Example #1
0
/*
 * run_get_bitmap -- initializes run bitmap information
 */
static void
run_get_bitmap(const struct memory_block *m, struct run_bitmap *b)
{
	struct chunk_header *hdr = heap_get_chunk_hdr(m->heap, m);
	struct chunk_run *run = heap_get_chunk_run(m->heap, m);

	uint32_t size_idx = hdr->size_idx;
	memblock_run_bitmap(&size_idx, hdr->flags, run->hdr.block_size,
		run->hdr.alignment, run->content, b);
	ASSERTeq(size_idx, hdr->size_idx);
}
Example #2
0
/*
 * alloc_class_find_or_create -- (internal) searches for the
 * biggest allocation class for which unit_size is evenly divisible by n.
 * If no such class exists, create one.
 */
static struct alloc_class *
alloc_class_find_or_create(struct alloc_class_collection *ac, size_t n)
{
	LOG(10, NULL);

	COMPILE_ERROR_ON(MAX_ALLOCATION_CLASSES > UINT8_MAX);
	uint64_t required_size_bytes = n * RUN_MIN_NALLOCS;
	uint32_t required_size_idx = 1;
	if (required_size_bytes > RUN_DEFAULT_SIZE) {
		required_size_bytes -= RUN_DEFAULT_SIZE;
		required_size_idx +=
			CALC_SIZE_IDX(CHUNKSIZE, required_size_bytes);
		if (required_size_idx > RUN_SIZE_IDX_CAP)
			required_size_idx = RUN_SIZE_IDX_CAP;
	}

	for (int i = MAX_ALLOCATION_CLASSES - 1; i >= 0; --i) {
		struct alloc_class *c = ac->aclasses[i];

		if (c == NULL || c->type == CLASS_HUGE ||
				c->run.size_idx < required_size_idx)
			continue;

		if (n % c->unit_size == 0 &&
			n / c->unit_size <= RUN_UNIT_MAX_ALLOC)
			return c;
	}

	/*
	 * In order to minimize the wasted space at the end of the run the
	 * run data size must be divisible by the allocation class unit size
	 * with the smallest possible remainder, preferably 0.
	 */
	struct run_bitmap b;
	size_t runsize_bytes = 0;
	do {
		if (runsize_bytes != 0) /* don't increase on first iteration */
			n += ALLOC_BLOCK_SIZE_GEN;

		uint32_t size_idx = required_size_idx;
		memblock_run_bitmap(&size_idx, ALLOC_CLASS_DEFAULT_FLAGS, n, 0,
			NULL, &b);

		runsize_bytes = RUN_CONTENT_SIZE_BYTES(size_idx) - b.size;
	} while ((runsize_bytes % n) > MAX_RUN_WASTED_BYTES);

	/*
	 * Now that the desired unit size is found the existing classes need
	 * to be searched for possible duplicates. If a class that can handle
	 * the calculated size already exists, simply return that.
	 */
	for (int i = 1; i < MAX_ALLOCATION_CLASSES; ++i) {
		struct alloc_class *c = ac->aclasses[i];
		if (c == NULL || c->type == CLASS_HUGE)
			continue;
		if (n / c->unit_size <= RUN_UNIT_MAX_ALLOC &&
			n % c->unit_size == 0)
			return c;
		if (c->unit_size == n)
			return c;
	}

	return alloc_class_new(-1, ac, CLASS_RUN, HEADER_COMPACT, n, 0,
		required_size_idx);
}
Example #3
0
/*
 * memblock_huge_init -- initializes a new huge memory block
 */
struct memory_block
memblock_huge_init(struct palloc_heap *heap,
	uint32_t chunk_id, uint32_t zone_id, uint32_t size_idx)
{
	struct memory_block m = MEMORY_BLOCK_NONE;
	m.chunk_id = chunk_id;
	m.zone_id = zone_id;
	m.size_idx = size_idx;
	m.heap = heap;

	struct chunk_header nhdr = {
		.type = CHUNK_TYPE_FREE,
		.flags = 0,
		.size_idx = size_idx
	};

	struct chunk_header *hdr = heap_get_chunk_hdr(heap, &m);

	VALGRIND_DO_MAKE_MEM_UNDEFINED(hdr, sizeof(*hdr));
	VALGRIND_ANNOTATE_NEW_MEMORY(hdr, sizeof(*hdr));

	*hdr = nhdr; /* write the entire header (8 bytes) at once */

	pmemops_persist(&heap->p_ops, hdr, sizeof(*hdr));

	huge_write_footer(hdr, size_idx);

	memblock_rebuild_state(heap, &m);

	return m;
}

/*
 * memblock_run_init -- initializes a new run memory block
 */
struct memory_block
memblock_run_init(struct palloc_heap *heap,
	uint32_t chunk_id, uint32_t zone_id, uint32_t size_idx, uint16_t flags,
	uint64_t unit_size, uint64_t alignment)
{
	ASSERTne(size_idx, 0);

	struct memory_block m = MEMORY_BLOCK_NONE;
	m.chunk_id = chunk_id;
	m.zone_id = zone_id;
	m.size_idx = size_idx;
	m.heap = heap;

	struct zone *z = ZID_TO_ZONE(heap->layout, zone_id);

	struct chunk_run *run = heap_get_chunk_run(heap, &m);
	size_t runsize = SIZEOF_RUN(run, size_idx);

	VALGRIND_DO_MAKE_MEM_UNDEFINED(run, runsize);

	/* add/remove chunk_run and chunk_header to valgrind transaction */
	VALGRIND_ADD_TO_TX(run, runsize);
	run->hdr.block_size = unit_size;
	run->hdr.alignment = alignment;

	struct run_bitmap b;
	memblock_run_bitmap(&size_idx, flags, unit_size, alignment,
		run->content, &b);

	size_t bitmap_size = b.size;

	/* set all the bits */
	memset(b.values, 0xFF, bitmap_size);

	/* clear only the bits available for allocations from this bucket */
	memset(b.values, 0, sizeof(*b.values) * (b.nvalues - 1));

	unsigned trailing_bits = b.nbits % RUN_BITS_PER_VALUE;
	uint64_t last_value = UINT64_MAX << trailing_bits;
	b.values[b.nvalues - 1] = last_value;

	VALGRIND_REMOVE_FROM_TX(run, runsize);

	pmemops_flush(&heap->p_ops, run,
		sizeof(struct chunk_run_header) +
		bitmap_size);

	struct chunk_header run_data_hdr;
	run_data_hdr.type = CHUNK_TYPE_RUN_DATA;
	run_data_hdr.flags = 0;

	VALGRIND_ADD_TO_TX(&z->chunk_headers[chunk_id],
		sizeof(struct chunk_header) * size_idx);

	struct chunk_header *data_hdr;
	for (unsigned i = 1; i < size_idx; ++i) {
		data_hdr = &z->chunk_headers[chunk_id + i];
		VALGRIND_DO_MAKE_MEM_UNDEFINED(data_hdr, sizeof(*data_hdr));
		VALGRIND_ANNOTATE_NEW_MEMORY(data_hdr, sizeof(*data_hdr));
		run_data_hdr.size_idx = i;
		*data_hdr = run_data_hdr;
	}
	pmemops_persist(&heap->p_ops,
		&z->chunk_headers[chunk_id + 1],
		sizeof(struct chunk_header) * (size_idx - 1));

	struct chunk_header *hdr = &z->chunk_headers[chunk_id];
	ASSERT(hdr->type == CHUNK_TYPE_FREE);

	VALGRIND_ANNOTATE_NEW_MEMORY(hdr, sizeof(*hdr));

	struct chunk_header run_hdr;
	run_hdr.size_idx = hdr->size_idx;
	run_hdr.type = CHUNK_TYPE_RUN;
	run_hdr.flags = flags;
	*hdr = run_hdr;
	pmemops_persist(&heap->p_ops, hdr, sizeof(*hdr));

	VALGRIND_REMOVE_FROM_TX(&z->chunk_headers[chunk_id],
		sizeof(struct chunk_header) * size_idx);

	memblock_rebuild_state(heap, &m);

	return m;
}
Example #4
0
/*
 * alloc_class_new -- creates a new allocation class
 */
struct alloc_class *
alloc_class_new(int id, struct alloc_class_collection *ac,
	enum alloc_class_type type, enum header_type htype,
	size_t unit_size, size_t alignment,
	uint32_t size_idx)
{
	LOG(10, NULL);

	struct alloc_class *c = Malloc(sizeof(*c));
	if (c == NULL)
		goto error_class_alloc;

	c->unit_size = unit_size;
	c->header_type = htype;
	c->type = type;
	c->flags = (uint16_t)
		(header_type_to_flag[c->header_type] |
		(alignment ? CHUNK_FLAG_ALIGNED : 0)) |
		ALLOC_CLASS_DEFAULT_FLAGS;

	switch (type) {
		case CLASS_HUGE:
			id = DEFAULT_ALLOC_CLASS_ID;
			break;
		case CLASS_RUN:
			c->run.alignment = alignment;
			struct run_bitmap b;
			memblock_run_bitmap(&size_idx, c->flags, unit_size,
				alignment, NULL, &b);
			c->run.nallocs = b.nbits;
			c->run.size_idx = size_idx;

			uint8_t slot = (uint8_t)id;
			if (id < 0 && alloc_class_find_first_free_slot(ac,
					&slot) != 0)
				goto error_class_alloc;
			id = slot;

			size_t map_idx = SIZE_TO_CLASS_MAP_INDEX(c->unit_size,
				ac->granularity);
			ASSERT(map_idx <= UINT32_MAX);
			uint32_t map_idx_s = (uint32_t)map_idx;
			uint16_t size_idx_s = (uint16_t)size_idx;
			uint16_t flags_s = (uint16_t)c->flags;
			uint64_t k = RUN_CLASS_KEY_PACK(map_idx_s,
				flags_s, size_idx_s);
			if (critnib_insert(ac->class_map_by_unit_size,
			    k, c) != 0) {
				ERR("unable to register allocation class");
				goto error_map_insert;
			}

			break;
		default:
			ASSERT(0);
	}

	c->id = (uint8_t)id;
	ac->aclasses[c->id] = c;
	return c;

error_map_insert:
	Free(c);
error_class_alloc:
	if (id >= 0)
		alloc_class_reservation_clear(ac, id);
	return NULL;
}