =  NULL
   ;  mclMatrix      *rgt           =  NULL
   ;  mclMatrix      *dst           =  NULL

   ;  int            a              =  0
   ;  int            n_mx           =  0
   ;  int            j
   ;  dim  o, m, e

   ;  mclxIOsetQMode("MCLXIOVERBOSITY", MCL_APP_VB_YES)
   ;  mclx_app_init(stderr)

   ;  xfmcs    =  (mcxIO**) mcxAlloc
                  (  (argc)*sizeof(mcxIO*)
                  ,  EXIT_ON_FAIL
                  )

   ;  mcxIOopen(xfout, EXIT_ON_FAIL)

   ;  for(j=a;j<argc;j++)
      {  xfmcs[n_mx] = mcxIOnew(argv[j], "r")
      ;  n_mx++
   ;  }

      if (!n_mx)
      mcxDie(1, me, "at least one clustering matrix required")

  /* Fixme: do a decent initialization with lft = clmTop() *before*
   * this loop (removing the need for ugly tmp assignment), but that requires
   * we know the correct domain to pass to it.  For that, we need to peak into
   * the first matrix.
  */

   ;  for (j=0;j<n_mx;j++)
      {  mclMatrix* tmp = mclxRead (xfmcs[j], EXIT_ON_FAIL)

      ;  if (clmEnstrict(tmp, &o, &m, &e, ENSTRICT_SPLIT_OVERLAP))
            report_partition("clmmeet", tmp, xfmcs[j]->fn, o, m, e)
         ,  mcxExit(1)

      ;  if (!lft)
         {  lft = tmp
         ;  continue
      ;  }
         else
         rgt = tmp

      ;  if (!MCLD_EQUAL(lft->dom_rows, rgt->dom_rows))
         mcxDie
         (  1
         ,  me
         ,  "domains not equal (files %s/%s)"
         ,  xfmcs[j-1]->fn->str
         ,  xfmcs[j]->fn->str
         )

      ;  mcxIOclose(xfmcs[j])

      ;  dst   =  clmMeet(lft, rgt)
      ;  lft   =  dst
      ;  mclxFree(&rgt)
   ;  }

      mclxColumnsRealign(lft, mclvSizeRevCmp)
   ;  mclxWrite(lft, xfout, MCLXIO_VALUE_NONE, EXIT_ON_FAIL)

   ;  mclxFree(&lft)
   ;  mcxIOfree(&xfout)
   ;  free(xfmcs)
   ;  return STATUS_OK
;  }
Example #21
0
static void vary_threshold
(  mcxIO* xf
,  FILE*  fp
,  int vary_a
,  int vary_z
,  int vary_s
,  int vary_n
,  unsigned mode
)
   {  dim cor_i = 0, j
   ;  int step

   ;  mclx* mx
   ;  unsigned long noe
   ;  pval*  allvals
   ;  dim  n_allvals = 0
   ;  double sum_vals = 0.0

   ;  mx = mclxRead(xf, EXIT_ON_FAIL)
   ;  mcxIOclose(xf)

   ;  if (transform)
      mclgTFexec(mx, transform)

   ;  noe = mclxNrofEntries(mx)
   ;  allvals = mcxAlloc(noe * sizeof allvals[0], EXIT_ON_FAIL)

   ;  if (!weight_scale)
      {  if (mode == 'c')
         weight_scale = 1.0
      ;  else
         weight_scale = vary_n
   ;  }

      n_allvals = get_n_sort_allvals(mx, allvals, noe, &sum_vals, FALSE)

   ;  if (mode == 'c')
      {  double smallest = n_allvals ? allvals[n_allvals-1] : -DBL_MAX
      ;  if (vary_a * 1.0 / vary_n < smallest)
         {  while (vary_a * 1.0 / vary_n < smallest)
            vary_a++
         ;  vary_a--
      ;  }
         mcxTell
         (  me
         ,  "smallest correlation is %.2f, using starting point %.2f"
         ,  smallest
         ,  vary_a * 1.0 / vary_n
         )
   ;  }

      if (output_flags & OUTPUT_TABLE)
      {
;fprintf(fp, "L\tD\tR\tS\tcce\tEWmean\tEWmed\tEWiqr\tNDmean\tNDmed\tNDiqr\tCCF\t%s\n", mode == 'k' ? "kNN" : mode == 'l' ? "N" : "Cutoff")
;}    else
      {  if (output_flags & OUTPUT_KEY)
 {
;fprintf(fp, "-------------------------------------------------------------------------------\n")
;fprintf(fp, " L       Percentage of nodes in the largest component\n")
;fprintf(fp, " D       Percentage of nodes in components of size at most %d [-div option]\n", (int) divide_g)
;fprintf(fp, " R       Percentage of nodes not in L or D: 100 - L -D\n")
;fprintf(fp, " S       Percentage of nodes that are singletons\n")
;fprintf(fp, " cce     Expected size of component, nodewise [ sum(sz^2) / sum^2(sz) ]\n")
;fprintf(fp, "*EW      Edge weight traits (mean, median and IQR, all scaled!)\n")
;fprintf(fp, "            Scaling is used to avoid printing of fractional parts throughout.\n")
;fprintf(fp, "            The scaling factor is %.2f [-report-scale option]\n", weight_scale)
;fprintf(fp, " ND      Node degree traits [mean, median and IQR]\n")
;fprintf(fp, " CCF     Clustering coefficient %s\n", compute_flags & COMPUTE_CLCF ? "(not computed; use --clcf to include this)" : "")
;fprintf(fp, " eff     Induced component efficiency %s\n", compute_flags & COMPUTE_EFF ? "(not computed; use --eff to include this)" : "")

;if (mode == 'c')
 fprintf(fp, "Cutoff   The threshold used.\n")
;else if (mode == 't')
 fprintf(fp, "*Cutoff  The threshold with scale factor %.2f and fractional parts removed\n", weight_scale)
;else if (mode == 'k')
 fprintf(fp, "k-NN     The knn parameter\n")
;else if (mode == 'l')
 fprintf(fp, "N        The knn parameter (merge mode)\n")
;else if (mode == 'n')
 fprintf(fp, "ceil     The ceil parameter\n")
;fprintf(fp, "Total number of nodes: %lu\n", (ulong) N_COLS(mx))
;}
 fprintf(fp, "-------------------------------------------------------------------------------\n")
;fprintf(fp, "  L   D   R   S     cce *EWmean  *EWmed *EWiqr NDmean  NDmed  NDiqr CCF  eff %6s \n", mode == 'k' ? "k-NN" : mode == 'l' ? "N" : mode == 'n' ? "Ceil" : "Cutoff")
;fprintf(fp, "-------------------------------------------------------------------------------\n")
;     }

      for (step = vary_a; step <= vary_z; step += vary_s)
      {  double cutoff = step * 1.0 / vary_n
      ;  double eff = -1.0
      ;  mclv* nnodes = mclvCanonical(NULL, N_COLS(mx), 0.0)
      ;  mclv* degree = mclvCanonical(NULL, N_COLS(mx), 0.0)
      ;  dim i, n_sample = 0
      ;  double cor, y_prev, iqr = 0.0
      ;  mclx* cc = NULL, *res = NULL
      ;  mclv* sz, *ccsz = NULL
      ;  int step2 = vary_z + vary_a - step

      ;  sum_vals = 0.0
      
      ;  if (mode == 't' || mode == 'c')
            mclxSelectValues(mx, &cutoff, NULL, MCLX_EQT_GQ)
         ,  res = mx
      ;  else if (mode == 'k')
         {  res = rebase_g ? mclxCopy(mx) : mx
         ;  mclxKNNdispatch(res, step2, n_thread_l, 1)
      ;  }
         else if (mode == 'l')
         {  res = mx
         ;  mclxKNNdispatch(res, step2, n_thread_l, 0)
      ;  }
         else if (mode == 'n')
         {  res = rebase_g ? mclxCopy(mx) : mx
         ;  mclv* cv = mclgCeilNB(res, step2, NULL, NULL, NULL)
         ;  mclvFree(&cv)
      ;  }

         sz = mclxColSizes(res, MCL_VECTOR_COMPLETE)
      ;  mclvSortDescVal(sz)

      ;  cc = clmUGraphComponents(res, NULL)     /* fixme: user has to specify -tf '#max()' if graph is directed */
      ;  if (cc)
         {  ccsz = mclxColSizes(cc, MCL_VECTOR_COMPLETE)
         ;  if (compute_flags & COMPUTE_EFF)
            {  clmPerformanceTable pftable
            ;  clmPerformance(mx, cc, &pftable)
            ;  eff = pftable.efficiency
         ;  }
         }

         if (mode == 't' || mode == 'c')
         {  for
            (
            ;  n_allvals > 0 && allvals[n_allvals-1] < cutoff
            ;  n_allvals--
            )
         ;  sum_vals = 0.0
         ;  for (i=0;i<n_allvals;i++)
            sum_vals += allvals[i]
      ;  }
         else if (mode == 'k' || mode == 'n' || mode == 'l')
         {  n_allvals = get_n_sort_allvals(res, allvals, noe, &sum_vals, FALSE)
      ;  }

         levels[cor_i].sim_median=  mcxMedian(allvals, n_allvals, sizeof allvals[0], pval_get_double, &iqr)
      ;  levels[cor_i].sim_iqr   =  iqr
      ;  levels[cor_i].sim_mean  =  n_allvals ? sum_vals / n_allvals : 0.0

      ;  levels[cor_i].nb_median =  mcxMedian(sz->ivps, sz->n_ivps, sizeof sz->ivps[0], ivp_get_double, &iqr)
      ;  levels[cor_i].nb_iqr    =  iqr
      ;  levels[cor_i].nb_mean   =  mclvSum(sz) / N_COLS(res)
      ;  levels[cor_i].cc_exp    =  cc ? mclvPowSum(ccsz, 2.0) / N_COLS(res) : 0
      ;  levels[cor_i].nb_sum    =  mclxNrofEntries(res)

      ;  if (compute_flags & COMPUTE_CLCF)
         {  mclv* clcf = mclgCLCFdispatch(res, n_thread_l)
         ;  levels[cor_i].clcf   =  mclvSum(clcf) / N_COLS(mx)
         ;  mclvFree(&clcf)
      ;  }
         else
         levels[cor_i].clcf = 0.0

      ;  levels[cor_i].threshold =  mode == 'k' || mode == 'l' || mode == 'n' ? step2 : cutoff
      ;  levels[cor_i].bigsize   =  cc ? cc->cols[0].n_ivps : 0
      ;  levels[cor_i].n_single  =  0
      ;  levels[cor_i].n_edge    =  n_allvals
      ;  levels[cor_i].n_lq      =  0

      ;  if (cc)
         for (i=0;i<N_COLS(cc);i++)
         {  dim n = cc->cols[N_COLS(cc)-1-i].n_ivps
         ;  if (n == 1)
            levels[cor_i].n_single++
         ;  if (n <= divide_g)
            levels[cor_i].n_lq += n
         ;  else
            break
      ;  }

         if (levels[cor_i].bigsize <= divide_g)
         levels[cor_i].bigsize = 0

      ;  y_prev = sz->ivps[0].val

                  /* wiki says:
                     A scale-free network is a network whose degree distribution follows a power
                     law, at least asymptotically. That is, the fraction P(k) of nodes in the
                     network having k connections to other nodes goes for large values of k as P(k)
                     ~ k^−g where g is a constant whose value is typically in the range 2<g<3,
                     although occasionally it may lie outside these bounds.
                 */
      ;  for (i=1;i<sz->n_ivps;i++)
         {  double y = sz->ivps[i].val
         ;  if (y > y_prev - 0.5)
            continue                                              /* same as node degree seen last */
         ;  nnodes->ivps[n_sample].val = log( (i*1.0) / (1.0*N_COLS(res)))    /* x = #nodes >= k, as fraction   */
         ;  degree->ivps[n_sample].val = log(y_prev ? y_prev : 1)            /* y = k = degree of node         */
         ;  n_sample++
;if(0)fprintf(stderr, "k=%.0f\tn=%d\t%.3f\t%.3f\n", (double) y_prev, (int) i, (double) nnodes->ivps[n_sample-1].val, (double) degree->ivps[n_sample-1].val)
         ;  y_prev = y
      ;  }
         nnodes->ivps[n_sample].val = 0
      ;  nnodes->ivps[n_sample++].val = log(y_prev ? y_prev : 1)
;if(0){fprintf(stderr, "k=%.0f\tn=%d\t%.3f\t%.3f\n", (double) sz->ivps[sz->n_ivps-1].val, (int) N_COLS(res), (double) nnodes->ivps[n_sample-1].val, (double) degree->ivps[n_sample-1].val)
;}

      ;  mclvResize(nnodes, n_sample)
      ;  mclvResize(degree, n_sample)
      ;  cor = pearson(nnodes, degree, n_sample)

      ;  levels[cor_i].degree_cor =  cor * cor

;if(0)fprintf(stdout, "cor at cutoff %.2f %.3f\n\n", cutoff, levels[cor_i-1].degree_cor)
      ;  mclvFree(&nnodes)
      ;  mclvFree(&degree)
      ;  mclvFree(&sz)
      ;  mclvFree(&ccsz)
      ;  mclxFree(&cc)

;  if(output_flags & OUTPUT_TABLE)
   {  fprintf
      (  fp
      ,  "%lu\t%lu\t%lu\t%lu\t%lu"
         "\t%6g\t%6g\t%6g"
         "\t%6g\t%lu\t%6g"

      ,  (ulong) levels[cor_i].bigsize
      ,  (ulong) levels[cor_i].n_lq
      ,  (ulong) N_COLS(mx) - levels[cor_i].bigsize - levels[cor_i].n_lq
      ,  (ulong) levels[cor_i].n_single
      ,  (ulong) levels[cor_i].cc_exp

      ,  (double) levels[cor_i].sim_mean
      ,  (double) levels[cor_i].sim_median
      ,  (double) levels[cor_i].sim_iqr

      ,  (double) levels[cor_i].nb_mean
      ,  (ulong) levels[cor_i].nb_median
      ,  (double) levels[cor_i].nb_iqr
      )

   ;  if (compute_flags & COMPUTE_CLCF) fprintf(fp, "\t%6g", levels[cor_i].clcf)   ;  else fputs("\tNA", fp)
   ;  if (eff >= 0.0) fprintf(fp, "\t%4g", eff)              ;  else fputs("\tNA", fp)

   ;  fprintf(fp, "\t%6g", (double) levels[cor_i].threshold)
   ;  fputc('\n', fp)
;  }
   else
   {  fprintf
      (  fp
      ,  "%3d %3d %3d %3d %7d "
         "%7.0f %7.0f %6.0f"
         "%6.1f %6.0f %6.0f"

      ,  0 ? 1 : (int) (0.5 + (100.0 * levels[cor_i].bigsize) / N_COLS(mx))
      ,  0 ? 1 : (int) (0.5 + (100.0 * levels[cor_i].n_lq) / N_COLS(mx))
      ,  0 ? 1 : (int) (0.5 + (100.0 * (N_COLS(mx) - levels[cor_i].bigsize - levels[cor_i].n_lq)) / N_COLS(mx))
      ,  0 ? 1 : (int) (0.5 + (100.0 * levels[cor_i].n_single) / N_COLS(mx))
      ,  0 ? 1 : (int) (0.5 + levels[cor_i].cc_exp)

      ,  0 ? 1.0 : (double) (levels[cor_i].sim_mean   * weight_scale)
      ,  0 ? 1.0 : (double) (levels[cor_i].sim_median * weight_scale)
      ,  0 ? 1.0 : (double) (levels[cor_i].sim_iqr    * weight_scale)

      ,  0 ? 1.0 : (double) (levels[cor_i].nb_mean                 )
      ,  0 ? 1.0 : (double) (levels[cor_i].nb_median + 0.5         )
      ,  0 ? 1.0 : (double) (levels[cor_i].nb_iqr + 0.5            )
      )

   ;  if (compute_flags & COMPUTE_CLCF)
      fprintf(fp, " %3d", 0 ? 1 : (int) (0.5 + (100.0 * levels[cor_i].clcf)))
   ;  else
      fputs("   -", fp)

   ;  if (eff >= 0.0)
      fprintf(fp, "  %3d", (int) (0.5 + 1000 * eff))
   ;  else
      fputs("    -", fp)

   ;  if (mode == 'c')
      fprintf(fp, "%8.2f\n", (double) levels[cor_i].threshold)
   ;  else if (mode == 't')
      fprintf(fp, "%8.0f\n", (double) levels[cor_i].threshold  * weight_scale)
   ;  else if (mode == 'k' || mode == 'n' || mode == 'l')
      fprintf(fp, "%8.0f\n", (double) levels[cor_i].threshold)
 ; }

      ;  cor_i++
      ;  if (res != mx)
         mclxFree(&res)
   ;  }

   if (!(output_flags & OUTPUT_TABLE))
   {  if (weefreemen)
      {
fprintf(fp, "-------------------------------------------------------------------------------\n")
;fprintf(fp, "The graph below plots the R^2 squared value for the fit of a log-log plot of\n")
;fprintf(fp, "<node degree k> versus <#nodes with degree >= k>, for the network resulting\n")
;fprintf(fp, "from applying a particular %s cutoff.\n", mode == 'c' ? "correlation" : "similarity")
;fprintf(fp, "-------------------------------------------------------------------------------\n")
   ;  for (j=0;j<cor_i;j++)
      {  dim jj
      ;  for (jj=30;jj<=100;jj++)
         {  char c = ' '
         ;  if (jj * 0.01 < levels[j].degree_cor && (jj+1.0) * 0.01 > levels[j].degree_cor)
            c = 'X'
         ;  else if (jj % 5 == 0)
            c = '|'
         ;  fputc(c, fp)
      ;  }
         if (mode == 'c')
         fprintf(fp, "%8.2f\n", (double) levels[j].threshold)
      ;  else
         fprintf(fp, "%8.0f\n", (double) levels[j].threshold * weight_scale)
   ;  }

 fprintf(fp, "|----+----|----+----|----+----|----+----|----+----|----+----|----+----|--------\n")
;fprintf(fp, "| R^2   0.4       0.5       0.6       0.7       0.8       0.9    |  1.0    -o)\n")
;fprintf(fp, "+----+----+----+----+----+---------+----+----+----+----+----+----+----+    /\\\\\n")
;fprintf(fp, "| 2 4 6 8   2 4 6 8 | 2 4 6 8 | 2 4 6 8 | 2 4 6 8 | 2 4 6 8 | 2 4 6 8 |   _\\_/\n")
;fprintf(fp, "+----+----|----+----|----+----|----+----|----+----|----+----|----+----+--------\n")
;     }
      else
      fprintf(fp, "-------------------------------------------------------------------------------\n")
;  }

      mclxFree(&mx)
   ;  mcxFree(allvals)
;  }
Example #22
0
static dim clm_clm_prune
(  mclx*    mx
,  mclx*    cl
,  dim      prune_sz
,  mclx**   cl_adjustedpp
,  dim*     n_sink
,  dim*     n_source
)
   {  dim d, n_adjusted = 0
   ;  mclx* cl_adj = mclxCopy(cl)
   ;  mclv* cid_affected = mclvClone(cl->dom_cols)
   ;  const char* me = "clmAssimilate"

   ;  double bar_affected = 1.5

   ;  mclx *el_to_cl = NULL
   ;  mclx *el_on_cl = NULL
   ;  mclx *cl_on_cl = NULL
   ;  mclx *cl_on_el = NULL

   ;  *n_sink = 0
   ;  *n_source = 0

   ;  mclvMakeConstant(cid_affected, 1.0)
   ;  mclxColumnsRealign(cl_adj, mclvSizeCmp)

   ;  *cl_adjustedpp = NULL

   ;  clmCastActors
      (&mx, &cl_adj, &el_to_cl, &el_on_cl, &cl_on_cl, &cl_on_el, 0.95)
   ;  mclxFree(&cl_on_el)

   ;  for (d=0;d<N_COLS(cl_on_cl);d++)
      {  mclv* clthis   =  cl_adj->cols+d
      ;  mclv* cllist   =  cl_on_cl->cols+d
      ;  mclp* pself    =  mclvGetIvp(cllist, clthis->vid, NULL)
      ;  double self_val = -1.0
      
      ;  if (pself)
            self_val = pself->val
         ,  pself->val *= 1.001  /* to push it up in case of equal weights */

;if(0)fprintf(stderr, "test size %d\n", (int) clthis->n_ivps)
      ;  if (prune_sz && clthis->n_ivps > prune_sz)
         continue

      ;  while (1)
         {  mclv* clthat
         ;  dim e
         ;  if (cllist->n_ivps < 2)
            break
         ;  mclvSort(cllist, mclpValRevCmp)

                     /* now get biggest mass provided that cluster
                      * ranks higher (has at least as many entries)
                      *
                      * fixme/todo: we probably have a slight order
                      * dependency for some fringe cases. If provable
                      * then either solve or document it.
                     */
         ;  for (e=0;e<cllist->n_ivps;e++)
            if (cllist->ivps[e].idx >= clthis->vid)
            break

                     /* found none or itself */
         ;  if (e == cllist->n_ivps || cllist->ivps[e].idx == clthis->vid)
            break

         ;  if       /* Should Not Happen */
            (!(clthat
            =  mclxGetVector(cl_adj, cllist->ivps[e].idx, RETURN_ON_FAIL, NULL)
            ) )
            break

                     /*    works for special case prune_sz == 0               */
                     /*    if (clthat->n_ivps + clthis->n_ivps > prune_sz)    */
                     /*    ^iced. inconsistent behaviour as k grows.          */
         ;  {  mcxLog
               (  MCX_LOG_LIST
               ,  me
               ,  "source %ld|%lu|%.3f absorbed by %ld|%lu|%.3f"
               ,  clthis->vid, (ulong) clthis->n_ivps, self_val
               ,  clthat->vid, (ulong) clthat->n_ivps, cllist->ivps[0].val
               )
            ;  n_adjusted += clthis->n_ivps
            ;  (*n_sink)++
                     /* note: we could from our precomputed cl_on_cl
                      * obtain that A is absorbed in B, B is absorbed in C.
                      * below we see that A will be merged with B,
                      * and the result will then be merged with C.
                      * This depends on the fact that cl_adj is ordered
                      * on increasing cluster size.
                     */
            ;  mcldMerge(cl_adj->cols+d, clthat, clthat)
            ;  mclvResize(cl_adj->cols+d, 0)
            ;  mclvInsertIdx(cid_affected, clthat->vid, 2.0)
         ;  }
            break
      ;  }
         mclvSort(cllist, mclpIdxCmp)
   ;  }

      mclxFree(&cl_on_cl)
   ;  mclxFree(&el_on_cl)
   ;  mclxFree(&el_to_cl)

   ;  mclxMakeCharacteristic(cl)

   ;  mclvUnary(cid_affected, fltxGT, &bar_affected)
   ;  *n_source = cid_affected->n_ivps
   ;  mclvFree(&cid_affected)

   ;  mclxColumnsRealign(cl_adj, mclvSizeRevCmp)

   ;  if (!n_adjusted)
      {  mclxFree(&cl_adj)
      ;  return 0
   ;  }

      mclxUnary(cl_adj, fltxCopy, NULL)
   ;  mclxMakeCharacteristic(cl_adj)   

   ;  *cl_adjustedpp  =  cl_adj
   ;  return n_adjusted
;  }
Example #23
0
void clmDumpNodeScores
(  const char* name
,  mclx* mx
,  mclx* cl
,  mcxenum  mode
)
   {  dim d, e
   ;  clmVScore sc

   ;  if (mode == CLM_NODE_SELF)
      {  for (d=0;d<N_COLS(cl);d++)
         {  ofs o = -1
         ;  dim clsize = cl->cols[d].n_ivps
         ;  for (e=0;e<clsize;e++)
            {  long idx = cl->cols[d].ivps[e].idx
            ;  o = mclxGetVectorOffset(mx, idx, EXIT_ON_FAIL, o)
            ;  mx->cols[o].val = mclvSum(mx->cols+o)              /* fixme stupid dependency. */
            ;  clmVScanDomain(mx->cols+o, cl->cols+d, &sc)
            ;  clm_dump_line
               (name, &sc, idx, cl->cols[d].vid, mx->cols[o].n_ivps, clsize, 0)
         ;  }
         }
         /* fixme: sum_e not set, pbb due to missing clmCastActors */
      }
      else if (mode == CLM_NODE_INCIDENT)
      {  mclx *el_to_cl = NULL
      ;  mclx *el_on_cl = NULL
      ;  mclx *cl_on_cl = NULL
      ;  mclx *cl_on_el = NULL
      ;  clmCastActors
         (&mx, &cl, &el_to_cl, &el_on_cl, &cl_on_cl, &cl_on_el, 0.95)
      ;  mclxFree(&cl_on_cl)
      ;  mclxFree(&cl_on_el)

      ;  for (d=0;d<N_COLS(mx);d++)
         {  long nid  = mx->cols[d].vid
         ;  long nsize = mx->cols[d].n_ivps
         ;  mclv* clidvec = mclxGetVector(el_on_cl, nid, RETURN_ON_FAIL, NULL)
         ;  mclv* clself = mclxGetVector(el_to_cl, nid, RETURN_ON_FAIL, NULL)
         ;  dim f

         ;  if (!clself)
            mcxErr
            ("clmDumpNodeScores panic", "node <%ld> does not belong", nid)

         ;  for (f=0;f<clidvec->n_ivps;f++)
            {  long cid = clidvec->ivps[f].idx
            ;  mclv* clvec = mclxGetVector(cl, cid, RETURN_ON_FAIL, NULL)
                          /* ^ overdoing: cid == clvec->vid */
            ;  int alien
            ;  if (!clvec)
               {  mcxErr
                  (  "clmDumpNodeScores panic"
                  ,  "cluster <%ld> node <%ld> mishap"
                  ,  cid
                  ,  nid
                  )
               ;  continue
            ;  }
               clmVScanDomain(mx->cols+d, clvec, &sc)
            ;  alien = clself && clvec->vid == clself->ivps[0].idx ? 0 : 1
            ;  clm_dump_line
               (name, &sc, nid, clvec->vid, nsize, clvec->n_ivps, alien)
         ;  }
         }
         mclxFree(&el_on_cl)
      ;  mclxFree(&el_to_cl)
   ;  }
   }
Example #24
0
int main
(  int                  argc
,  const char*          argv[]
)
   {  mcxIO* xf_tab     =  NULL
   ;  mcxIO* xf_tabr    =  NULL
   ;  mcxIO* xf_tabc    =  NULL
   ;  mcxIO* xf_restrict_tab     =  NULL
   ;  mcxIO* xf_restrict_tabr    =  NULL
   ;  mcxIO* xf_restrict_tabc    =  NULL
   ;  mcxIO* xf_mx      =  mcxIOnew("-", "r")
   ;  mcxIO* xfout    =  NULL
   ;  const char*  fndump  =  "-"
   ;  mclTab* tabr      =  NULL
   ;  mclTab* tabc      =  NULL
   ;  mclTab* restrict_tabr =  NULL
   ;  mclTab* restrict_tabc =  NULL
   ;  mcxbool transpose =  FALSE
   ;  mcxbool lazy_tab  =  FALSE
   ;  mcxbool write_tabc =  FALSE
   ;  mcxbool write_tabr =  FALSE
   ;  mcxbool cat       =  FALSE
   ;  mcxbool tree      =  FALSE
   ;  mcxbool skel      =  FALSE
   ;  mcxbool newick    =  FALSE
   ;  mcxbits newick_bits = 0
   ;  mcxbits cat_bits  =  0
   ;  dim catmax        =  1
   ;  dim n_max         =  0
   ;  dim table_nlines  =  0
   ;  dim table_nfields =  0
   ;  int split_idx     =  1
   ;  int split_inc     =  1
   ;  const char* split_stem =  NULL
   ;  const char* sort_mode = NULL
   ;  mcxTing* line     =  mcxTingEmpty(NULL, 10)

   ;  mcxbits modes     =  MCLX_DUMP_VALUES

   ;  mcxbits mode_dump =  MCLX_DUMP_PAIRS
   ;  mcxbits mode_part =  0
   ;  mcxbits mode_loop =  MCLX_DUMP_LOOP_ASIS
   ;  mcxbits mode_matrix = 0
   ;  int digits        =  MCLXIO_VALUE_GETENV

   ;  mcxOption* opts, *opt
   ;  mcxstatus parseStatus = STATUS_OK

   ;  mcxLogLevel =
      MCX_LOG_AGGR | MCX_LOG_MODULE | MCX_LOG_IO | MCX_LOG_GAUGE | MCX_LOG_WARN
   ;  mclxIOsetQMode("MCLXIOVERBOSITY", MCL_APP_VB_YES)
   ;  mclx_app_init(stderr)
   
   ;  mcxOptAnchorSortById(options, sizeof(options)/sizeof(mcxOptAnchor) -1)
   ;  opts = mcxOptParse(options, (char**) argv, argc, 1, 0, &parseStatus)

   ;  if (!opts)
      exit(0)

   ;  for (opt=opts;opt->anch;opt++)
      {  mcxOptAnchor* anch = opt->anch

      ;  switch(anch->id)
         {  case MY_OPT_HELP
         :  case MY_OPT_APROPOS
         :  mcxOptApropos(stdout, me, syntax, 0, 0, options)
         ;  return 0
         ;

            case MY_OPT_VERSION
         :  app_report_version(me)
         ;  return 0
         ;

            case MY_OPT_TAB
         :  xf_tab = mcxIOnew(opt->val, "r")
         ;  break
         ;

            case MY_OPT_TABC
         :  xf_tabc = mcxIOnew(opt->val, "r")
         ;  break
         ;

            case MY_OPT_TABR
         :  xf_tabr = mcxIOnew(opt->val, "r")
         ;  break
         ;

            case MY_OPT_OUTPUT
         :  fndump = opt->val
         ;  break
         ;

            case MY_OPT_SEP_LEAD
         :  sep_lead_g = opt->val
         ;  break
         ;

            case MY_OPT_SEP_FIELD
         :  sep_row_g = opt->val
         ;  break
         ;

            case MY_OPT_SEP_CAT
         :  sep_cat_g = opt->val
         ;  break
         ;

            case MY_OPT_SEP_VAL
         :  sep_val_g = opt->val
         ;  break
         ;

            case MY_OPT_PREFIXC
         :  prefixc_g = opt->val
         ;  break
         ;

            case MY_OPT_RESTRICT_TAB
         :  xf_restrict_tab = mcxIOnew(opt->val, "r")
         ;  break
         ;

            case MY_OPT_RESTRICT_TABC
         :  xf_restrict_tabc = mcxIOnew(opt->val, "r")
         ;  break
         ;

            case MY_OPT_RESTRICT_TABR
         :  xf_restrict_tabr = mcxIOnew(opt->val, "r")
         ;  break
         ;

            case MY_OPT_LAZY_TAB
         :  lazy_tab = TRUE
         ;  break
         ;

            case MY_OPT_NO_VALUES
         :  BIT_OFF(modes, MCLX_DUMP_VALUES)
         ;  break
         ;

            case MY_OPT_DUMP_RLINES
         :  mode_dump = MCLX_DUMP_LINES
         ;  BIT_ON(modes, MCLX_DUMP_NOLEAD)
         ;  break
         ;

            case MY_OPT_DUMP_VLINES
         :  mode_dump = MCLX_DUMP_LINES
         ;  BIT_ON(modes, MCLX_DUMP_LEAD_VALUE)
         ;  break
         ;

            case MY_OPT_DUMP_LINES
         :  mode_dump = MCLX_DUMP_LINES
         ;  break
         ;

            case MY_OPT_OMIT_EMPTY
         :  BIT_ON(modes, MCLX_DUMP_OMIT_EMPTY)
         ;  break
         ;

            case MY_OPT_SORT
         :  sort_mode = opt->val
         ;  break
         ;

            case MY_OPT_NO_LOOPS
         :  mode_loop = MCLX_DUMP_LOOP_NONE
         ;  break
         ;

            case MY_OPT_CAT_LIMIT
         :  n_max = atoi(opt->val)
         ;  break
         ;

            case MY_OPT_SPLIT_STEM
         :  split_stem = opt->val
         ;  sep_cat_g = NULL
         ;  break
         ;

            case MY_OPT_FORCE_LOOPS
         :  mode_loop = MCLX_DUMP_LOOP_FORCE
         ;  break
         ;

            case MY_OPT_SKEL
         :  skel = TRUE
         ;  break
         ;

            case MY_OPT_WRITE_TABC
         :  write_tabc = TRUE
         ;  break
         ;

            case MY_OPT_DIGITS
         :  digits = strtol(opt->val, NULL, 10)
         ;  break
         ;

            case MY_OPT_WRITE_TABR
         :  write_tabr = TRUE
         ;  break
         ;

            case MY_OPT_DUMP_RDOM
         :  transpose = TRUE
         ;  skel = TRUE
         ;  mode_dump = MCLX_DUMP_LINES
         ;  break
         ;

            case MY_OPT_DUMP_CDOM
         :  skel = TRUE
         ;  mode_dump = MCLX_DUMP_LINES
         ;  break
         ;

            case MY_OPT_IMX
         :  mcxIOnewName(xf_mx, opt->val)
         ;  break
         ;

            case MY_OPT_ICL
         :  mcxIOnewName(xf_mx, opt->val)
         ;  mode_dump = MCLX_DUMP_LINES
         ;  BIT_ON(modes, MCLX_DUMP_NOLEAD)
         ;  BIT_OFF(modes, MCLX_DUMP_VALUES)
         ;  break
         ;

            case MY_OPT_TREECAT
         :  mcxIOnewName(xf_mx, opt->val)
         ;  tree = TRUE
         ;  cat_bits |= MCLX_PRODUCE_DOMSTACK
         ;  break
         ;

            case MY_OPT_CAT
         :  mcxIOnewName(xf_mx, opt->val)
         ;  cat = TRUE
         ;  break
         ;

            case MY_OPT_DUMP_MATRIX
         :  mode_matrix |= MCLX_DUMP_MATRIX
         ;  break
         ;

            case MY_OPT_TRANSPOSE
         :  transpose = TRUE
         ;  break
         ;

            case MY_OPT_DUMP_UPPER
         :  mode_part = MCLX_DUMP_PART_UPPER
         ;  break
         ;

            case MY_OPT_DUMP_UPPERI
         :  mode_part = MCLX_DUMP_PART_UPPERI
         ;  break
         ;

            case MY_OPT_DUMP_LOWER
         :  mode_part = MCLX_DUMP_PART_LOWER
         ;  break
         ;

            case MY_OPT_DUMP_LOWERI
         :  mode_part = MCLX_DUMP_PART_LOWERI
         ;  break
         ;

            case MY_OPT_DUMP_NOLEAD
         :  BIT_ON(modes, MCLX_DUMP_NOLEAD)
         ;  break
         ;

            case MY_OPT_NEWICK_MODE
         :  if (strchr(opt->val, 'N'))
            newick_bits |= (MCLX_NEWICK_NONL | MCLX_NEWICK_NOINDENT)
         ;  if (strchr(opt->val, 'I'))
            newick_bits |= MCLX_NEWICK_NOINDENT
         ;  if (strchr(opt->val, 'B'))
            newick_bits |= MCLX_NEWICK_NONUM
         ;  if (strchr(opt->val, 'S'))
            newick_bits |= MCLX_NEWICK_NOPTHS
         ;  newick = TRUE
         ;  break
         ;

            case MY_OPT_DUMP_NEWICK
         :  newick = TRUE
         ;  break
         ;

            case MY_OPT_DUMP_TABLE
         :  mode_dump = MCLX_DUMP_TABLE
         ;  break
         ;

            case MY_OPT_TABLE_NFIELDS
         :  table_nfields = atoi(opt->val)
         ;  break
         ;

            case MY_OPT_TABLE_NLINES
         :  table_nlines = atoi(opt->val)
         ;  break
         ;

            case MY_OPT_DUMP_PAIRS
         :  mode_dump = MCLX_DUMP_PAIRS
         ;  break
      ;  }
      }

   ;  if (skel)
      cat_bits |= MCLX_READ_SKELETON

   ;  modes |= mode_loop | mode_dump | mode_part | mode_matrix

   ;  xfout = mcxIOnew(fndump, "w")
   ;  mcxIOopen(xfout, EXIT_ON_FAIL)

   ;  mcxIOopen(xf_mx, EXIT_ON_FAIL)

   ;  if (cat || tree)
      catmax = n_max ? n_max : 0

   ;  if ((write_tabc || write_tabr) && !xf_tab)
      mcxDie(1, me, "need a single tab file (-tab option) with --write-tabc or --write-tabr")

   ;  if (xf_tab && mcxIOopen(xf_tab, RETURN_ON_FAIL))
      mcxDie(1, me, "no tab")
   ;  else
      {  if (xf_tabr && mcxIOopen(xf_tabr, RETURN_ON_FAIL))
         mcxDie(1, me, "no tabr")
      ;  if (xf_tabc && mcxIOopen(xf_tabc, RETURN_ON_FAIL))
         mcxDie(1, me, "no tabc")
   ;  }

      {  if (xf_restrict_tab && mcxIOopen(xf_restrict_tab, RETURN_ON_FAIL))
         mcxDie(1, me, "no restriction tab")
      ;  else
         {  if (xf_restrict_tabr && mcxIOopen(xf_restrict_tabr, RETURN_ON_FAIL))
            mcxDie(1, me, "no restriction tabr")
         ;  if (xf_restrict_tabc && mcxIOopen(xf_restrict_tabc, RETURN_ON_FAIL))
            mcxDie(1, me, "no restriction tabc")
      ;  }
                              /* fixme: below is pretty boilerplate, happens in other places as well */
         if (xf_restrict_tab)
         {  if (!(restrict_tabr = mclTabRead (xf_restrict_tab, NULL, RETURN_ON_FAIL)))
            mcxDie(1, me, "error reading restriction tab")
         ;  restrict_tabc = restrict_tabr
         ;  mcxIOclose(xf_restrict_tab)
      ;  }
         else
         {  if (xf_restrict_tabr)
            {  if (!(restrict_tabr = mclTabRead(xf_restrict_tabr, NULL, RETURN_ON_FAIL)))
               mcxDie(1, me, "error reading restriction tabr")
            ;  mcxIOclose(xf_restrict_tabr)
         ;  }
            if (xf_restrict_tabc)
            {  if (!(restrict_tabc = mclTabRead(xf_restrict_tabc, NULL, RETURN_ON_FAIL)))
               mcxDie(1, me, "error reading restriction tabc")
            ;  mcxIOclose(xf_restrict_tabc)
         ;  }
         }
      }

                        /* fixme: restructure code to include bit below */

      if (write_tabc || write_tabr)
      {  mclv* dom_cols = mclvInit(NULL)
      ;  mclv* dom_rows = mclvInit(NULL)
      ;  mclv* dom = write_tabc ? dom_cols : dom_rows

      ;  if (!(tabc =  mclTabRead(xf_tab, NULL, RETURN_ON_FAIL)))
         mcxDie(1, me, "error reading tab file")

      ;  if (mclxReadDomains(xf_mx, dom_cols, dom_rows))
         mcxDie(1, me, "error reading matrix file")
      ;  mcxIOclose(xf_mx)

                                       /* fixme check status */
      ;  mclTabWrite(tabc, xfout, dom, RETURN_ON_FAIL) 

      ;  mcxIOclose(xfout)
      ;  return 0
   ;  }

      if (newick)
      {  mcxTing* thetree
      ;  mclxCat  cat

      ;  if (xf_tab && !(tabr =  mclTabRead(xf_tab, NULL, RETURN_ON_FAIL)))
         mcxDie(1, me, "error reading tab file")

      ;  mclxCatInit(&cat)

      ;  if
         (  mclxCatRead
            (  xf_mx
            ,  &cat
            ,  0
            ,  NULL
            ,  tabr ? tabr->domain : NULL
            ,  MCLX_CATREAD_CLUSTERTREE | MCLX_ENSURE_ROOT
            )
         )
         mcxDie(1, me, "failure reading file")
      ;  thetree = mclxCatNewick(&cat, tabr, newick_bits)
      ;  fwrite(thetree->str, 1, thetree->len, xfout->fp)
      ;  fputc('\n', xfout->fp)
      ;  mcxIOclose(xfout)
      ;  return 0
   ;  }

      while (1)
      {  mclxIOdumper dumper
      ;  mclxCat    cat
      ;  dim i

      ;  if (xf_tab && !lazy_tab)
         cat_bits |= MCLX_REQUIRE_GRAPH

      ;  mclxCatInit(&cat)

      ;  if (mclxCatRead(xf_mx, &cat, catmax, NULL, NULL, cat_bits))
         break

      ;  for (i=0;i<cat.n_level;i++)
         {  mclx* mx = cat.level[i].mx

         ;  if (restrict_tabr || restrict_tabc)
            {  mclx* sub
            ;  sub
               =  mclxSub
                  (  mx
                  ,  restrict_tabc
                     ?  restrict_tabc->domain
                     :  mx->dom_cols
                  ,  restrict_tabr
                     ?  restrict_tabr->domain
                     :  mx->dom_rows
                  )
            ;  mx = sub
         ;  }
            /* noteme fixme dangersign mx now may violate some 'cat' invariant */

            if (sort_mode)
            {  if (!strcmp(sort_mode, "size-ascending"))
               mclxColumnsRealign(mx, mclvSizeCmp)
            ;  else if (!strcmp(sort_mode, "size-descending"))
               mclxColumnsRealign(mx, mclvSizeRevCmp)
            ;  else
               mcxErr(me, "unknown sort mode <%s>", sort_mode)
            ;  if (catmax != 1)
               mcxErr(me, "-sort option and cat mode may fail or corrupt")
         ;  }

            if (xf_tab && !tabr)
            {  if (!(  tabr = mclTabRead
                       (xf_tab, lazy_tab ? NULL : mx->dom_rows, RETURN_ON_FAIL)
                  ) )
               mcxDie(1, me, "consider using --lazy-tab option")
            ;  tabc = tabr
            ;  mcxIOclose(xf_tab)
         ;  }
            else
            {  if (!tabr && xf_tabr)
               {  if (!(tabr =  mclTabRead
                        (xf_tabr, lazy_tab ? NULL : mx->dom_rows, RETURN_ON_FAIL)
                     ) )
                  mcxDie(1, me, "consider using --lazy-tab option")
               ;  mcxIOclose(xf_tabr)
            ;  }
               if (!tabc && xf_tabc)
               {  if (!( tabc = mclTabRead
                        (xf_tabc, lazy_tab ? NULL : mx->dom_cols, RETURN_ON_FAIL)
                     ) )
                  mcxDie(1, me, "consider using --lazy-tab option")
               ;  mcxIOclose(xf_tabc)
            ;  }
            }

         ;  if (transpose)
            {  mclx* tp = mclxTranspose(mx)
            ;  mclxFree(&mx)
            ;  mx = tp
            ;  if (tabc || tabr)
               {  mclTab* tabt = tabc
               ;  tabc = tabr
               ;  tabr = tabt
            ;  }
            }

            if (mode_dump == MCLX_DUMP_TABLE)
            BIT_ON(modes, MCLX_DUMP_TABLE_HEADER)

         ;  mclxIOdumpSet(&dumper, modes, sep_lead_g, sep_row_g, sep_val_g)
         ;  dumper.table_nlines  = table_nlines
         ;  dumper.table_nfields = table_nfields
         ;  dumper.prefixc = prefixc_g

         ;  if (split_stem)
            {  mcxTing* ting = mcxTingPrint(NULL, "%s.%03d", split_stem, split_idx)
            ;  mcxIOclose(xfout)
            ;  mcxIOrenew(xfout, ting->str, "w")
            ;  split_idx += split_inc
         ;  }

            if
            (  mclxIOdump
               (  mx
               ,  xfout
               ,  &dumper
               ,  tabc
               ,  tabr
               ,  digits
               ,  RETURN_ON_FAIL
             ) )
            mcxDie(1, me, "something suboptimal")

         ;  mclxFree(&mx)

         ;  if (sep_cat_g && i+1 < cat.n_level)
            fprintf(xfout->fp, "%s\n", sep_cat_g)
      ;  }
         break
   ;  }

      mcxIOfree(&xf_mx)
   ;  mcxIOfree(&xfout)
   ;  mcxIOfree(&xf_tab)
   ;  mcxIOfree(&xf_tabr)
   ;  mcxIOfree(&xf_tabc)
   ;  mcxTingFree(&line)
   ;  return 0
;  }
Example #25
0
static mcxstatus collectMain
(  int                  argc
,  const char*          argv[]
)
   {  aggr* collect = NULL
   ;  int a
   ;  dim i, collect_n = 0
   ;  mclTab* tab = NULL
   ;  double avg = 0.0
   ;  mclx* aggr = NULL, *mx = NULL
                                               /*  mcxHash* map = NULL */
   ;  mcxIO* xfout = mcxIOnew(out_g, "w")
   ;  mcxIOopen(xfout, EXIT_ON_FAIL)

   ;  if
      (  transform_spec
      && (!(transform = mclgTFparse(NULL, transform_spec)))
      )
      mcxDie(1, me, "input -tf spec does not parse")

   ;  if (xftab_g)
         tab = mclTabRead(xftab_g, NULL, EXIT_ON_FAIL)
            /* map not used; perhaps someday we want to map labels to indexes?
             * in that case, we could also simply reverse the tab when reading ..
      ,  map = mclTabHash(tab)
            */

   ;  if (!collect_g)
      mcxDie(1, me, "require one of --paste, --add-column, --add-matrix")

   ;  if (argc)
      {  if (collect_g == 'm')
         {  mcxIO* xf = mcxIOnew(argv[0], "r")
         ;  mcxIOopen(xf, EXIT_ON_FAIL)
         ;  aggr = mclxRead(xf, EXIT_ON_FAIL)
         ;  mcxIOfree(&xf)
      ;  }
         else
         collect_n = do_a_file(&collect, argv[0], 0)
   ;  }

      if (tab && collect_n != N_TAB(tab) + (header_g ? 1 : 0))
      mcxErr
      (  me
      ,  "tab has differing size (%lu vs %lu), continuing anyway"
      ,  (ulong) N_TAB(tab)
      ,  (ulong) (collect_n ? collect_n -1 : 0)
      )

   ;  for (a=1;a<argc;a++)
      {  if (collect_g == 'm')
         {  mcxIO* xf = mcxIOnew(argv[a], "r")
         ;  mcxIOopen(xf, EXIT_ON_FAIL)
         ;  mx = mclxRead(xf, EXIT_ON_FAIL)
         ;  mclxAugment(aggr, mx, fltop_g)
         ;  mcxIOfree(&xf)
         ;  mclxFree(&mx)
      ;  }
         else
         do_a_file(&collect, argv[a], collect_n)
   ;  }

      if (collect_g == 'm')
      {  if (transform)
         mclgTFexec(aggr, transform)
      ;  if (mcx_wb_g)
         mclxbWrite(aggr, xfout, EXIT_ON_FAIL)
      ;  else
         mclxWrite(aggr, xfout, MCLXIO_VALUE_GETENV, EXIT_ON_FAIL)
      ;  mcxIOclose(xfout)
      ;  exit(0)
   ;  }

   /* fimxe: dispatch on binary_g */

      for (i=0;i<collect_n;i++)
      {  const char* lb = collect[i].label

      ;  if (!i && collect[i].columns && collect_g != 'p')
         {  fprintf(xfout->fp, "%s\t%s\n", lb, collect[i].columns->str)
         ;  continue
      ;  }

         if (tab && (!header_g || i > 0))
         {  unsigned u = atoi(lb)
         ;  lb = mclTabGet(tab, u, NULL)
         ;  if (TAB_IS_NA(tab, lb))
            mcxDie(1, me, "no label found for index %ld - abort", (long) u)
      ;  }
         if (summary_g)
         avg += collect[i].val
      ;  else
         {  if (collect_g == 'p')
            fprintf(xfout->fp, "%s%s\n", lb, collect[i].columns->str)
         ;  else
            fprintf(xfout->fp, "%s\t%.8g\n", lb, collect[i].val)
      ;  }
      }
      if (summary_g && collect_n)
      {  dim middle1 = (collect_n-1)/2, middle2 = collect_n/2
      ;  qsort(collect, collect_n, sizeof collect[0], aggr_cmp_val)
      ;  avg /= collect_n
      ;  fprintf                    /* --summary option is a bit rubbish interface-wise */
         (  xfout->fp
         ,  "%g %g %g %g\n"
         ,  collect[0].val
         ,  (collect[middle1].val + collect[middle2].val) / 2
         ,  collect[collect_n-1].val
         ,  avg
         )
   ;  }
      return STATUS_OK
;  }
Example #26
0
void get_attr
(  mclx* mx
,  mclTab* tab
,  mcxIO* xfattr
)
   {  mclx* tp = mclxTranspose(mx)
   ;  mclx* G  = mclxAdd(mx, tp)
   ;  mclv* fwd = mclxColSizes(mx, MCL_VECTOR_COMPLETE)
   ;  mclv* bwd = mclxColSizes(tp, MCL_VECTOR_COMPLETE)
   ;  mclx* cc = clmComponents(G, NULL)
   ;  mclx* node2cc = mclxTranspose(cc)
   ;  dim i, n_cycle = 0

   ;  fprintf(xfattr->fp, "node\tup\tdown\tnparent\tnchild\tndag\n")

   ;  for (i=0;i<bwd->n_ivps;i++)
      {  mclv* seenpp1 = NULL, *seenpp2 = NULL

      ;  ofs level_up = fire_node(mx, i, &seenpp1)
      ;  ofs level_dn = fire_node(tp, i, &seenpp2)
      ;  ofs ccidx = node2cc->cols[i].ivps[0].idx
      ;  dim ccsize = cc->cols[ccidx].n_ivps

      ;  mclvFree(&seenpp1)
      ;  mclvFree(&seenpp2)

      ;  if ((i+1) % 500 == 0)
         fputc('.', stderr)
      ;  if (tab)
         {  const char* label = mclTabGet(tab, mx->cols[i].vid, NULL)
         ;  fputs(label, xfattr->fp)
         ;  fputc('\t', xfattr->fp)
      ;  }
         else
         fprintf
         (  xfattr->fp
         ,  "%lu\t"
         ,  (ulong) mx->cols[i].vid
         )

      ;  fprintf
         (  xfattr->fp
         ,  "%ld\t%ld\t%lu\t%lu\t%lu\n"
         ,  (long) level_up
         ,  (long) level_dn
         ,  (ulong) fwd->ivps[i].val
         ,  (ulong) bwd->ivps[i].val
         ,  (ulong) ccsize
         )

      ;  if (level_up < 0 || level_dn < 0)
            fputc('.', stderr)
         ,  n_cycle++
   ;  }

      if (n_cycle)
      fputc('\n', stderr)
   ;  mclvFree(&bwd)
   ;  mclvFree(&fwd)
   ;  mclxFree(&tp)
;  }
Example #27
0
int main
(  int                  argc
,  const char*          argv[]
)
   {  mcxIO      *xfin        =  mcxIOnew("-", "r")
   ;  mcxIO      *xfout       =  mcxIOnew("-", "w")
   ;  mclMatrix  *mx          =  NULL
   ;  mclx* cmapx = NULL, *rmapx = NULL
   ;  const char* me          =  "mcxmap"
   ;  long        cshift      =  0
   ;  long        rshift      =  0
   ;  long        cmul        =  1
   ;  long        rmul        =  1
   ;  mcxIO*     xf_cannc     =  NULL
   ;  mcxIO*     xf_cannr     =  NULL
   ;  mcxstatus   status      =  STATUS_OK
   ;  mcxbool     invert      =  FALSE
   ;  mcxbool     invertr     =  FALSE
   ;  mcxbool     invertc     =  FALSE
   ;  mcxIO* xf_map_c = NULL, *xf_map_r = NULL, *xf_map = NULL, *xf_tab = NULL

   ;  mcxOption* opts, *opt
   ;  mcxstatus parseStatus = STATUS_OK

   ;  mcxLogLevel =
      MCX_LOG_AGGR | MCX_LOG_MODULE | MCX_LOG_IO | MCX_LOG_GAUGE | MCX_LOG_WARN
   ;  mclxIOsetQMode("MCLXIOVERBOSITY", MCL_APP_VB_NO)
   ;  mclx_app_init(stderr)
   
   ;  mcxOptAnchorSortById(options, sizeof(options)/sizeof(mcxOptAnchor) -1)
   ;  opts = mcxOptParse(options, (char**) argv, argc, 1, 0, &parseStatus)

   ;  if (!opts)
      exit(0)

   ;  for (opt=opts;opt->anch;opt++)
      {  mcxOptAnchor* anch = opt->anch

      ;  switch(anch->id)
         {  case MY_OPT_HELP
         :  case MY_OPT_APROPOS
         :  mcxOptApropos(stdout, me, syntax, 0, 0, options)
         ;  return 0
         ;

            case MY_OPT_VERSION
         :  app_report_version(me)
         ;  return 0
         ;

            case MY_OPT_IMX
         :  mcxIOnewName(xfin, opt->val)
         ;  break
         ;

            case MY_OPT_OUT
         :  mcxIOnewName(xfout, opt->val)
         ;  break
         ;

            case MY_OPT_MUL
         :  cmul =  atol(opt->val)
         ;  rmul =  cmul
         ;  break
         ;

            case MY_OPT_CMUL
         :  cmul =  atol(opt->val)
         ;  break
         ;

            case MY_OPT_RMUL
         :  rmul =  atol(opt->val)
         ;  break
         ;

            case MY_OPT_SHIFT
         :  cshift =  atol(opt->val)
         ;  rshift =  atol(opt->val)
         ;  break
         ;

            case MY_OPT_CSHIFT
         :  cshift =  atol(opt->val)
         ;  break
         ;

            case MY_OPT_RSHIFT
         :  rshift =  atol(opt->val)
         ;  break
         ;

            case MY_OPT_MAP
         :  xf_map =  mcxIOnew(opt->val, "r")
         ;  invert =  FALSE
         ;  break
         ;

            case MY_OPT_CMAP
         :  invertc  =  FALSE  
         ;  xf_map_c =  mcxIOnew(opt->val, "r")
         ;  break
         ;

            case MY_OPT_RMAP
         :  invertr  =  FALSE  
         ;  xf_map_r =  mcxIOnew(opt->val, "r")
         ;  break
         ;

            case MY_OPT_MAPI
         :  invert =  TRUE  
         ;  xf_map =  mcxIOnew(opt->val, "r")
         ;  break
         ;

            case MY_OPT_CMAPI
         :  invertc  =  TRUE  
         ;  xf_map_c =  mcxIOnew(opt->val, "r")
         ;  break
         ;

            case MY_OPT_RMAPI
         :  invertr  =  TRUE  
         ;  xf_map_r =  mcxIOnew(opt->val, "r")
         ;  break
         ;

            case MY_OPT_MAKE_MAP
         :  xf_cannc = mcxIOnew(opt->val, "w")
         ;  xf_cannr = xf_cannc
         ;  break
         ;

            case MY_OPT_MAKE_MAPC
         :  xf_cannc = mcxIOnew(opt->val, "w")
         ;  break
         ;

            case MY_OPT_MAKE_MAPR
         :  xf_cannr = mcxIOnew(opt->val, "w")
         ;  break
         ;

            case MY_OPT_TAB
         :  xf_tab = mcxIOnew(opt->val, "r")
         ;  break
         ;
         }
      }

                     /* little special case. restructure when it grows */
      if (xf_tab)
      {  mclTab* tab1, *tab2
      ;  if (xf_map)
         {  mcxIOopen(xf_map, EXIT_ON_FAIL)
         ;  cmapx = mclxRead(xf_map, EXIT_ON_FAIL)  
      ;  }
         else
         mcxDie(1, me, "-tab option requires -map option")

      ;  tab1 = mclTabRead(xf_tab, NULL, EXIT_ON_FAIL)
      ;  if ((tab2 = mclTabMap(tab1, cmapx)))
         mclTabWrite(tab2, xfout, NULL, EXIT_ON_FAIL)
       ; else
         mcxDie(1, me, "map file error (subsumption/bijection)")

      ;  return 0
   ;  }

      mx = mclxRead(xfin, EXIT_ON_FAIL)

   ;  if (xf_map)
      {  mcxIOopen(xf_map, EXIT_ON_FAIL)
      ;  cmapx = mclxRead(xf_map, EXIT_ON_FAIL)  
      ;  rmapx = cmapx
   ;  }
      else
      {  if (xf_map_c)
         {  mcxIOopen(xf_map_c, EXIT_ON_FAIL)
         ;  cmapx = mclxRead(xf_map_c, EXIT_ON_FAIL)  
      ;  }
         else if (cshift || cmul > 1)
         cmapx
         =  mclxMakeMap
            (  mclvCopy(NULL, mx->dom_cols)
            ,  mclvMap(NULL, cmul, cshift, mx->dom_cols)
            )
      ;  else if (xf_cannc)      /* fixme slightly flaky interface */
         {  cmapx 
            =  mclxMakeMap
               (  mclvCopy(NULL, mx->dom_cols)
               ,  mclvCanonical(NULL, mx->dom_cols->n_ivps, 1.0)
               )
         ;  mclxWrite(cmapx, xf_cannc, MCLXIO_VALUE_GETENV, RETURN_ON_FAIL)
      ;  }

         if (xf_map_r)
         {  mcxIOopen(xf_map_r, EXIT_ON_FAIL)
         ;  rmapx = mclxRead(xf_map_r, EXIT_ON_FAIL)  
      ;  }
         else if (rshift || rmul > 1)
         rmapx
         =  mclxMakeMap
            (  mclvCopy(NULL, mx->dom_rows)
            ,  mclvMap(NULL, rmul, rshift, mx->dom_rows)
            )
      ;  else if (xf_cannr)
         {  rmapx 
            =  mclxMakeMap
               (  mclvCopy(NULL, mx->dom_rows)
               ,  mclvCanonical(NULL, mx->dom_rows->n_ivps, 1.0)
               )
         ;  if (xf_cannr != xf_cannc)
            mclxWrite(rmapx, xf_cannr, MCLXIO_VALUE_GETENV, RETURN_ON_FAIL)
         ;  else if (!mclxIsGraph(mx))
            mcxErr(me, "row map not written but matrix is not a graph")
      ;  }
      }

      if (invert && cmapx && cmapx == rmapx)
      {  mclx* cmapxi = mclxTranspose(cmapx)
      ;  mclxFree(&cmapx)
      ;  cmapx = rmapx = cmapxi
   ;  }
      else
      {  if ((invert || invertr) && rmapx)
         {  mclx* rmapxi = mclxTranspose(rmapx)
         ;  mclxFree(&rmapx)
         ;  rmapx = rmapxi
      ;  }
         if ((invert || invertc) && cmapx)
         {  mclx* cmapxi = mclxTranspose(cmapx)
         ;  mclxFree(&cmapx)
         ;  cmapx = cmapxi
      ;  }
      }

   ;  status = STATUS_FAIL

   ;  do
      {  if (cmapx && mclxMapCols(mx, cmapx))
         break
      ;  if (rmapx && mclxMapRows(mx, rmapx))
         break
      ;  status = STATUS_OK
   ;  }
      while (0)

   ;  if (status)
      {  mcxErr(me, "error, nothing written")
      ;  return 1
   ;  }

      mclxWrite(mx, xfout, MCLXIO_VALUE_GETENV, EXIT_ON_FAIL)
   ;  return 0
;  }
Example #28
0
int main
(  int                  argc
,  const char*          argv[]
)  
   {  mcxIO* xfdagreduce = NULL, *xfattr = NULL, *xfdiff = NULL
   ;  double child_diff_lq = 0.2
   ;  double parent_diff_gq = 0.4
   ;  mcxIO* xfimx = mcxIOnew("-", "r"), *xfdag = NULL, *xftab = NULL
   ;  mclTab* tab = NULL
   ;  int q = -1
   ;  mclx* mx
   ;  unsigned char test_mode = 0

   ;  mcxstatus parseStatus = STATUS_OK
   ;  mcxOption* opts, *opt
   ;  mcxOptAnchorSortById(options, sizeof(options)/sizeof(mcxOptAnchor) -1)
   
   ;  if
      (!(opts = mcxOptParse(options, (char**) argv, argc, 1, 0, &parseStatus)))
      exit(0)

   ;  mcxLogLevel =
      MCX_LOG_AGGR | MCX_LOG_MODULE | MCX_LOG_IO | MCX_LOG_GAUGE | MCX_LOG_WARN
   ;  mclxIOsetQMode("MCLXIOVERBOSITY", MCL_APP_VB_YES)
   ;  mclx_app_init(stderr)


   ;  for (opt=opts;opt->anch;opt++)
      {  mcxOptAnchor* anch = opt->anch

      ;  switch(anch->id)
         {  case MY_OPT_HELP
         :  mcxOptApropos(stdout, me, syntax, 0, 0, options)
         ;  return 0
         ;

            case MY_OPT_VERSION
         :  app_report_version(me)
         ;  return 0
         ;

            case MY_OPT_TEST_CYCLE
         :  test_mode = 'c'
         ;  break
         ;

            case MY_OPT_TEST_CROSS
         :  test_mode = 'x'
         ;  break
         ;

            case MY_OPT_DAG_ATTR
         :  xfattr = mcxIOnew(opt->val, "w")
         ;  mcxIOopen(xfattr, EXIT_ON_FAIL)
         ;  break
         ;

            case MY_OPT_DAG_DIFF
         :  xfdiff = mcxIOnew(opt->val, "w")
         ;  break
         ;

            case MY_OPT_DAG_REDUCE
         :  xfdagreduce = mcxIOnew(opt->val, "w")
         ;  break
         ;

            case MY_OPT_CHILD_DIFF_LQ
         :  child_diff_lq = atof(opt->val)
         ;  break
         ;

            case MY_OPT_PARENT_DIFF_GQ
         :  parent_diff_gq = atof(opt->val)
         ;  break
         ;

            case MY_OPT_QUERY
         :  q = atoi(opt->val)
         ;  break
         ;

            case MY_OPT_TAB
         :  xftab = mcxIOnew(opt->val, "r")
         ;  break
         ;

            case MY_OPT_IMX
         :  mcxIOnewName(xfimx, opt->val)
         ;  break
         ;
         }
      }

   ;  if (xfimx)
      mx = mclxRead(xfimx, EXIT_ON_FAIL)
   ;  else
      mcxDie(1, me, "need -imx")

   ;  if (xftab)
      tab = mclTabRead(xftab, mx->dom_cols, EXIT_ON_FAIL)

   ;  if (test_mode == 'c')
      test_for_cycles(mx)

   ;  else if (test_mode == 'x')
      test_cross_ratio(mx)

   ;  else if (xfattr)
      get_attr(mx, tab, xfattr)

   ;  else if (xfdagreduce)
      {  mclxComposeHelper* ch = mclxComposePrepare(mx, mx)
      ;  dim i
      ;  for (i=0;i<N_COLS(mx);i++)
         {  mclv* in = mx->cols+i
         ;  mclv* out = mclxVectorCompose(mx, in, NULL, ch)
         ;  mcldMinus(in, out, in)
         ;  mclvFree(&out)
      ;  }
         mclxWrite(mx, xfdagreduce, MCLXIO_VALUE_GETENV, EXIT_ON_FAIL)
      ;  mclxComposeRelease(&ch)
   ;  }

      else if (xfdiff)
      dag_diff_select(mx, tab, xfdiff, child_diff_lq, parent_diff_gq)

   ;  mclxFree(&mx)
   ;  mcxIOfree(&xfimx)
   ;  mcxIOfree(&xfdag)
   ;  mcxIOfree(&xfattr)
   ;  mcxIOfree(&xfdagreduce)
   ;  return 0
;  }