int PBKDF2_HMAC_SHA_1_string(const char* pass, const unsigned char* salt, int32_t iterations, uint32_t outputBytes, char* hexResult)
{
    md_context_t sha1_ctx;
    const md_info_t *info_sha1;
    int ret, i;
    unsigned char digest[outputBytes];

    // credit to https://github.com/polarssl/polarssl/blob/development/library/pkcs5.c pkcs5_self_test

    info_sha1 = md_info_from_type( POLARSSL_MD_SHA1 );
    if( info_sha1 == NULL )
        return( 104 );

    if( ( ret = md_init_ctx( &sha1_ctx, info_sha1 ) ) != 0 )
        return( 103 );

    ret = pkcs5_pbkdf2_hmac( &sha1_ctx, pass, strlen(pass), salt,
                              strlen(salt), iterations, outputBytes, digest );
    if( ret != 0 )
    {
        return( 102 );
    }

    if( ( ret = md_free_ctx( &sha1_ctx ) ) != 0 )
        return( 101 );

    for (i = 0; i < sizeof(digest); i++)
        sprintf(hexResult + (i * 2), "%02x", 255 & digest[i]);

    return(0);
}
/*
 * Simplified HMAC_DRBG initialisation (for use with deterministic ECDSA)
 */
SSL_ROM_TEXT_SECTION
int hmac_drbg_init_buf( hmac_drbg_context *ctx,
                        const md_info_t * md_info,
                        const unsigned char *data, size_t data_len )
{
    int ret;

    memset( ctx, 0, sizeof( hmac_drbg_context ) );

    md_init( &ctx->md_ctx );

    if( ( ret = md_init_ctx( &ctx->md_ctx, md_info ) ) != 0 )
        return( ret );

    /*
     * Set initial working state.
     * Use the V memory location, which is currently all 0, to initialize the
     * MD context with an all-zero key. Then set V to its initial value.
     */
    md_hmac_starts( &ctx->md_ctx, ctx->V, md_info->size );
    memset( ctx->V, 0x01, md_info->size );

    hmac_drbg_update( ctx, data, data_len );

    return( 0 );
}
void
md_ctx_init (md_context_t *ctx, const md_info_t *kt)
{
  ASSERT(NULL != ctx && NULL != kt);

  CLEAR(*ctx);

  ASSERT(0 == md_init_ctx(ctx, kt));
  ASSERT(0 == md_starts(ctx));
}
/*
 * HMAC_DRBG initialisation (10.1.2.3 + 9.1)
 */
SSL_ROM_TEXT_SECTION
int hmac_drbg_init( hmac_drbg_context *ctx,
                    const md_info_t * md_info,
                    int (*f_entropy)(void *, unsigned char *, size_t),
                    void *p_entropy,
                    const unsigned char *custom,
                    size_t len )
{
    int ret;
    size_t entropy_len;

    memset( ctx, 0, sizeof( hmac_drbg_context ) );

    md_init( &ctx->md_ctx );

    if( ( ret = md_init_ctx( &ctx->md_ctx, md_info ) ) != 0 )
        return( ret );

    /*
     * Set initial working state.
     * Use the V memory location, which is currently all 0, to initialize the
     * MD context with an all-zero key. Then set V to its initial value.
     */
    md_hmac_starts( &ctx->md_ctx, ctx->V, md_info->size );
    memset( ctx->V, 0x01, md_info->size );

    ctx->f_entropy = f_entropy;
    ctx->p_entropy = p_entropy;

    ctx->reseed_interval = POLARSSL_HMAC_DRBG_RESEED_INTERVAL;

    /*
     * See SP800-57 5.6.1 (p. 65-66) for the security strength provided by
     * each hash function, then according to SP800-90A rev1 10.1 table 2,
     * min_entropy_len (in bits) is security_strength.
     *
     * (This also matches the sizes used in the NIST test vectors.)
     */
    entropy_len = md_info->size <= 20 ? 16 : /* 160-bits hash -> 128 bits */
                  md_info->size <= 28 ? 24 : /* 224-bits hash -> 192 bits */
                                        32;  /* better (256+) -> 256 bits */

    /*
     * For initialisation, use more entropy to emulate a nonce
     * (Again, matches test vectors.)
     */
    ctx->entropy_len = entropy_len * 3 / 2;

    if( ( ret = hmac_drbg_reseed( ctx, custom, len ) ) != 0 )
        return( ret );

    ctx->entropy_len = entropy_len;

    return( 0 );
}
/*
 * TODO: re-enable dmsg for crypto debug
 */
void
hmac_ctx_init (md_context_t *ctx, const uint8_t *key, int key_len, const md_info_t *kt)
{
  ASSERT(NULL != kt && NULL != ctx);

  CLEAR(*ctx);

  ASSERT(0 == md_init_ctx(ctx, kt));
  ASSERT(0 == md_hmac_starts(ctx, key, key_len));

  /* make sure we used a big enough key */
  ASSERT (md_get_size(kt) <= key_len);
}
Example #6
0
bool gtkhash_hash_lib_polarssl_is_supported(const enum hash_func_e id)
{
	struct hash_lib_polarssl_s data;
	md_type_t type;

	if (!gtkhash_hash_lib_polarssl_set_type(id, &type))
		return false;

	if (md_init_ctx(&data.ctx, md_info_from_type(type)) != 0)
		return false;

	if (md_free_ctx(&data.ctx) != 0) {
		g_assert_not_reached();
		return false;
	}

	return true;
}
Example #7
0
int pkcs5_self_test( int verbose )
{
    md_context_t sha1_ctx;
    const md_info_t *info_sha1;
    int ret, i;
    unsigned char key[64];

    info_sha1 = md_info_from_type( POLARSSL_MD_SHA1 );
    if( info_sha1 == NULL )
        return( 1 );

    if( ( ret = md_init_ctx( &sha1_ctx, info_sha1 ) ) != 0 )
        return( 1 );

    for( i = 0; i < MAX_TESTS; i++ )
    {
        printf( "  PBKDF2 (SHA1) #%d: ", i );

        ret = pkcs5_pbkdf2_hmac( &sha1_ctx, password[i], plen[i], salt[i],
                                  slen[i], it_cnt[i], key_len[i], key );
        if( ret != 0 ||
            memcmp( result_key[i], key, key_len[i] ) != 0 )
        {
            if( verbose != 0 )
                printf( "failed\n" );

            return( 1 );
        }

        if( verbose != 0 )
            printf( "passed\n" );
    }

    printf( "\n" );

    return( 0 );
}
Example #8
0
/*
 * Do an RSA operation to sign the message digest
 */
int rsa_pkcs1_sign( rsa_context *ctx,
                    int (*f_rng)(void *),
                    void *p_rng,
                    int mode,
                    int hash_id,
                    unsigned int hashlen,
                    const unsigned char *hash,
                    unsigned char *sig )
{
    size_t nb_pad, olen;
    unsigned char *p = sig;
#if defined(POLARSSL_PKCS1_V21)
    unsigned char salt[POLARSSL_MD_MAX_SIZE];
    unsigned int i, slen, hlen, offset = 0;
    size_t msb;
    const md_info_t *md_info;
    md_context_t md_ctx;
#else
    (void) f_rng;
    (void) p_rng;
#endif

    olen = ctx->len;

    switch( ctx->padding )
    {
        case RSA_PKCS_V15:

            switch( hash_id )
            {
                case SIG_RSA_RAW:
                    nb_pad = olen - 3 - hashlen;
                    break;

                case SIG_RSA_MD2:
                case SIG_RSA_MD4:
                case SIG_RSA_MD5:
                    nb_pad = olen - 3 - 34;
                    break;

                case SIG_RSA_SHA1:
                    nb_pad = olen - 3 - 35;
                    break;

                case SIG_RSA_SHA224:
                    nb_pad = olen - 3 - 47;
                    break;

                case SIG_RSA_SHA256:
                    nb_pad = olen - 3 - 51;
                    break;

                case SIG_RSA_SHA384:
                    nb_pad = olen - 3 - 67;
                    break;

                case SIG_RSA_SHA512:
                    nb_pad = olen - 3 - 83;
                    break;


                default:
                    return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
            }

            if( nb_pad < 8 )
                return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

            *p++ = 0;
            *p++ = RSA_SIGN;
            memset( p, 0xFF, nb_pad );
            p += nb_pad;
            *p++ = 0;

            switch( hash_id )
            {
                case SIG_RSA_RAW:
                    memcpy( p, hash, hashlen );
                    break;

                case SIG_RSA_MD2:
                    memcpy( p, ASN1_HASH_MDX, 18 );
                    memcpy( p + 18, hash, 16 );
                    p[13] = 2; break;

                case SIG_RSA_MD4:
                    memcpy( p, ASN1_HASH_MDX, 18 );
                    memcpy( p + 18, hash, 16 );
                    p[13] = 4; break;

                case SIG_RSA_MD5:
                    memcpy( p, ASN1_HASH_MDX, 18 );
                    memcpy( p + 18, hash, 16 );
                    p[13] = 5; break;

                case SIG_RSA_SHA1:
                    memcpy( p, ASN1_HASH_SHA1, 15 );
                    memcpy( p + 15, hash, 20 );
                    break;

                case SIG_RSA_SHA224:
                    memcpy( p, ASN1_HASH_SHA2X, 19 );
                    memcpy( p + 19, hash, 28 );
                    p[1] += 28; p[14] = 4; p[18] += 28; break;

                case SIG_RSA_SHA256:
                    memcpy( p, ASN1_HASH_SHA2X, 19 );
                    memcpy( p + 19, hash, 32 );
                    p[1] += 32; p[14] = 1; p[18] += 32; break;

                case SIG_RSA_SHA384:
                    memcpy( p, ASN1_HASH_SHA2X, 19 );
                    memcpy( p + 19, hash, 48 );
                    p[1] += 48; p[14] = 2; p[18] += 48; break;

                case SIG_RSA_SHA512:
                    memcpy( p, ASN1_HASH_SHA2X, 19 );
                    memcpy( p + 19, hash, 64 );
                    p[1] += 64; p[14] = 3; p[18] += 64; break;

                default:
                    return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
            }

            break;

#if defined(POLARSSL_PKCS1_V21)
        case RSA_PKCS_V21:

            if( f_rng == NULL )
                return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

            switch( hash_id )
            {
                case SIG_RSA_MD2:
                case SIG_RSA_MD4:
                case SIG_RSA_MD5:
                    hashlen = 16;
                    break;

                case SIG_RSA_SHA1:
                    hashlen = 20;
                    break;

                case SIG_RSA_SHA224:
                    hashlen = 28;
                    break;

                case SIG_RSA_SHA256:
                    hashlen = 32;
                    break;

                case SIG_RSA_SHA384:
                    hashlen = 48;
                    break;

                case SIG_RSA_SHA512:
                    hashlen = 64;
                    break;

                default:
                    return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
            }

            md_info = md_info_from_type( ctx->hash_id );
            if( md_info == NULL )
                return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
                
            hlen = md_get_size( md_info );
            slen = hlen;

            memset( sig, 0, olen );
            memset( &md_ctx, 0, sizeof( md_context_t ) );

            md_init_ctx( &md_ctx, md_info );

            msb = mpi_msb( &ctx->N ) - 1;

            // Generate salt of length slen
            //
            for( i = 0; i < slen; ++i )
                salt[i] = (unsigned char) f_rng( p_rng ); 

            // Note: EMSA-PSS encoding is over the length of N - 1 bits
            //
            msb = mpi_msb( &ctx->N ) - 1;
            p += olen - hlen * 2 - 2;
            *p++ = 0x01;
            memcpy( p, salt, slen );
            p += slen;

            // Generate H = Hash( M' )
            //
            md_starts( &md_ctx );
            md_update( &md_ctx, p, 8 );
            md_update( &md_ctx, hash, hashlen );
            md_update( &md_ctx, salt, slen );
            md_finish( &md_ctx, p );

            // Compensate for boundary condition when applying mask
            //
            if( msb % 8 == 0 )
                offset = 1;

            // maskedDB: Apply dbMask to DB
            //
            mgf_mask( sig + offset, olen - hlen - 1 - offset, p, hlen, &md_ctx );

            msb = mpi_msb( &ctx->N ) - 1;
            sig[0] &= 0xFF >> ( olen * 8 - msb );

            p += hlen;
            *p++ = 0xBC;
            break;
#endif

        default:

            return( POLARSSL_ERR_RSA_INVALID_PADDING );
    }

    return( ( mode == RSA_PUBLIC )
            ? rsa_public(  ctx, sig, sig )
            : rsa_private( ctx, sig, sig ) );
}
Example #9
0
File: rsa.c Project: ahawad/opensgx
/*
 * Implementation of the PKCS#1 v2.1 RSAES-OAEP-DECRYPT function
 */
int rsa_rsaes_oaep_decrypt( rsa_context *ctx,
                            int (*f_rng)(void *, unsigned char *, size_t),
                            void *p_rng,
                            int mode,
                            const unsigned char *label, size_t label_len,
                            size_t *olen,
                            const unsigned char *input,
                            unsigned char *output,
                            size_t output_max_len )
{
    int ret;
    size_t ilen, i, pad_len;
    unsigned char *p, bad, pad_done;
    unsigned char buf[POLARSSL_MPI_MAX_SIZE];
    unsigned char lhash[POLARSSL_MD_MAX_SIZE];
    unsigned int hlen;
    const md_info_t *md_info;
    md_context_t md_ctx;

    /*
     * Parameters sanity checks
     */
    if( mode == RSA_PRIVATE && ctx->padding != RSA_PKCS_V21 )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    ilen = ctx->len;

    if( ilen < 16 || ilen > sizeof( buf ) )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    md_info = md_info_from_type( ctx->hash_id );
    if( md_info == NULL )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    /*
     * RSA operation
     */
    ret = ( mode == RSA_PUBLIC )
          ? rsa_public(  ctx, input, buf )
          : rsa_private( ctx, f_rng, p_rng, input, buf );

    if( ret != 0 )
        return( ret );

    /*
     * Unmask data and generate lHash
     */
    hlen = md_get_size( md_info );

    md_init( &md_ctx );
    md_init_ctx( &md_ctx, md_info );

    /* Generate lHash */
    md( md_info, label, label_len, lhash );

    /* seed: Apply seedMask to maskedSeed */
    mgf_mask( buf + 1, hlen, buf + hlen + 1, ilen - hlen - 1,
               &md_ctx );

    /* DB: Apply dbMask to maskedDB */
    mgf_mask( buf + hlen + 1, ilen - hlen - 1, buf + 1, hlen,
               &md_ctx );

    md_free( &md_ctx );

    /*
     * Check contents, in "constant-time"
     */
    p = buf;
    bad = 0;

    bad |= *p++; /* First byte must be 0 */

    p += hlen; /* Skip seed */

    /* Check lHash */
    for( i = 0; i < hlen; i++ )
        bad |= lhash[i] ^ *p++;

    /* Get zero-padding len, but always read till end of buffer
     * (minus one, for the 01 byte) */
    pad_len = 0;
    pad_done = 0;
    for( i = 0; i < ilen - 2 * hlen - 2; i++ )
    {
        pad_done |= p[i];
        pad_len += ( pad_done == 0 );
    }

    p += pad_len;
    bad |= *p++ ^ 0x01;

    /*
     * The only information "leaked" is whether the padding was correct or not
     * (eg, no data is copied if it was not correct). This meets the
     * recommendations in PKCS#1 v2.2: an opponent cannot distinguish between
     * the different error conditions.
     */
    if( bad != 0 )
        return( POLARSSL_ERR_RSA_INVALID_PADDING );

    if( ilen - ( p - buf ) > output_max_len )
        return( POLARSSL_ERR_RSA_OUTPUT_TOO_LARGE );

    *olen = ilen - (p - buf);
    memcpy( output, p, *olen );

    return( 0 );
}
Example #10
0
int pkcs5_pbes2( asn1_buf *pbe_params, int mode,
                 const unsigned char *pwd,  size_t pwdlen,
                 const unsigned char *data, size_t datalen,
                 unsigned char *output )
{
    int ret, iterations = 0, keylen = 0;
    unsigned char *p, *end, *end2;
    asn1_buf kdf_alg_oid, enc_scheme_oid, salt;
    md_type_t md_type = POLARSSL_MD_SHA1;
    unsigned char key[32], iv[32];
    size_t len = 0, olen = 0;
    const md_info_t *md_info;
    const cipher_info_t *cipher_info;
    md_context_t md_ctx;
    cipher_context_t cipher_ctx;

    p = pbe_params->p;
    end = p + pbe_params->len;

    /*
     *  PBES2-params ::= SEQUENCE {
     *    keyDerivationFunc AlgorithmIdentifier {{PBES2-KDFs}},
     *    encryptionScheme AlgorithmIdentifier {{PBES2-Encs}}
     *  }
     */
    if( ( ret = asn1_get_tag( &p, end, &len,
            ASN1_CONSTRUCTED | ASN1_SEQUENCE ) ) != 0 )
    {
        return( POLARSSL_ERR_PKCS5_INVALID_FORMAT + ret );
    }

    if( ( ret = asn1_get_tag( &p, end, &len,
            ASN1_CONSTRUCTED | ASN1_SEQUENCE ) ) != 0 )
    {
        return( POLARSSL_ERR_PKCS5_INVALID_FORMAT + ret );
    }

    end2 = p + len;

    if( ( ret = asn1_get_tag( &p, end2, &kdf_alg_oid.len, ASN1_OID ) ) != 0 )
        return( POLARSSL_ERR_PKCS5_INVALID_FORMAT + ret );

    kdf_alg_oid.p = p;
    p += kdf_alg_oid.len;

    // Only PBKDF2 supported at the moment
    //
    if( !OID_CMP( OID_PKCS5_PBKDF2, &kdf_alg_oid ) )
        return( POLARSSL_ERR_PKCS5_FEATURE_UNAVAILABLE );

    if( ( ret = pkcs5_parse_pbkdf2_params( &p, end2,
                                           &salt, &iterations, &keylen,
                                           &md_type ) ) != 0 )
    {
        return( ret );
    }

    md_info = md_info_from_type( md_type );
    if( md_info == NULL )
        return( POLARSSL_ERR_PKCS5_FEATURE_UNAVAILABLE );

    if( ( ret = asn1_get_tag( &p, end, &len,
            ASN1_CONSTRUCTED | ASN1_SEQUENCE ) ) != 0 )
    {
        return( POLARSSL_ERR_PKCS5_INVALID_FORMAT + ret );
    }

    end2 = p + len;

    if( ( ret = asn1_get_tag( &p, end2, &enc_scheme_oid.len, ASN1_OID ) ) != 0 )
        return( POLARSSL_ERR_PKCS5_INVALID_FORMAT + ret );

    enc_scheme_oid.p = p;
    p += enc_scheme_oid.len;

#if defined(POLARSSL_DES_C)
    // Only DES-CBC and DES-EDE3-CBC supported at the moment
    //
    if( OID_CMP( OID_DES_EDE3_CBC, &enc_scheme_oid ) )
    {
        cipher_info = cipher_info_from_type( POLARSSL_CIPHER_DES_EDE3_CBC );
    }
    else if( OID_CMP( OID_DES_CBC, &enc_scheme_oid ) )
    {
        cipher_info = cipher_info_from_type( POLARSSL_CIPHER_DES_CBC );
    }
    else
#endif /* POLARSSL_DES_C */
        return( POLARSSL_ERR_PKCS5_FEATURE_UNAVAILABLE );

    if( cipher_info == NULL )
        return( POLARSSL_ERR_PKCS5_FEATURE_UNAVAILABLE );

    keylen = cipher_info->key_length / 8;

    if( ( ret = asn1_get_tag( &p, end2, &len, ASN1_OCTET_STRING ) ) != 0 )
        return( POLARSSL_ERR_PKCS5_INVALID_FORMAT + ret );

    if( len != cipher_info->iv_size )
        return( POLARSSL_ERR_PKCS5_INVALID_FORMAT );

    memcpy( iv, p, len );

    if( ( ret = md_init_ctx( &md_ctx, md_info ) ) != 0 )
        return( ret );

    if( ( ret = cipher_init_ctx( &cipher_ctx, cipher_info ) ) != 0 )
        return( ret );

    if ( ( ret = pkcs5_pbkdf2_hmac( &md_ctx, pwd, pwdlen, salt.p, salt.len,
                                    iterations, keylen, key ) ) != 0 )
    {
        return( ret );
    }

    if( ( ret = cipher_setkey( &cipher_ctx, key, keylen, mode ) ) != 0 )
        return( ret );

    if( ( ret = cipher_reset( &cipher_ctx, iv ) ) != 0 )
        return( ret );

    if( ( ret = cipher_update( &cipher_ctx, data, datalen,
                                output, &olen ) ) != 0 )
    {
        return( ret );
    }

    if( ( ret = cipher_finish( &cipher_ctx, output + olen, &olen ) ) != 0 )
        return( POLARSSL_ERR_PKCS5_PASSWORD_MISMATCH );

    return( 0 );
}
Example #11
0
/*
 * Implementation of the PKCS#1 v2.1 RSAES-OAEP-DECRYPT function
 */
int rsa_rsaes_oaep_decrypt( rsa_context *ctx,
                            int mode,
                            const unsigned char *label, size_t label_len,
                            size_t *olen,
                            const unsigned char *input,
                            unsigned char *output,
                            size_t output_max_len )
{
    int ret;
    size_t ilen;
    unsigned char *p;
    unsigned char buf[POLARSSL_MPI_MAX_SIZE];
    unsigned char lhash[POLARSSL_MD_MAX_SIZE];
    unsigned int hlen;
    const md_info_t *md_info;
    md_context_t md_ctx;

    if( ctx->padding != RSA_PKCS_V21 )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    ilen = ctx->len;

    if( ilen < 16 || ilen > sizeof( buf ) )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    ret = ( mode == RSA_PUBLIC )
          ? rsa_public(  ctx, input, buf )
          : rsa_private( ctx, input, buf );

    if( ret != 0 )
        return( ret );

    p = buf;

    if( *p++ != 0 )
        return( POLARSSL_ERR_RSA_INVALID_PADDING );

    md_info = md_info_from_type( ctx->hash_id );
    if( md_info == NULL )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    hlen = md_get_size( md_info );

    md_init_ctx( &md_ctx, md_info );

    // Generate lHash
    //
    md( md_info, label, label_len, lhash );

    // seed: Apply seedMask to maskedSeed
    //
    mgf_mask( buf + 1, hlen, buf + hlen + 1, ilen - hlen - 1,
               &md_ctx );

    // DB: Apply dbMask to maskedDB
    //
    mgf_mask( buf + hlen + 1, ilen - hlen - 1, buf + 1, hlen,
               &md_ctx );

    p += hlen;
    md_free_ctx( &md_ctx );

    // Check validity
    //
    if( memcmp( lhash, p, hlen ) != 0 )
        return( POLARSSL_ERR_RSA_INVALID_PADDING );

    p += hlen;

    while( *p == 0 && p < buf + ilen )
        p++;

    if( p == buf + ilen )
        return( POLARSSL_ERR_RSA_INVALID_PADDING );

    if( *p++ != 0x01 )
        return( POLARSSL_ERR_RSA_INVALID_PADDING );

    if (ilen - (p - buf) > output_max_len)
        return( POLARSSL_ERR_RSA_OUTPUT_TOO_LARGE );

    *olen = ilen - (p - buf);
    memcpy( output, p, *olen );

    return( 0 );
}
Example #12
0
/*
 * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function
 */
int rsa_rsassa_pss_sign( rsa_context *ctx,
                         int (*f_rng)(void *, unsigned char *, size_t),
                         void *p_rng,
                         int mode,
                         int hash_id,
                         unsigned int hashlen,
                         const unsigned char *hash,
                         unsigned char *sig )
{
    size_t olen;
    unsigned char *p = sig;
    unsigned char salt[POLARSSL_MD_MAX_SIZE];
    unsigned int slen, hlen, offset = 0;
    int ret;
    size_t msb;
    const md_info_t *md_info;
    md_context_t md_ctx;

    if( ctx->padding != RSA_PKCS_V21 || f_rng == NULL )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    olen = ctx->len;

    switch( hash_id )
    {
        case SIG_RSA_MD2:
        case SIG_RSA_MD4:
        case SIG_RSA_MD5:
            hashlen = 16;
            break;

        case SIG_RSA_SHA1:
            hashlen = 20;
            break;

        case SIG_RSA_SHA224:
            hashlen = 28;
            break;

        case SIG_RSA_SHA256:
            hashlen = 32;
            break;

        case SIG_RSA_SHA384:
            hashlen = 48;
            break;

        case SIG_RSA_SHA512:
            hashlen = 64;
            break;

        default:
            return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
    }

    md_info = md_info_from_type( ctx->hash_id );
    if( md_info == NULL )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    hlen = md_get_size( md_info );
    slen = hlen;

    if( olen < hlen + slen + 2 )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    memset( sig, 0, olen );

    msb = mpi_msb( &ctx->N ) - 1;

    // Generate salt of length slen
    //
    if( ( ret = f_rng( p_rng, salt, slen ) ) != 0 )
        return( POLARSSL_ERR_RSA_RNG_FAILED + ret );

    // Note: EMSA-PSS encoding is over the length of N - 1 bits
    //
    msb = mpi_msb( &ctx->N ) - 1;
    p += olen - hlen * 2 - 2;
    *p++ = 0x01;
    memcpy( p, salt, slen );
    p += slen;

    md_init_ctx( &md_ctx, md_info );

    // Generate H = Hash( M' )
    //
    md_starts( &md_ctx );
    md_update( &md_ctx, p, 8 );
    md_update( &md_ctx, hash, hashlen );
    md_update( &md_ctx, salt, slen );
    md_finish( &md_ctx, p );

    // Compensate for boundary condition when applying mask
    //
    if( msb % 8 == 0 )
        offset = 1;

    // maskedDB: Apply dbMask to DB
    //
    mgf_mask( sig + offset, olen - hlen - 1 - offset, p, hlen, &md_ctx );

    md_free_ctx( &md_ctx );

    msb = mpi_msb( &ctx->N ) - 1;
    sig[0] &= 0xFF >> ( olen * 8 - msb );

    p += hlen;
    *p++ = 0xBC;

    return( ( mode == RSA_PUBLIC )
            ? rsa_public(  ctx, sig, sig )
            : rsa_private( ctx, sig, sig ) );
}
Example #13
0
/*
 * Implementation of the PKCS#1 v2.1 RSASSA-PSS-VERIFY function
 */
int rsa_rsassa_pss_verify( rsa_context *ctx,
                           int mode,
                           int hash_id,
                           unsigned int hashlen,
                           const unsigned char *hash,
                           unsigned char *sig )
{
    int ret;
    size_t siglen;
    unsigned char *p;
    unsigned char buf[POLARSSL_MPI_MAX_SIZE];
    unsigned char result[POLARSSL_MD_MAX_SIZE];
    unsigned char zeros[8];
    unsigned int hlen;
    size_t slen, msb;
    const md_info_t *md_info;
    md_context_t md_ctx;

    if( ctx->padding != RSA_PKCS_V21 )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    siglen = ctx->len;

    if( siglen < 16 || siglen > sizeof( buf ) )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    ret = ( mode == RSA_PUBLIC )
          ? rsa_public(  ctx, sig, buf )
          : rsa_private( ctx, sig, buf );

    if( ret != 0 )
        return( ret );

    p = buf;

    if( buf[siglen - 1] != 0xBC )
        return( POLARSSL_ERR_RSA_INVALID_PADDING );

    switch( hash_id )
    {
        case SIG_RSA_MD2:
        case SIG_RSA_MD4:
        case SIG_RSA_MD5:
            hashlen = 16;
            break;

        case SIG_RSA_SHA1:
            hashlen = 20;
            break;

        case SIG_RSA_SHA224:
            hashlen = 28;
            break;

        case SIG_RSA_SHA256:
            hashlen = 32;
            break;

        case SIG_RSA_SHA384:
            hashlen = 48;
            break;

        case SIG_RSA_SHA512:
            hashlen = 64;
            break;

        default:
            return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
    }

    md_info = md_info_from_type( ctx->hash_id );
    if( md_info == NULL )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    hlen = md_get_size( md_info );
    slen = siglen - hlen - 1;

    memset( zeros, 0, 8 );

    // Note: EMSA-PSS verification is over the length of N - 1 bits
    //
    msb = mpi_msb( &ctx->N ) - 1;

    // Compensate for boundary condition when applying mask
    //
    if( msb % 8 == 0 )
    {
        p++;
        siglen -= 1;
    }
    if( buf[0] >> ( 8 - siglen * 8 + msb ) )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    md_init_ctx( &md_ctx, md_info );

    mgf_mask( p, siglen - hlen - 1, p + siglen - hlen - 1, hlen, &md_ctx );

    buf[0] &= 0xFF >> ( siglen * 8 - msb );

    while( *p == 0 && p < buf + siglen )
        p++;

    if( p == buf + siglen ||
        *p++ != 0x01 )
    {
        md_free_ctx( &md_ctx );
        return( POLARSSL_ERR_RSA_INVALID_PADDING );
    }

    slen -= p - buf;

    // Generate H = Hash( M' )
    //
    md_starts( &md_ctx );
    md_update( &md_ctx, zeros, 8 );
    md_update( &md_ctx, hash, hashlen );
    md_update( &md_ctx, p, slen );
    md_finish( &md_ctx, result );

    md_free_ctx( &md_ctx );

    if( memcmp( p + slen, result, hlen ) == 0 )
        return( 0 );
    else
        return( POLARSSL_ERR_RSA_VERIFY_FAILED );
}
Example #14
0
/*
 * Implementation of the PKCS#1 v2.1 RSAES-OAEP-ENCRYPT function
 */
int rsa_rsaes_oaep_encrypt( rsa_context *ctx,
                            int (*f_rng)(void *, unsigned char *, size_t),
                            void *p_rng,
                            int mode,
                            const unsigned char *label, size_t label_len,
                            size_t ilen,
                            const unsigned char *input,
                            unsigned char *output )
{
    size_t olen;
    int ret;
    unsigned char *p = output;
    unsigned int hlen;
    const md_info_t *md_info;
    md_context_t md_ctx;

    if( ctx->padding != RSA_PKCS_V21 || f_rng == NULL )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    md_info = md_info_from_type( ctx->hash_id );

    if( md_info == NULL )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    olen = ctx->len;
    hlen = md_get_size( md_info );

    if( olen < ilen + 2 * hlen + 2 || f_rng == NULL )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    memset( output, 0, olen );

    *p++ = 0;

    // Generate a random octet string seed
    //
    if( ( ret = f_rng( p_rng, p, hlen ) ) != 0 )
        return( POLARSSL_ERR_RSA_RNG_FAILED + ret );

    p += hlen;

    // Construct DB
    //
    md( md_info, label, label_len, p );
    p += hlen;
    p += olen - 2 * hlen - 2 - ilen;
    *p++ = 1;
    memcpy( p, input, ilen );

    md_init_ctx( &md_ctx, md_info );

    // maskedDB: Apply dbMask to DB
    //
    mgf_mask( output + hlen + 1, olen - hlen - 1, output + 1, hlen,
               &md_ctx );

    // maskedSeed: Apply seedMask to seed
    //
    mgf_mask( output + 1, hlen, output + hlen + 1, olen - hlen - 1,
               &md_ctx );

    md_free_ctx( &md_ctx );

    return( ( mode == RSA_PUBLIC )
            ? rsa_public(  ctx, output, output )
            : rsa_private( ctx, output, output ) );
}
Example #15
0
File: rsa.c Project: ahawad/opensgx
/*
 * Implementation of the PKCS#1 v2.1 RSASSA-PSS-VERIFY function
 */
int rsa_rsassa_pss_verify_ext( rsa_context *ctx,
                               int (*f_rng)(void *, unsigned char *, size_t),
                               void *p_rng,
                               int mode,
                               md_type_t md_alg,
                               unsigned int hashlen,
                               const unsigned char *hash,
                               md_type_t mgf1_hash_id,
                               int expected_salt_len,
                               const unsigned char *sig )
{
    int ret;
    size_t siglen;
    unsigned char *p;
    unsigned char buf[POLARSSL_MPI_MAX_SIZE];
    unsigned char result[POLARSSL_MD_MAX_SIZE];
    unsigned char zeros[8];
    unsigned int hlen;
    size_t slen, msb;
    const md_info_t *md_info;
    md_context_t md_ctx;

    if( mode == RSA_PRIVATE && ctx->padding != RSA_PKCS_V21 )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    siglen = ctx->len;

    if( siglen < 16 || siglen > sizeof( buf ) )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    ret = ( mode == RSA_PUBLIC )
          ? rsa_public(  ctx, sig, buf )
          : rsa_private( ctx, f_rng, p_rng, sig, buf );

    if( ret != 0 )
        return( ret );

    p = buf;

    if( buf[siglen - 1] != 0xBC )
        return( POLARSSL_ERR_RSA_INVALID_PADDING );

    if( md_alg != POLARSSL_MD_NONE )
    {
        // Gather length of hash to sign
        //
        md_info = md_info_from_type( md_alg );
        if( md_info == NULL )
            return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

        hashlen = md_get_size( md_info );
    }

    md_info = md_info_from_type( mgf1_hash_id );
    if( md_info == NULL )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    hlen = md_get_size( md_info );
    slen = siglen - hlen - 1; /* Currently length of salt + padding */

    memset( zeros, 0, 8 );

    // Note: EMSA-PSS verification is over the length of N - 1 bits
    //
    msb = mpi_msb( &ctx->N ) - 1;

    // Compensate for boundary condition when applying mask
    //
    if( msb % 8 == 0 )
    {
        p++;
        siglen -= 1;
    }
    if( buf[0] >> ( 8 - siglen * 8 + msb ) )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    md_init( &md_ctx );
    md_init_ctx( &md_ctx, md_info );

    mgf_mask( p, siglen - hlen - 1, p + siglen - hlen - 1, hlen, &md_ctx );

    buf[0] &= 0xFF >> ( siglen * 8 - msb );

    while( p < buf + siglen && *p == 0 )
        p++;

    if( p == buf + siglen ||
        *p++ != 0x01 )
    {
        md_free( &md_ctx );
        return( POLARSSL_ERR_RSA_INVALID_PADDING );
    }

    /* Actual salt len */
    slen -= p - buf;

    if( expected_salt_len != RSA_SALT_LEN_ANY &&
        slen != (size_t) expected_salt_len )
    {
        md_free( &md_ctx );
        return( POLARSSL_ERR_RSA_INVALID_PADDING );
    }

    // Generate H = Hash( M' )
    //
    md_starts( &md_ctx );
    md_update( &md_ctx, zeros, 8 );
    md_update( &md_ctx, hash, hashlen );
    md_update( &md_ctx, p, slen );
    md_finish( &md_ctx, result );

    md_free( &md_ctx );

    if( memcmp( p + slen, result, hlen ) == 0 )
        return( 0 );
    else
        return( POLARSSL_ERR_RSA_VERIFY_FAILED );
}
Example #16
0
int bytes_to_key(const cipher_kt_t *cipher, const digest_type_t *md,
                 const uint8_t *pass, uint8_t *key, uint8_t *iv)
{
    size_t datal;
    datal = strlen((const char *)pass);
#if defined(USE_CRYPTO_OPENSSL)
    return EVP_BytesToKey(cipher, md, NULL, pass, datal, 1, key, iv);
#elif defined(USE_CRYPTO_POLARSSL)
    md_context_t c;
    unsigned char md_buf[MAX_MD_SIZE];
    int niv;
    int nkey;
    int addmd;
    unsigned int mds;
    unsigned int i;
    int rv;

    nkey = cipher_key_size(cipher);
    niv  = cipher_iv_size(cipher);
    rv   = nkey;
    if (pass == NULL) {
        return nkey;
    }

    memset(&c, 0, sizeof(md_context_t));
    if (md_init_ctx(&c, md)) {
        return 0;
    }
    addmd = 0;
    mds   = md_get_size(md);
    for (;;) {
        int error;
        do {
            error = 1;
            if (md_starts(&c)) {
                break;
            }
            if (addmd) {
                if (md_update(&c, &(md_buf[0]), mds)) {
                    break;
                }
            } else {
                addmd = 1;
            }
            if (md_update(&c, pass, datal)) {
                break;
            }
            if (md_finish(&c, &(md_buf[0]))) {
                break;
            }
            error = 0;
        } while (0);
        if (error) {
            md_free_ctx(&c);
            memset(md_buf, 0, MAX_MD_SIZE);
            return 0;
        }

        i = 0;
        if (nkey) {
            for (;;) {
                if (nkey == 0) {
                    break;
                }
                if (i == mds) {
                    break;
                }
                if (key != NULL) {
                    *(key++) = md_buf[i];
                }
                nkey--;
                i++;
            }
        }
        if (niv && (i != mds)) {
            for (;;) {
                if (niv == 0) {
                    break;
                }
                if (i == mds) {
                    break;
                }
                if (iv != NULL) {
                    *(iv++) = md_buf[i];
                }
                niv--;
                i++;
            }
        }
        if ((nkey == 0) && (niv == 0)) {
            break;
        }
    }
    md_free_ctx(&c);
    memset(md_buf, 0, MAX_MD_SIZE);
    return rv;
#elif defined(USE_CRYPTO_MBEDTLS)
/*
 *
 * Generic message digest context.
 *
 * typedef struct {
 *  Information about the associated message digest
 *  const mbedtls_md_info_t *md_info;
 *
 *  Digest-specific context
 *  void *md_ctx;
 *
 *   HMAC part of the context
 *  void *hmac_ctx;
 * } mbedtls_md_context_t; // mbedtls 2.0.0
 *
 * typedef struct {
 *  Information about the associated message digest
 *  const md_info_t *md_info;
 *
 *  Digest-specific context
 *  void *md_ctx;
 * } md_context_t; //polarssl 1.3
 *
 */
    // NOTE: different struct body, initialize new param hmac 0 to disable HMAC
    mbedtls_md_context_t c;
    unsigned char md_buf[MAX_MD_SIZE];
    int niv;
    int nkey;
    int addmd;
    unsigned int mds;
    unsigned int i;
    int rv;

    nkey = cipher_key_size(cipher);
    niv  = cipher_iv_size(cipher);
    rv   = nkey;
    if (pass == NULL) {
        return nkey;
    }

    memset(&c, 0, sizeof(mbedtls_md_context_t));
    // XXX: md_init_ctx superseded by mbedtls_md_setup() in 2.0.0
    // new param hmac      0 to save some memory if HMAC will not be used,
    //                     non-zero is HMAC is going to be used with this context.
    if (mbedtls_md_setup(&c, md, 1)) {
        return 0;
    }
    addmd = 0;
    mds   = mbedtls_md_get_size(md);
    for (;;) {
        int error;
        do {
            error = 1;
            if (mbedtls_md_starts(&c)) {
                break;
            }
            if (addmd) {
                if (mbedtls_md_update(&c, &(md_buf[0]), mds)) {
                    break;
                }
            } else {
                addmd = 1;
            }
            if (mbedtls_md_update(&c, pass, datal)) {
                break;
            }
            if (mbedtls_md_finish(&c, &(md_buf[0]))) {
                break;
            }
            error = 0;
        } while (0);
        if (error) {
            mbedtls_md_free(&c); // md_free_ctx deprecated, Use mbedtls_md_free() instead
            memset(md_buf, 0, MAX_MD_SIZE);
            return 0;
        }

        i = 0;
        if (nkey) {
            for (;;) {
                if (nkey == 0) {
                    break;
                }
                if (i == mds) {
                    break;
                }
                if (key != NULL) {
                    *(key++) = md_buf[i];
                }
                nkey--;
                i++;
            }
        }
        if (niv && (i != mds)) {
            for (;;) {
                if (niv == 0) {
                    break;
                }
                if (i == mds) {
                    break;
                }
                if (iv != NULL) {
                    *(iv++) = md_buf[i];
                }
                niv--;
                i++;
            }
        }
        if ((nkey == 0) && (niv == 0)) {
            break;
        }
    }
    mbedtls_md_free(&c); // NOTE: md_free_ctx deprecated, Use mbedtls_md_free() instead
    memset(md_buf, 0, MAX_MD_SIZE);
    return rv;
#endif
}
Example #17
0
/*
 * Do an RSA operation, then remove the message padding
 */
int rsa_pkcs1_decrypt( rsa_context *ctx,
                       int mode, size_t *olen,
                       const unsigned char *input,
                       unsigned char *output,
                       size_t output_max_len)
{
    int ret;
    size_t ilen;
    unsigned char *p;
    unsigned char buf[1024];
#if defined(POLARSSL_PKCS1_V21)
    unsigned char lhash[POLARSSL_MD_MAX_SIZE];
    unsigned int hlen;
    const md_info_t *md_info;
    md_context_t md_ctx;
#endif

    ilen = ctx->len;

    if( ilen < 16 || ilen > (int) sizeof( buf ) )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    ret = ( mode == RSA_PUBLIC )
          ? rsa_public(  ctx, input, buf )
          : rsa_private( ctx, input, buf );

    if( ret != 0 )
        return( ret );

    p = buf;

    switch( ctx->padding )
    {
        case RSA_PKCS_V15:

            if( *p++ != 0 || *p++ != RSA_CRYPT )
                return( POLARSSL_ERR_RSA_INVALID_PADDING );

            while( *p != 0 )
            {
                if( p >= buf + ilen - 1 )
                    return( POLARSSL_ERR_RSA_INVALID_PADDING );
                p++;
            }
            p++;
            break;

#if defined(POLARSSL_PKCS1_V21)
        case RSA_PKCS_V21:
            
            if( *p++ != 0 )
                return( POLARSSL_ERR_RSA_INVALID_PADDING );

            md_info = md_info_from_type( ctx->hash_id );
            if( md_info == NULL )
                return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
                
            hlen = md_get_size( md_info );
            memset( &md_ctx, 0, sizeof( md_context_t ) );

            md_init_ctx( &md_ctx, md_info );
            
            // Generate lHash
            //
            md( md_info, lhash, 0, lhash );

            // seed: Apply seedMask to maskedSeed
            //
            mgf_mask( buf + 1, hlen, buf + hlen + 1, ilen - hlen - 1,
                       &md_ctx );

            // DB: Apply dbMask to maskedDB
            //
            mgf_mask( buf + hlen + 1, ilen - hlen - 1, buf + 1, hlen,  
                       &md_ctx );

            p += hlen;

            // Check validity
            //
            if( memcmp( lhash, p, hlen ) != 0 )
                return( POLARSSL_ERR_RSA_INVALID_PADDING );

            p += hlen;

            while( *p == 0 && p < buf + ilen )
                p++;

            if( p == buf + ilen )
                return( POLARSSL_ERR_RSA_INVALID_PADDING );

            if( *p++ != 0x01 )
                return( POLARSSL_ERR_RSA_INVALID_PADDING );

            break;
#endif

        default:

            return( POLARSSL_ERR_RSA_INVALID_PADDING );
    }

    if (ilen - (int)(p - buf) > output_max_len)
        return( POLARSSL_ERR_RSA_OUTPUT_TOO_LARGE );

    *olen = ilen - (int)(p - buf);
    memcpy( output, p, *olen );

    return( 0 );
}
Example #18
0
/*
 * Add the message padding, then do an RSA operation
 */
int rsa_pkcs1_encrypt( rsa_context *ctx,
                       int (*f_rng)(void *),
                       void *p_rng,
                       int mode, size_t ilen,
                       const unsigned char *input,
                       unsigned char *output )
{
    size_t nb_pad, olen;
    unsigned char *p = output;
#if defined(POLARSSL_PKCS1_V21)
    unsigned int i, hlen;
    const md_info_t *md_info;
    md_context_t md_ctx;
#endif

    olen = ctx->len;

    if( f_rng == NULL )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    switch( ctx->padding )
    {
        case RSA_PKCS_V15:

            if( olen < ilen + 11 )
                return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

            nb_pad = olen - 3 - ilen;

            *p++ = 0;
            *p++ = RSA_CRYPT;

            while( nb_pad-- > 0 )
            {
                int rng_dl = 100;

                do {
                    *p = (unsigned char) f_rng( p_rng );
                } while( *p == 0 && --rng_dl );

                // Check if RNG failed to generate data
                //
                if( rng_dl == 0 )
                    return POLARSSL_ERR_RSA_RNG_FAILED;

                p++;
            }
            *p++ = 0;
            memcpy( p, input, ilen );
            break;
        
#if defined(POLARSSL_PKCS1_V21)
        case RSA_PKCS_V21:

            md_info = md_info_from_type( ctx->hash_id );
            if( md_info == NULL )
                return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

            hlen = md_get_size( md_info );

            if( olen < ilen + 2 * hlen + 2 || f_rng == NULL )
                return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

            memset( output, 0, olen );
            memset( &md_ctx, 0, sizeof( md_context_t ) );

            md_init_ctx( &md_ctx, md_info );

            *p++ = 0;

            // Generate a random octet string seed
            //
            for( i = 0; i < hlen; ++i )
                *p++ = (unsigned char) f_rng( p_rng ); 

            // Construct DB
            //
            md( md_info, p, 0, p );
            p += hlen;
            p += olen - 2 * hlen - 2 - ilen;
            *p++ = 1;
            memcpy( p, input, ilen ); 

            // maskedDB: Apply dbMask to DB
            //
            mgf_mask( output + hlen + 1, olen - hlen - 1, output + 1, hlen,  
                       &md_ctx );

            // maskedSeed: Apply seedMask to seed
            //
            mgf_mask( output + 1, hlen, output + hlen + 1, olen - hlen - 1,  
                       &md_ctx );
            break;
#endif

        default:

            return( POLARSSL_ERR_RSA_INVALID_PADDING );
    }

    return( ( mode == RSA_PUBLIC )
            ? rsa_public(  ctx, output, output )
            : rsa_private( ctx, output, output ) );
}
Example #19
0
int bytes_to_key(const cipher_kt_t *cipher, const digest_type_t *md, const uint8_t *pass, uint8_t *key, uint8_t *iv)
{
    size_t datal;
    datal = strlen((const char *) pass);
#if defined(USE_CRYPTO_OPENSSL)
    return EVP_BytesToKey(cipher, md, NULL, pass, datal, 1, key, iv);
#elif defined(USE_CRYPTO_POLARSSL)
    md_context_t c;
    unsigned char md_buf[MAX_MD_SIZE];
    int niv;
    int nkey;
    int addmd;
    unsigned int mds;
    unsigned int i;
    int rv;

    nkey = cipher_key_size(cipher);
    niv = cipher_iv_size(cipher);
    rv = nkey;
    if (pass == NULL) {
        return nkey;
    }

    memset(&c, 0, sizeof(md_context_t));
    if (md_init_ctx(&c, md)) {
        return 0;
    }
    addmd = 0;
    mds = md_get_size(md);
    for (;;) {
        int error;
        do {
            error = 1;
            if (md_starts(&c)) {
                break;
            }
            if (addmd) {
                if (md_update(&c, &(md_buf[0]), mds)) {
                    break;
                }  
            } else {
                addmd = 1;
            }
            if (md_update(&c, pass, datal))
                break;
            if (md_finish(&c, &(md_buf[0])))
                break;
            error = 0;
        } while (0);
        if (error) {
            md_free_ctx(&c);
            memset(md_buf, 0, MAX_MD_SIZE);
            return 0;
        }

        i=0;
        if (nkey) {
            for (;;) {
                if (nkey == 0) break;
                if (i == mds) break;
                if (key != NULL)
                    *(key++)=md_buf[i];
                nkey--;
                i++;
            }
        }
        if (niv && (i != mds)) {
            for (;;) {
                if (niv == 0) break;
                if (i == mds) break;
                if (iv != NULL)
                    *(iv++)=md_buf[i];
                niv--;
                i++;
            }
        }
        if ((nkey == 0) && (niv == 0)) break;
    }
    md_free_ctx(&c);
    memset(md_buf, 0, MAX_MD_SIZE);
    return rv;
#endif
}
Example #20
0
/*
 * Do an RSA operation and check the message digest
 */
int rsa_pkcs1_verify( rsa_context *ctx,
                      int mode,
                      int hash_id,
                      unsigned int hashlen,
                      const unsigned char *hash,
                      unsigned char *sig )
{
    int ret;
    size_t len, siglen;
    unsigned char *p, c;
    unsigned char buf[1024];
#if defined(POLARSSL_PKCS1_V21)
    unsigned char zeros[8];
    unsigned int hlen;
    size_t slen, msb;
    const md_info_t *md_info;
    md_context_t md_ctx;
#endif
    siglen = ctx->len;

    if( siglen < 16 || siglen > (int) sizeof( buf ) )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    ret = ( mode == RSA_PUBLIC )
          ? rsa_public(  ctx, sig, buf )
          : rsa_private( ctx, sig, buf );

    if( ret != 0 )
        return( ret );

    p = buf;

    switch( ctx->padding )
    {
        case RSA_PKCS_V15:

            if( *p++ != 0 || *p++ != RSA_SIGN )
                return( POLARSSL_ERR_RSA_INVALID_PADDING );

            while( *p != 0 )
            {
                if( p >= buf + siglen - 1 || *p != 0xFF )
                    return( POLARSSL_ERR_RSA_INVALID_PADDING );
                p++;
            }
            p++;

            len = siglen - (int)( p - buf );

            if( len == 34 )
            {
                c = p[13];
                p[13] = 0;

                if( memcmp( p, ASN1_HASH_MDX, 18 ) != 0 )
                    return( POLARSSL_ERR_RSA_VERIFY_FAILED );

                if( ( c == 2 && hash_id == SIG_RSA_MD2 ) ||
                        ( c == 4 && hash_id == SIG_RSA_MD4 ) ||
                        ( c == 5 && hash_id == SIG_RSA_MD5 ) )
                {
                    if( memcmp( p + 18, hash, 16 ) == 0 ) 
                        return( 0 );
                    else
                        return( POLARSSL_ERR_RSA_VERIFY_FAILED );
                }
            }

            if( len == 35 && hash_id == SIG_RSA_SHA1 )
            {
                if( memcmp( p, ASN1_HASH_SHA1, 15 ) == 0 &&
                        memcmp( p + 15, hash, 20 ) == 0 )
                    return( 0 );
                else
                    return( POLARSSL_ERR_RSA_VERIFY_FAILED );
            }
            if( ( len == 19 + 28 && p[14] == 4 && hash_id == SIG_RSA_SHA224 ) ||
                    ( len == 19 + 32 && p[14] == 1 && hash_id == SIG_RSA_SHA256 ) ||
                    ( len == 19 + 48 && p[14] == 2 && hash_id == SIG_RSA_SHA384 ) ||
                    ( len == 19 + 64 && p[14] == 3 && hash_id == SIG_RSA_SHA512 ) )
            {
                c = p[1] - 17;
                p[1] = 17;
                p[14] = 0;

                if( p[18] == c &&
                        memcmp( p, ASN1_HASH_SHA2X, 18 ) == 0 &&
                        memcmp( p + 19, hash, c ) == 0 )
                    return( 0 );
                else
                    return( POLARSSL_ERR_RSA_VERIFY_FAILED );
            }

            if( len == hashlen && hash_id == SIG_RSA_RAW )
            {
                if( memcmp( p, hash, hashlen ) == 0 )
                    return( 0 );
                else
                    return( POLARSSL_ERR_RSA_VERIFY_FAILED );
            }

            break;

#if defined(POLARSSL_PKCS1_V21)
        case RSA_PKCS_V21:
            
            if( buf[siglen - 1] != 0xBC )
                return( POLARSSL_ERR_RSA_INVALID_PADDING );

            switch( hash_id )
            {
                case SIG_RSA_MD2:
                case SIG_RSA_MD4:
                case SIG_RSA_MD5:
                    hashlen = 16;
                    break;

                case SIG_RSA_SHA1:
                    hashlen = 20;
                    break;

                case SIG_RSA_SHA224:
                    hashlen = 28;
                    break;

                case SIG_RSA_SHA256:
                    hashlen = 32;
                    break;

                case SIG_RSA_SHA384:
                    hashlen = 48;
                    break;

                case SIG_RSA_SHA512:
                    hashlen = 64;
                    break;

                default:
                    return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
            }

            md_info = md_info_from_type( ctx->hash_id );
            if( md_info == NULL )
                return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
                
            hlen = md_get_size( md_info );
            slen = siglen - hlen - 1;

            memset( &md_ctx, 0, sizeof( md_context_t ) );
            memset( zeros, 0, 8 );

            md_init_ctx( &md_ctx, md_info );

            // Note: EMSA-PSS verification is over the length of N - 1 bits
            //
            msb = mpi_msb( &ctx->N ) - 1;

            // Compensate for boundary condition when applying mask
            //
            if( msb % 8 == 0 )
            {
                p++;
                siglen -= 1;
            }
            if( buf[0] >> ( 8 - siglen * 8 + msb ) )
                return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

            mgf_mask( p, siglen - hlen - 1, p + siglen - hlen - 1, hlen, &md_ctx );

            buf[0] &= 0xFF >> ( siglen * 8 - msb );

            while( *p == 0 && p < buf + siglen )
                p++;

            if( p == buf + siglen )
                return( POLARSSL_ERR_RSA_INVALID_PADDING );

            if( *p++ != 0x01 )
                return( POLARSSL_ERR_RSA_INVALID_PADDING );

            slen -= p - buf;

            // Generate H = Hash( M' )
            //
            md_starts( &md_ctx );
            md_update( &md_ctx, zeros, 8 );
            md_update( &md_ctx, hash, hashlen );
            md_update( &md_ctx, p, slen );
            md_finish( &md_ctx, p );

            if( memcmp( p, p + slen, hlen ) == 0 )
                return( 0 );
            else
                return( POLARSSL_ERR_RSA_VERIFY_FAILED );
            break;
#endif

        default:

            return( POLARSSL_ERR_RSA_INVALID_PADDING );
    }

    return( POLARSSL_ERR_RSA_INVALID_PADDING );
}
Example #21
0
int main( int argc, char *argv[] )
{
    int ret, i;
    const md_info_t *md_info;
    md_context_t md_ctx;

    md_init( &md_ctx );

    if( argc == 1 )
    {
        const int *list;

        printf( "print mode:  generic_sum <md> <file> <file> ...\n" );
        printf( "check mode:  generic_sum <md> -c <checksum file>\n" );

        printf( "\nAvailable message digests:\n" );
        list = md_list();
        while( *list )
        {
            md_info = md_info_from_type( *list );
            printf( "  %s\n", md_info->name );
            list++;
        }

#if defined(_WIN32)
        printf( "\n  Press Enter to exit this program.\n" );
        fflush( stdout ); getchar();
#endif

        return( 1 );
    }

    /*
     * Read the MD from the command line
     */
    md_info = md_info_from_string( argv[1] );
    if( md_info == NULL )
    {
        fprintf( stderr, "Message Digest '%s' not found\n", argv[1] );
        return( 1 );
    }
    if( md_init_ctx( &md_ctx, md_info) )
    {
        fprintf( stderr, "Failed to initialize context.\n" );
        return( 1 );
    }

    ret = 0;
    if( argc == 4 && strcmp( "-c", argv[2] ) == 0 )
    {
        ret |= generic_check( md_info, argv[3] );
        goto exit;
    }

    for( i = 2; i < argc; i++ )
        ret |= generic_print( md_info, argv[i] );

exit:
    md_free( &md_ctx );

    return( ret );
}