/* Store a value to memory. If a value requires more than 8 bytes a series
   of 8-byte stores will be generated. */
static __inline__ void
store(IRSB *irsb, IREndness endian, HWord haddr, IRExpr *data)
{
   IROp high, low;
   IRExpr *addr, *next_addr;

   if (VEX_HOST_WORDSIZE == 8) {
      addr = mkU64(haddr);
      next_addr = binop(Iop_Add64, addr, mkU64(8));
   } else if (VEX_HOST_WORDSIZE == 4) {
      addr = mkU32(haddr);
      next_addr = binop(Iop_Add32, addr, mkU32(8));
   } else {
      vpanic("invalid #bytes for address");
   }

   IRType type = typeOfIRExpr(irsb->tyenv, data);

   vassert(type == Ity_I1 || sizeofIRType(type) <= 16);

   switch (type) {
   case Ity_I128: high = Iop_128HIto64;   low = Iop_128to64;     goto store128;
   case Ity_F128: high = Iop_F128HItoF64; low = Iop_F128LOtoF64; goto store128;
   case Ity_D128: high = Iop_D128HItoD64; low = Iop_D128LOtoD64; goto store128;

   store128:
     /* Two stores of 64 bit each. */
      if (endian == Iend_BE) {
         /* The more significant bits are at the lower address. */
         store_aux(irsb, endian, addr, unop(high, data));
         store_aux(irsb, endian, next_addr, unop(low, data));
      } else {
         /* The more significant bits are at the higher address. */
         store_aux(irsb, endian, addr, unop(low, data));
         store_aux(irsb, endian, next_addr, unop(high, data));
      }
      return;

   default:
      store_aux(irsb, endian, addr, data);
      return;
   }
}
/* Load a value from memory. Loads of more than 8 byte are split into
   a series of 8-byte loads and combined using appropriate IROps. */
static IRExpr *
load(IREndness endian, IRType type, HWord haddr)
{
   IROp concat;
   IRExpr *addr, *next_addr;

   vassert(type == Ity_I1 || sizeofIRType(type) <= 16);

   if (VEX_HOST_WORDSIZE == 8) {
      addr = mkU64(haddr);
      next_addr = binop(Iop_Add64, addr, mkU64(8));
   } else if (VEX_HOST_WORDSIZE == 4) {
      addr = mkU32(haddr);
      next_addr = binop(Iop_Add32, addr, mkU32(8));
   } else {
      vpanic("invalid #bytes for address");
   }

   switch (type) {
   case Ity_I128: concat = Iop_64HLto128;   type = Ity_I64; goto load128;
   case Ity_F128: concat = Iop_F64HLtoF128; type = Ity_F64; goto load128;
   case Ity_D128: concat = Iop_D64HLtoD128; type = Ity_D64; goto load128;

   load128:
     /* Two loads of 64 bit each. */
      if (endian == Iend_BE) {
         /* The more significant bits are at the lower address. */
         return binop(concat,
                      load_aux(endian, type, addr),
                      load_aux(endian, type, next_addr));
      } else {
         /* The more significant bits are at the higher address. */
         return binop(concat,
                      load_aux(endian, type, next_addr),
                      load_aux(endian, type, addr));
      }

   default:
      return load_aux(endian, type, addr);
   }
}
/* Inject IR stmts depending on the data provided in the control
   block iricb. */
void
vex_inject_ir(IRSB *irsb, IREndness endian)
{
   IRExpr *data, *rounding_mode, *opnd1, *opnd2, *opnd3, *opnd4;

   rounding_mode = NULL;
   if (iricb.rounding_mode != NO_ROUNDING_MODE) {
      rounding_mode = mkU32(iricb.rounding_mode);
   }

   switch (iricb.num_operands) {
   case 1:
      opnd1 = load(endian, iricb.t_opnd1, iricb.opnd1);
      if (rounding_mode)
         data = binop(iricb.op, rounding_mode, opnd1);
      else
         data = unop(iricb.op, opnd1);
      break;

   case 2:
      opnd1 = load(endian, iricb.t_opnd1, iricb.opnd1);
      /* HACK, compiler warning ‘opnd2’ may be used uninitialized */
      opnd2 = opnd1;

      /* immediate_index = 0  immediate value is not used.
       * immediate_index = 2  opnd2 is an immediate value.
       */
      vassert(iricb.immediate_index == 0 || iricb.immediate_index == 2);

      if (iricb.immediate_index == 2) {
         vassert((iricb.t_opnd2 == Ity_I8) || (iricb.t_opnd2 == Ity_I16)
                 || (iricb.t_opnd2 == Ity_I32));

         /* Interpret the memory as an ULong. */
         if (iricb.immediate_type == Ity_I8) {
            opnd2 = mkU8(*((ULong *)iricb.opnd2));
         } else if (iricb.immediate_type == Ity_I16) {
            opnd2 = mkU16(*((ULong *)iricb.opnd2));
         } else if (iricb.immediate_type == Ity_I32) {
            opnd2 = mkU32(*((ULong *)iricb.opnd2));
         }
      } else {
         opnd2 = load(endian, iricb.t_opnd2, iricb.opnd2);
      }

      if (rounding_mode)
         data = triop(iricb.op, rounding_mode, opnd1, opnd2);
      else
         data = binop(iricb.op, opnd1, opnd2);
      break;

   case 3:
      opnd1 = load(endian, iricb.t_opnd1, iricb.opnd1);
      opnd2 = load(endian, iricb.t_opnd2, iricb.opnd2);
      /* HACK, compiler warning ‘opnd3’ may be used uninitialized */
      opnd3 = opnd2;

      /* immediate_index = 0  immediate value is not used.
       * immediate_index = 3  opnd3 is an immediate value.
       */
      vassert(iricb.immediate_index == 0 || iricb.immediate_index == 3);

      if (iricb.immediate_index == 3) {
         vassert((iricb.t_opnd3 == Ity_I8) || (iricb.t_opnd3 == Ity_I16)
                 || (iricb.t_opnd2 == Ity_I32));

         if (iricb.immediate_type == Ity_I8) {
            opnd3 = mkU8(*((ULong *)iricb.opnd3));
         } else if (iricb.immediate_type == Ity_I16) {
            opnd3 = mkU16(*((ULong *)iricb.opnd3));
         } else if (iricb.immediate_type == Ity_I32) {
            opnd3 = mkU32(*((ULong *)iricb.opnd3));
         }
      } else {
         opnd3 = load(endian, iricb.t_opnd3, iricb.opnd3);
      }
      if (rounding_mode)
         data = qop(iricb.op, rounding_mode, opnd1, opnd2, opnd3);
      else
         data = triop(iricb.op, opnd1, opnd2, opnd3);
      break;

   case 4:
      vassert(rounding_mode == NULL);
      opnd1 = load(endian, iricb.t_opnd1, iricb.opnd1);
      opnd2 = load(endian, iricb.t_opnd2, iricb.opnd2);
      opnd3 = load(endian, iricb.t_opnd3, iricb.opnd3);
      /* HACK, compiler warning ‘opnd4’ may be used uninitialized */
      opnd4 = opnd3;

      /* immediate_index = 0  immediate value is not used.
       * immediate_index = 4  opnd4 is an immediate value.
       */
      vassert(iricb.immediate_index == 0 || iricb.immediate_index == 4);

      if (iricb.immediate_index == 4) {
         vassert((iricb.t_opnd3 == Ity_I8) || (iricb.t_opnd3 == Ity_I16)
                 || (iricb.t_opnd2 == Ity_I32));

         if (iricb.immediate_type == Ity_I8) {
            opnd4 = mkU8(*((ULong *)iricb.opnd4));
         } else if (iricb.immediate_type == Ity_I16) {
            opnd4 = mkU16(*((ULong *)iricb.opnd4));
         } else if (iricb.immediate_type == Ity_I32) {
            opnd4 = mkU32(*((ULong *)iricb.opnd4));
         }
      } else {
         opnd4 = load(endian, iricb.t_opnd4, iricb.opnd4);
      }
      data = qop(iricb.op, opnd1, opnd2, opnd3, opnd4);
      break;

   default:
      vpanic("unsupported operator");
   }

   store(irsb, endian, iricb.result, data);

   if (0) {
      vex_printf("BEGIN inject\n");
      if (iricb.t_result == Ity_I1 || sizeofIRType(iricb.t_result) <= 8) {
         ppIRStmt(irsb->stmts[irsb->stmts_used - 1]);
      } else if (sizeofIRType(iricb.t_result) == 16) {
         ppIRStmt(irsb->stmts[irsb->stmts_used - 2]);
         vex_printf("\n");
         ppIRStmt(irsb->stmts[irsb->stmts_used - 1]);
      }
      vex_printf("\nEND inject\n");
   }
}
Example #4
0
/* This version of flushEvents avoids callbacks entirely, except when the
   number of outstanding events is enough to be flushed - in which case a
   call to flush_data() is made.  In all other cases, events are handled by
   creating IR to encode and store the memory access information to the
   array of outstanding events.  */
static void flushEventsRange(IRSB* sb, Int start, Int size)
{
    // Conditionally call the flush method if there's not enough room for
    // all the new events.  This may flush an incomplete block.
    IRExpr *entries_addr = mkU64((ULong)&theEntries);
    IRExpr *entries = load(ENDIAN, Ity_I32, entries_addr);

    IRExpr *max_entries_addr = mkU64((ULong)&theMaxEntries);
    IRExpr *max_entries = load(ENDIAN, Ity_I32, max_entries_addr);

    IRDirty*   di =
        unsafeIRDirty_0_N(0,
            "flush_data", VG_(fnptr_to_fnentry)( flush_data ),
            mkIRExprVec_0() );

    di->guard =
        binop(Iop_CmpLT32S, max_entries,
                binop(Iop_Add32, entries, mkU32(size)));

    addStmtToIRSB( sb, IRStmt_Dirty(di) );

    // Reload entries since it might have been changed by the callback
    entries = load(ENDIAN, Ity_I32, entries_addr);

    // Initialize the first address where we'll write trace information.
    // This will be advanced in the loop.
    IRExpr *addr =
        binop(Iop_Add64,
                load(ENDIAN, Ity_I64, mkU64((ULong)&theBlock)),
                unop(Iop_32Uto64,
                    binop(Iop_Mul32, entries, mkU32(sizeof(MV_TraceAddr)))));

    // Grab the thread id
    IRExpr *thread = load(ENDIAN, Ity_I32, mkU64((ULong)&theThread));

    Int        i;
    for (i = start; i < start+size; i++) {

        Event*     ev = &events[i];

        uint32 type = 0;
        switch (ev->ekind) {
            case Event_Ir:
                type = MV_ShiftedInstr;
                break;
            case Event_Dr:
                type = MV_ShiftedRead;
                break;
            case Event_Dw:
            case Event_Dm:
                type = MV_ShiftedWrite;
                break;
            default:
                tl_assert(0);
        }

        type |= ev->type << MV_DataShift;
        type |= ((uint32)ev->size << MV_SizeShift);

        // Construct the address and store it
        IRExpr *data = binop(Iop_Or32, mkU32(type), thread);

        IRStmt *store;

        store = IRStmt_Store(ENDIAN, addr, ev->addr);
        addStmtToIRSB( sb, store );

        // Advance to the type
        addr = binop(Iop_Add64, addr, mkU64(sizeof(uint64)));

        store = IRStmt_Store(ENDIAN, addr, data);
        addStmtToIRSB( sb, store );

        // Advance to the next entry
        addr = binop(Iop_Add64, addr, mkU64(sizeof(MV_TraceAddr)-sizeof(uint64)));
    }

    // Store the new entry count
    IRStmt *entries_store =
        IRStmt_Store(ENDIAN, entries_addr,
                binop(Iop_Add32, entries, mkU32(size)));

    addStmtToIRSB( sb, entries_store );
}
Example #5
0
/* Inject IR stmts depending on the data provided in the control
   block iricb. */
void
vex_inject_ir(IRSB *irsb, IREndness endian)
{
   IRExpr *data, *rounding_mode, *opnd1, *opnd2, *opnd3, *opnd4;

   rounding_mode = NULL;
   if (iricb.rounding_mode != NO_ROUNDING_MODE) {
      rounding_mode = mkU32(iricb.rounding_mode);
   }

   switch (iricb.num_operands) {
   case 1:
      opnd1 = load(endian, iricb.t_opnd1, iricb.opnd1);
      if (rounding_mode)
         data = binop(iricb.op, rounding_mode, opnd1);
      else
         data = unop(iricb.op, opnd1);
      break;

   case 2:
      opnd1 = load(endian, iricb.t_opnd1, iricb.opnd1);

      if (iricb.shift_amount_is_immediate) {
         // This implies that the IROp is a shift op
         vassert(iricb.t_opnd2 == Ity_I8);
         opnd2 = mkU8(*((Char *)iricb.opnd2));
      } else {
         opnd2 = load(endian, iricb.t_opnd2, iricb.opnd2);
      }

      if (rounding_mode)
         data = triop(iricb.op, rounding_mode, opnd1, opnd2);
      else
         data = binop(iricb.op, opnd1, opnd2);
      break;

   case 3:
      opnd1 = load(endian, iricb.t_opnd1, iricb.opnd1);
      opnd2 = load(endian, iricb.t_opnd2, iricb.opnd2);
      opnd3 = load(endian, iricb.t_opnd3, iricb.opnd3);
      if (rounding_mode)
         data = qop(iricb.op, rounding_mode, opnd1, opnd2, opnd3);
      else
         data = triop(iricb.op, opnd1, opnd2, opnd3);
      break;

   case 4:
      vassert(rounding_mode == NULL);
      opnd1 = load(endian, iricb.t_opnd1, iricb.opnd1);
      opnd2 = load(endian, iricb.t_opnd2, iricb.opnd2);
      opnd3 = load(endian, iricb.t_opnd3, iricb.opnd3);
      opnd4 = load(endian, iricb.t_opnd4, iricb.opnd4);
      data = qop(iricb.op, opnd1, opnd2, opnd3, opnd4);
      break;

   default:
      vpanic("unsupported operator");
   }

   store(irsb, endian, iricb.result, data);

   if (0) {
      vex_printf("BEGIN inject\n");
      if (iricb.t_result == Ity_I1 || sizeofIRType(iricb.t_result) <= 8) {
         ppIRStmt(irsb->stmts[irsb->stmts_used - 1]);
      } else if (sizeofIRType(iricb.t_result) == 16) {
         ppIRStmt(irsb->stmts[irsb->stmts_used - 2]);
         vex_printf("\n");
         ppIRStmt(irsb->stmts[irsb->stmts_used - 1]);
      }
      vex_printf("\nEND inject\n");
   }
}