static int read_pmem(struct page *page, unsigned int off, void *pmem_addr, unsigned int len) { int rc; void *mem = kmap_atomic(page); rc = memcpy_from_pmem(mem + off, pmem_addr, len); kunmap_atomic(mem); if (rc) return -EIO; return 0; }
static int pmem_do_bvec(struct pmem_device *pmem, struct page *page, unsigned int len, unsigned int off, int rw, sector_t sector) { int rc = 0; bool bad_pmem = false; void *mem = kmap_atomic(page); phys_addr_t pmem_off = sector * 512 + pmem->data_offset; void __pmem *pmem_addr = pmem->virt_addr + pmem_off; if (unlikely(is_bad_pmem(&pmem->bb, sector, len))) bad_pmem = true; if (rw == READ) { if (unlikely(bad_pmem)) rc = -EIO; else { rc = memcpy_from_pmem(mem + off, pmem_addr, len); flush_dcache_page(page); } } else { /* * Note that we write the data both before and after * clearing poison. The write before clear poison * handles situations where the latest written data is * preserved and the clear poison operation simply marks * the address range as valid without changing the data. * In this case application software can assume that an * interrupted write will either return the new good * data or an error. * * However, if pmem_clear_poison() leaves the data in an * indeterminate state we need to perform the write * after clear poison. */ flush_dcache_page(page); memcpy_to_pmem(pmem_addr, mem + off, len); if (unlikely(bad_pmem)) { pmem_clear_poison(pmem, pmem_off, len); memcpy_to_pmem(pmem_addr, mem + off, len); } } kunmap_atomic(mem); return rc; }
struct page *read_dax_sector(struct block_device *bdev, sector_t n) { struct page *page = alloc_pages(GFP_KERNEL, 0); struct blk_dax_ctl dax = { .size = PAGE_SIZE, .sector = n & ~((((int) PAGE_SIZE) / 512) - 1), }; long rc; if (!page) return ERR_PTR(-ENOMEM); rc = dax_map_atomic(bdev, &dax); if (rc < 0) return ERR_PTR(rc); memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE); dax_unmap_atomic(bdev, &dax); return page; } static bool buffer_written(struct buffer_head *bh) { return buffer_mapped(bh) && !buffer_unwritten(bh); } /* * When ext4 encounters a hole, it returns without modifying the buffer_head * which means that we can't trust b_size. To cope with this, we set b_state * to 0 before calling get_block and, if any bit is set, we know we can trust * b_size. Unfortunate, really, since ext4 knows precisely how long a hole is * and would save us time calling get_block repeatedly. */ static bool buffer_size_valid(struct buffer_head *bh) { return bh->b_state != 0; } static sector_t to_sector(const struct buffer_head *bh, const struct inode *inode) { sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9); return sector; }
static void pmem_do_bvec(struct pmem_device *pmem, struct page *page, unsigned int len, unsigned int off, int rw, sector_t sector) { void *mem = kmap_atomic(page); phys_addr_t pmem_off = sector * 512 + pmem->data_offset; void __pmem *pmem_addr = pmem->virt_addr + pmem_off; if (rw == READ) { memcpy_from_pmem(mem + off, pmem_addr, len); flush_dcache_page(page); } else { flush_dcache_page(page); memcpy_to_pmem(pmem_addr, mem + off, len); } kunmap_atomic(mem); }
static int pmem_rw_bytes(struct nd_namespace_common *ndns, resource_size_t offset, void *buf, size_t size, int rw) { struct pmem_device *pmem = dev_get_drvdata(ndns->claim); if (unlikely(offset + size > pmem->size)) { dev_WARN_ONCE(&ndns->dev, 1, "request out of range\n"); return -EFAULT; } if (rw == READ) memcpy_from_pmem(buf, pmem->virt_addr + offset, size); else { memcpy_to_pmem(pmem->virt_addr + offset, buf, size); wmb_pmem(); } return 0; }
static int nsio_rw_bytes(struct nd_namespace_common *ndns, resource_size_t offset, void *buf, size_t size, int rw) { struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev); if (unlikely(offset + size > nsio->size)) { dev_WARN_ONCE(&ndns->dev, 1, "request out of range\n"); return -EFAULT; } if (rw == READ) { unsigned int sz_align = ALIGN(size + (offset & (512 - 1)), 512); if (unlikely(is_bad_pmem(&nsio->bb, offset / 512, sz_align))) return -EIO; return memcpy_from_pmem(buf, nsio->addr + offset, size); } else { memcpy_to_pmem(nsio->addr + offset, buf, size); nvdimm_flush(to_nd_region(ndns->dev.parent)); } return 0; }
struct page *read_dax_sector(struct block_device *bdev, sector_t n) { struct page *page = alloc_pages(GFP_KERNEL, 0); struct blk_dax_ctl dax = { .size = PAGE_SIZE, .sector = n & ~((((int) PAGE_SIZE) / 512) - 1), }; long rc; if (!page) return ERR_PTR(-ENOMEM); rc = dax_map_atomic(bdev, &dax); if (rc < 0) return ERR_PTR(rc); memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE); dax_unmap_atomic(bdev, &dax); return page; } /* * dax_clear_sectors() is called from within transaction context from XFS, * and hence this means the stack from this point must follow GFP_NOFS * semantics for all operations. */ int dax_clear_sectors(struct block_device *bdev, sector_t _sector, long _size) { struct blk_dax_ctl dax = { .sector = _sector, .size = _size, }; might_sleep(); do { long count, sz; count = dax_map_atomic(bdev, &dax); if (count < 0) return count; sz = min_t(long, count, SZ_128K); clear_pmem(dax.addr, sz); dax.size -= sz; dax.sector += sz / 512; dax_unmap_atomic(bdev, &dax); cond_resched(); } while (dax.size); wmb_pmem(); return 0; } EXPORT_SYMBOL_GPL(dax_clear_sectors); /* the clear_pmem() calls are ordered by a wmb_pmem() in the caller */ static void dax_new_buf(void __pmem *addr, unsigned size, unsigned first, loff_t pos, loff_t end) { loff_t final = end - pos + first; /* The final byte of the buffer */ if (first > 0) clear_pmem(addr, first); if (final < size) clear_pmem(addr + final, size - final); }