Example #1
0
static int get_audio( mlt_frame frame, void **buffer, mlt_audio_format *format, int *frequency, int *channels, int *samples )
{
	context cx = mlt_frame_pop_audio( frame );
	mlt_frame nested_frame = mlt_frame_pop_audio( frame );
	int result = 0;

	// if not repeating last frame
	if ( mlt_frame_get_position( nested_frame ) != cx->audio_position )
	{
		double fps = mlt_profile_fps( cx->profile );
		if ( mlt_producer_get_fps( cx->self ) < fps )
			fps = mlt_producer_get_fps( cx->self );
		*samples = mlt_sample_calculator( fps, *frequency, cx->audio_counter++ );
		result = mlt_frame_get_audio( nested_frame, buffer, format, frequency, channels, samples );
		int size = mlt_audio_format_size( *format, *samples, *channels );
		int16_t *new_buffer = mlt_pool_alloc( size );

		mlt_frame_set_audio( frame, new_buffer, *format, size, mlt_pool_release );
		memcpy( new_buffer, *buffer, size );
		*buffer = new_buffer;
		cx->audio_position = mlt_frame_get_position( nested_frame );
	}
	else
	{
		// otherwise return no samples
		*samples = 0;
		*buffer = NULL;
	}

	return result;
}
Example #2
0
void AudioEnvelope::loadEnvelope()
{
    Q_ASSERT(m_envelope == NULL);

    std::cout << "Loading envelope ..." << std::endl;

    int samplingRate = m_info->info(0)->samplingRate();
    mlt_audio_format format_s16 = mlt_audio_s16;
    int channels = 1;

    Mlt::Frame *frame;
    int64_t position;
    int samples;

    m_envelope = new int64_t[m_envelopeSize];
    m_envelopeMax = 0;
    m_envelopeMean = 0;

    QTime t;
    t.start();
    int count = 0;
    m_producer->seek(m_offset);
    m_producer->set_speed(1.0); // This is necessary, otherwise we don't get any new frames in the 2nd run.
    for (int i = 0; i < m_envelopeSize; i++) {

        frame = m_producer->get_frame(i);
        position = mlt_frame_get_position(frame->get_frame());
        samples = mlt_sample_calculator(m_producer->get_fps(), samplingRate, position);

        int16_t *data = static_cast<int16_t*>(frame->get_audio(format_s16, samplingRate, channels, samples));

        int64_t sum = 0;
        for (int k = 0; k < samples; k++) {
            sum += fabs(data[k]);
        }
        m_envelope[i] = sum;

        m_envelopeMean += sum;
        if (sum > m_envelopeMax) {
            m_envelopeMax = sum;
        }

//        std::cout << position << "|" << m_producer->get_playtime()
//                  << "-" << m_producer->get_in() << "+" << m_producer->get_out() << " ";

        delete frame;

        count++;
        if (m_length > 0 && count > m_length) {
            break;
        }
    }
    m_envelopeMean /= m_envelopeSize;
    std::cout << "Calculating the envelope (" << m_envelopeSize << " frames) took "
              << t.elapsed() << " ms." << std::endl;
}
Example #3
0
static int filter_get_image( mlt_frame frame, uint8_t **image, mlt_image_format *image_format, int *width, int *height, int writable )
{
	int error = 0;
	mlt_properties frame_properties = MLT_FRAME_PROPERTIES( frame );
	mlt_filter filter = (mlt_filter)mlt_frame_pop_service( frame );
	int samples = 0;
	int channels = 0;
	int frequency = 0;
	mlt_audio_format audio_format = mlt_audio_s16;
	int16_t* audio = (int16_t*)mlt_properties_get_data( frame_properties, "audio", NULL );

	if ( !audio && !preprocess_warned ) {
		// This filter depends on the consumer processing the audio before the
		// video. If the audio is not preprocessed, this filter will process it.
		// If this filter processes the audio, it could cause confusion for the
		// consumer if it needs different audio properties.
		mlt_log_warning( MLT_FILTER_SERVICE(filter), "Audio not preprocessed. Potential audio distortion.\n" );
		preprocess_warned = true;
	}

	*image_format = mlt_image_rgb24a;

	// Get the current image
	error = mlt_frame_get_image( frame, image, image_format, width, height, writable );

	// Get the audio
	if( !error ) {
		frequency = mlt_properties_get_int( frame_properties, "audio_frequency" );
		if (!frequency) {
			frequency = 48000;
		}
		channels = mlt_properties_get_int( frame_properties, "audio_channels" );
		if (!channels) {
			channels = 2;
		}
		samples = mlt_properties_get_int( frame_properties, "audio_samples" );
		if (!samples) {
			mlt_producer producer = mlt_frame_get_original_producer( frame );
			double fps = mlt_producer_get_fps( mlt_producer_cut_parent( producer ) );
			samples = mlt_sample_calculator( fps, frequency, mlt_frame_get_position( frame ) );
		}

		error = mlt_frame_get_audio( frame, (void**)&audio, &audio_format, &frequency, &channels, &samples );
	}

	// Draw the waveforms
	if( !error ) {
		QImage qimg( *width, *height, QImage::Format_ARGB32 );
		convert_mlt_to_qimage_rgba( *image, &qimg, *width, *height );
		draw_waveforms( filter, frame, &qimg, audio, channels, samples );
		convert_qimage_to_mlt_rgba( &qimg, *image, *width, *height );
	}

	return error;
}
Example #4
0
static void detect_blip( mlt_frame frame, mlt_position pos, double fps, avsync_stats* stats )
{
	int frequency = SAMPLE_FREQ;
	int channels = 1;
	int samples = mlt_sample_calculator( fps, frequency, pos );
	mlt_audio_format format = mlt_audio_float;
	float* buffer = NULL;
	int error = mlt_frame_get_audio( frame, (void**) &buffer, &format, &frequency, &channels, &samples );

	if ( !error && format == mlt_audio_float && buffer != NULL )
	{
		int i = 0;

		for( i = 0; i < samples; i++ )
		{
			if( !stats->blip_in_progress )
			{
				if( buffer[i] > BLIP_THRESHOLD || buffer[i] < -BLIP_THRESHOLD )
				{
					// This sample must start a blip
					stats->blip_in_progress = 1;
					stats->samples_since_blip = 0;

					stats->blip_history[1] = stats->blip_history[0];
					stats->blip_history[0] = mlt_sample_calculator_to_now( fps, SAMPLE_FREQ, pos );
					stats->blip_history[0] += i;
					if( stats->blip_history_count < 2 )
					{
						stats->blip_history_count++;
					}
					stats->blip = 1;
				}
			}
			else
			{
				if( buffer[i] > -BLIP_THRESHOLD && buffer[i] < BLIP_THRESHOLD )
				{
					if( ++stats->samples_since_blip > frequency / 1000 )
					{
						// One ms of silence means the blip is over
						stats->blip_in_progress = 0;
						stats->samples_since_blip = 0;
					}
				}
				else
				{
					stats->samples_since_blip = 0;
				}
			}
		}
	}
}
Example #5
0
static int consumer_play_audio( consumer_sdl self, mlt_frame frame, int init_audio, int *duration )
{
	// Get the properties of self consumer
	mlt_properties properties = self->properties;
	mlt_audio_format afmt = mlt_audio_s16;

	// Set the preferred params of the test card signal
	int channels = mlt_properties_get_int( properties, "channels" );
	int dest_channels = channels;
	int frequency = mlt_properties_get_int( properties, "frequency" );
	static int counter = 0;

	int samples = mlt_sample_calculator( mlt_properties_get_double( self->properties, "fps" ), frequency, counter++ );
	
	int16_t *pcm;
	int bytes;

	mlt_frame_get_audio( frame, (void**) &pcm, &afmt, &frequency, &channels, &samples );
	*duration = ( ( samples * 1000 ) / frequency );
	pcm += mlt_properties_get_int( properties, "audio_offset" );

	if ( mlt_properties_get_int( properties, "audio_off" ) )
	{
		self->playing = 1;
		init_audio = 1;
		return init_audio;
	}

	if ( init_audio == 1 )
	{
		SDL_AudioSpec request;
		SDL_AudioSpec got;

		int audio_buffer = mlt_properties_get_int( properties, "audio_buffer" );

		// specify audio format
		memset( &request, 0, sizeof( SDL_AudioSpec ) );
		self->playing = 0;
		request.freq = frequency;
		request.format = AUDIO_S16SYS;
		request.channels = dest_channels;
		request.samples = audio_buffer;
		request.callback = sdl_fill_audio;
		request.userdata = (void *)self;
		if ( SDL_OpenAudio( &request, &got ) != 0 )
		{
			mlt_log_error( MLT_CONSUMER_SERVICE( self ), "SDL failed to open audio: %s\n", SDL_GetError() );
			init_audio = 2;
		}
		else if ( got.size != 0 )
		{
			SDL_PauseAudio( 0 );
			init_audio = 0;
		}
	}

	if ( init_audio == 0 )
	{
		mlt_properties properties = MLT_FRAME_PROPERTIES( frame );
		
		bytes = samples * dest_channels * sizeof(*pcm);
		pthread_mutex_lock( &self->audio_mutex );
		while ( self->running && bytes > ( sizeof( self->audio_buffer) - self->audio_avail ) )
			pthread_cond_wait( &self->audio_cond, &self->audio_mutex );
		if ( self->running )
		{
			if ( mlt_properties_get_double( properties, "_speed" ) == 1 )
			{
				if ( channels == dest_channels )
				{
					memcpy( &self->audio_buffer[ self->audio_avail ], pcm, bytes );
				}
				else
				{
					int16_t *dest = (int16_t*) &self->audio_buffer[ self->audio_avail ];
					int i = samples + 1;
					
					while ( --i )
					{
						memcpy( dest, pcm, dest_channels * sizeof(*pcm) );
						pcm += channels;
						dest += dest_channels;
					}
				}
			}
			else
			{
				memset( &self->audio_buffer[ self->audio_avail ], 0, bytes );
			}
			self->audio_avail += bytes;
		}
		pthread_cond_broadcast( &self->audio_cond );
		pthread_mutex_unlock( &self->audio_mutex );
	}
	else
	{
		self->playing = 1;
	}

	return init_audio;
}
Example #6
0
static void foreach_consumer_put( mlt_consumer consumer, mlt_frame frame )
{
    mlt_properties properties = MLT_CONSUMER_PROPERTIES( consumer );
    mlt_consumer nested = NULL;
    char key[30];
    int index = 0;

    do {
        snprintf( key, sizeof(key), "%d.consumer", index++ );
        nested = mlt_properties_get_data( properties, key, NULL );
        if ( nested )
        {
            mlt_properties nested_props = MLT_CONSUMER_PROPERTIES(nested);
            double self_fps = mlt_properties_get_double( properties, "fps" );
            double nested_fps = mlt_properties_get_double( nested_props, "fps" );
            mlt_position nested_pos = mlt_properties_get_position( nested_props, "_multi_position" );
            mlt_position self_pos = mlt_frame_get_position( frame );
            double self_time = self_pos / self_fps;
            double nested_time = nested_pos / nested_fps;

            // get the audio for the current frame
            uint8_t *buffer = NULL;
            mlt_audio_format format = mlt_audio_s16;
            int channels = mlt_properties_get_int( properties, "channels" );
            int frequency = mlt_properties_get_int( properties, "frequency" );
            int current_samples = mlt_sample_calculator( self_fps, frequency, self_pos );
            mlt_frame_get_audio( frame, (void**) &buffer, &format, &frequency, &channels, &current_samples );
            int current_size = mlt_audio_format_size( format, current_samples, channels );

            // get any leftover audio
            int prev_size = 0;
            uint8_t *prev_buffer = mlt_properties_get_data( nested_props, "_multi_audio", &prev_size );
            uint8_t *new_buffer = NULL;
            if ( prev_size > 0 )
            {
                new_buffer = mlt_pool_alloc( prev_size + current_size );
                memcpy( new_buffer, prev_buffer, prev_size );
                memcpy( new_buffer + prev_size, buffer, current_size );
                buffer = new_buffer;
            }
            current_size += prev_size;
            current_samples += mlt_properties_get_int( nested_props, "_multi_samples" );

            while ( nested_time <= self_time )
            {
                // put ideal number of samples into cloned frame
                int deeply = index > 1 ? 1 : 0;
                mlt_frame clone_frame = mlt_frame_clone( frame, deeply );
                int nested_samples = mlt_sample_calculator( nested_fps, frequency, nested_pos );
                // -10 is an optimization to avoid tiny amounts of leftover samples
                nested_samples = nested_samples > current_samples - 10 ? current_samples : nested_samples;
                int nested_size = mlt_audio_format_size( format, nested_samples, channels );
                if ( nested_size > 0 )
                {
                    prev_buffer = mlt_pool_alloc( nested_size );
                    memcpy( prev_buffer, buffer, nested_size );
                }
                else
                {
                    prev_buffer = NULL;
                    nested_size = 0;
                }
                mlt_frame_set_audio( clone_frame, prev_buffer, format, nested_size, mlt_pool_release );
                mlt_properties_set_int( MLT_FRAME_PROPERTIES(clone_frame), "audio_samples", nested_samples );
                mlt_properties_set_int( MLT_FRAME_PROPERTIES(clone_frame), "audio_frequency", frequency );
                mlt_properties_set_int( MLT_FRAME_PROPERTIES(clone_frame), "audio_channels", channels );

                // chomp the audio
                current_samples -= nested_samples;
                current_size -= nested_size;
                buffer += nested_size;

                // send frame to nested consumer
                mlt_consumer_put_frame( nested, clone_frame );
                mlt_properties_set_position( nested_props, "_multi_position", ++nested_pos );
                nested_time = nested_pos / nested_fps;
            }

            // save any remaining audio
            if ( current_size > 0 )
            {
                prev_buffer = mlt_pool_alloc( current_size );
                memcpy( prev_buffer, buffer, current_size );
            }
            else
            {
                prev_buffer = NULL;
                current_size = 0;
            }
            mlt_pool_release( new_buffer );
            mlt_properties_set_data( nested_props, "_multi_audio", prev_buffer, current_size, mlt_pool_release, NULL );
            mlt_properties_set_int( nested_props, "_multi_samples", current_samples );
        }
    } while ( nested );
}
Example #7
0
static void *consumer_read_ahead_thread( void *arg )
{
	// The argument is the consumer
	mlt_consumer self = arg;

	// Get the properties of the consumer
	mlt_properties properties = MLT_CONSUMER_PROPERTIES( self );

	// Get the width and height
	int width = mlt_properties_get_int( properties, "width" );
	int height = mlt_properties_get_int( properties, "height" );

	// See if video is turned off
	int video_off = mlt_properties_get_int( properties, "video_off" );
	int preview_off = mlt_properties_get_int( properties, "preview_off" );
	int preview_format = mlt_properties_get_int( properties, "preview_format" );

	// Get the audio settings
	mlt_audio_format afmt = mlt_audio_s16;
	const char *format = mlt_properties_get( properties, "mlt_audio_format" );
	if ( format )
	{
		if ( !strcmp( format, "none" ) )
			afmt = mlt_audio_none;
		else if ( !strcmp( format, "s32" ) )
			afmt = mlt_audio_s32;
		else if ( !strcmp( format, "s32le" ) )
			afmt = mlt_audio_s32le;
		else if ( !strcmp( format, "float" ) )
			afmt = mlt_audio_float;
		else if ( !strcmp( format, "f32le" ) )
			afmt = mlt_audio_f32le;
		else if ( !strcmp( format, "u8" ) )
			afmt = mlt_audio_u8;
	}
	int counter = 0;
	double fps = mlt_properties_get_double( properties, "fps" );
	int channels = mlt_properties_get_int( properties, "channels" );
	int frequency = mlt_properties_get_int( properties, "frequency" );
	int samples = 0;
	void *audio = NULL;

	// See if audio is turned off
	int audio_off = mlt_properties_get_int( properties, "audio_off" );

	// Get the maximum size of the buffer
	int buffer = mlt_properties_get_int( properties, "buffer" ) + 1;

	// General frame variable
	mlt_frame frame = NULL;
	uint8_t *image = NULL;

	// Time structures
	struct timeval ante;

	// Average time for get_frame and get_image
	int count = 0;
	int skipped = 0;
	int64_t time_process = 0;
	int skip_next = 0;
	mlt_position pos = 0;
	mlt_position start_pos = 0;
	mlt_position last_pos = 0;
	int frame_duration = mlt_properties_get_int( properties, "frame_duration" );
	int drop_max = mlt_properties_get_int( properties, "drop_max" );

	if ( preview_off && preview_format != 0 )
		self->format = preview_format;

	// Get the first frame
	frame = mlt_consumer_get_frame( self );

	if ( frame )
	{
		// Get the image of the first frame
		if ( !video_off )
		{
			mlt_events_fire( MLT_CONSUMER_PROPERTIES( self ), "consumer-frame-render", frame, NULL );
			mlt_frame_get_image( frame, &image, &self->format, &width, &height, 0 );
		}

		if ( !audio_off )
		{
			samples = mlt_sample_calculator( fps, frequency, counter++ );
			mlt_frame_get_audio( frame, &audio, &afmt, &frequency, &channels, &samples );
		}

		// Mark as rendered
		mlt_properties_set_int( MLT_FRAME_PROPERTIES( frame ), "rendered", 1 );
		last_pos = start_pos = pos = mlt_frame_get_position( frame );
	}

	// Get the starting time (can ignore the times above)
	gettimeofday( &ante, NULL );

	// Continue to read ahead
	while ( self->ahead )
	{
		// Put the current frame into the queue
		pthread_mutex_lock( &self->queue_mutex );
		while( self->ahead && mlt_deque_count( self->queue ) >= buffer )
			pthread_cond_wait( &self->queue_cond, &self->queue_mutex );
		mlt_deque_push_back( self->queue, frame );
		pthread_cond_broadcast( &self->queue_cond );
		pthread_mutex_unlock( &self->queue_mutex );

		// Get the next frame
		frame = mlt_consumer_get_frame( self );

		// If there's no frame, we're probably stopped...
		if ( frame == NULL )
			continue;
		pos = mlt_frame_get_position( frame );

		// Increment the counter used for averaging processing cost
		count ++;

		// All non-normal playback frames should be shown
		if ( mlt_properties_get_int( MLT_FRAME_PROPERTIES( frame ), "_speed" ) != 1 )
		{
#ifdef DEINTERLACE_ON_NOT_NORMAL_SPEED
			mlt_properties_set_int( MLT_FRAME_PROPERTIES( frame ), "consumer_deinterlace", 1 );
#endif
			// Indicate seeking or trick-play
			start_pos = pos;
		}

		// If skip flag not set or frame-dropping disabled
		if ( !skip_next || self->real_time == -1 )
		{
			if ( !video_off )
			{
				// Reset width/height - could have been changed by previous mlt_frame_get_image
				width = mlt_properties_get_int( properties, "width" );
				height = mlt_properties_get_int( properties, "height" );

				// Get the image
				mlt_events_fire( MLT_CONSUMER_PROPERTIES( self ), "consumer-frame-render", frame, NULL );
				mlt_frame_get_image( frame, &image, &self->format, &width, &height, 0 );
			}

			// Indicate the rendered image is available.
			mlt_properties_set_int( MLT_FRAME_PROPERTIES( frame ), "rendered", 1 );

			// Reset consecutively-skipped counter
			skipped = 0;
		}
		else // Skip image processing
		{
			// Increment the number of consecutively-skipped frames
			skipped++;

			// If too many (1 sec) consecutively-skipped frames
			if ( skipped > drop_max )
			{
				// Reset cost tracker
				time_process = 0;
				count = 1;
				mlt_log_verbose( self, "too many frames dropped - forcing next frame\n" );
			}
		}

		// Always process audio
		if ( !audio_off )
		{
			samples = mlt_sample_calculator( fps, frequency, counter++ );
			mlt_frame_get_audio( frame, &audio, &afmt, &frequency, &channels, &samples );
		}

		// Get the time to process this frame
		int64_t time_current = time_difference( &ante );

		// If the current time is not suddenly some large amount
		if ( time_current < time_process / count * 20 || !time_process || count < 5 )
		{
			// Accumulate the cost for processing this frame
			time_process += time_current;
		}
		else
		{
			mlt_log_debug( self, "current %"PRId64" threshold %"PRId64" count %d\n",
				time_current, (int64_t) (time_process / count * 20), count );
			// Ignore the cost of this frame's time
			count--;
		}

		// Determine if we started, resumed, or seeked
		if ( pos != last_pos + 1 )
			start_pos = pos;
		last_pos = pos;

		// Do not skip the first 20% of buffer at start, resume, or seek
		if ( pos - start_pos <= buffer / 5 + 1 )
		{
			// Reset cost tracker
			time_process = 0;
			count = 1;
		}

		// Reset skip flag
		skip_next = 0;

		// Only consider skipping if the buffer level is low (or really small)
		if ( mlt_deque_count( self->queue ) <= buffer / 5 + 1 )
		{
			// Skip next frame if average cost exceeds frame duration.
			if ( time_process / count > frame_duration )
				skip_next = 1;
			if ( skip_next )
				mlt_log_debug( self, "avg usec %"PRId64" (%"PRId64"/%d) duration %d\n",
					time_process/count, time_process, count, frame_duration);
		}
	}

	// Remove the last frame
	mlt_frame_close( frame );

	return NULL;
}
Example #8
0
unsigned char *mlt_frame_get_waveform( mlt_frame self, int w, int h )
{
	int16_t *pcm = NULL;
	mlt_properties properties = MLT_FRAME_PROPERTIES( self );
	mlt_audio_format format = mlt_audio_s16;
	int frequency = 16000;
	int channels = 2;
	mlt_producer producer = mlt_frame_get_original_producer( self );
	double fps = mlt_producer_get_fps( mlt_producer_cut_parent( producer ) );
	int samples = mlt_sample_calculator( fps, frequency, mlt_frame_get_position( self ) );

	// Increase audio resolution proportional to requested image size
	while ( samples < w )
	{
		frequency += 16000;
		samples = mlt_sample_calculator( fps, frequency, mlt_frame_get_position( self ) );
	}

	// Get the pcm data
	mlt_frame_get_audio( self, (void**)&pcm, &format, &frequency, &channels, &samples );

	// Make an 8-bit buffer large enough to hold rendering
	int size = w * h;
	if ( size <= 0 )
		return NULL;
	unsigned char *bitmap = ( unsigned char* )mlt_pool_alloc( size );
	if ( bitmap != NULL )
		memset( bitmap, 0, size );
	else
		return NULL;
	mlt_properties_set_data( properties, "waveform", bitmap, size, ( mlt_destructor )mlt_pool_release, NULL );

	// Render vertical lines
	int16_t *ubound = pcm + samples * channels;
	int skip = samples / w;
	skip = !skip ? 1 : skip;
	unsigned char gray = 0xFF / skip;
	int i, j, k;

	// Iterate sample stream and along x coordinate
	for ( i = 0; pcm < ubound; i++ )
	{
		// pcm data has channels interleaved
		for ( j = 0; j < channels; j++, pcm++ )
		{
			// Determine sample's magnitude from 2s complement;
			int pcm_magnitude = *pcm < 0 ? ~(*pcm) + 1 : *pcm;
			// The height of a line is the ratio of the magnitude multiplied by
			// the vertical resolution of a single channel
				int height = h * pcm_magnitude / channels / 2 / 32768;
			// Determine the starting y coordinate - left top, right bottom
			int displacement = h * (j * 2 + 1) / channels / 2 - ( *pcm < 0 ? 0 : height );
			// Position buffer pointer using y coordinate, stride, and x coordinate
			unsigned char *p = bitmap + i / skip + displacement * w;

			// Draw vertical line
			for ( k = 0; k < height + 1; k++ )
				if ( *pcm < 0 )
					p[ w * k ] = ( k == 0 ) ? 0xFF : p[ w * k ] + gray;
				else
					p[ w * k ] = ( k == height ) ? 0xFF : p[ w * k ] + gray;
		}
	}

	return bitmap;
}
Example #9
0
static int consumer_play_audio( consumer_sdl self, mlt_frame frame, int init_audio, int *duration )
{
	// Get the properties of self consumer
	mlt_properties properties = self->properties;
	mlt_audio_format afmt = mlt_audio_s16;

	// Set the preferred params of the test card signal
	int channels = mlt_properties_get_int( properties, "channels" );
	int frequency = mlt_properties_get_int( properties, "frequency" );
	int scrub = mlt_properties_get_int( properties, "scrub_audio" );
	static int counter = 0;

	int samples = mlt_sample_calculator( mlt_properties_get_double( self->properties, "fps" ), frequency, counter++ );
	int16_t *pcm;
	mlt_frame_get_audio( frame, (void**) &pcm, &afmt, &frequency, &channels, &samples );
	*duration = ( ( samples * 1000 ) / frequency );
	pcm += mlt_properties_get_int( properties, "audio_offset" );

	if ( mlt_properties_get_int( properties, "audio_off" ) )
	{
		self->playing = 1;
		init_audio = 1;
		return init_audio;
	}

	if ( init_audio == 1 )
	{
		SDL_AudioSpec request;
		SDL_AudioSpec got;
		SDL_AudioDeviceID dev;
		int audio_buffer = mlt_properties_get_int( properties, "audio_buffer" );

		// specify audio format
		memset( &request, 0, sizeof( SDL_AudioSpec ) );
		self->playing = 0;
		request.freq = frequency;
		request.format = AUDIO_S16SYS;
		request.channels = mlt_properties_get_int( properties, "channels" );
		request.samples = audio_buffer;
		request.callback = sdl_fill_audio;
		request.userdata = (void *)self;

		dev = sdl2_open_audio( &request, &got );
		if( dev == 0 )
		{
			mlt_log_error( MLT_CONSUMER_SERVICE( self ), "SDL failed to open audio\n" );
			init_audio = 2;
		}
		else
		{
			if( got.channels != request.channels )
			{
				mlt_log_info( MLT_CONSUMER_SERVICE( self ), "Unable to output %d channels. Change to %d\n", request.channels, got.channels );
			}
			mlt_log_info( MLT_CONSUMER_SERVICE( self ), "Audio Opened: driver=%s channels=%d frequency=%d\n", SDL_GetCurrentAudioDriver(), got.channels, got.freq );
			SDL_PauseAudioDevice( dev, 0 );
			init_audio = 0;
			self->out_channels = got.channels;
		}
	}

	if ( init_audio == 0 )
	{
		mlt_properties properties = MLT_FRAME_PROPERTIES( frame );
		int samples_copied = 0;
		int dst_stride = self->out_channels * sizeof( *pcm );

		pthread_mutex_lock( &self->audio_mutex );

		while ( self->running && samples_copied < samples )
		{
			int sample_space = ( sizeof( self->audio_buffer ) - self->audio_avail ) / dst_stride;
			while ( self->running && sample_space == 0 )
			{
				pthread_cond_wait( &self->audio_cond, &self->audio_mutex );
				sample_space = ( sizeof( self->audio_buffer ) - self->audio_avail ) / dst_stride;
			}
			if ( self->running )
			{
				int samples_to_copy = samples - samples_copied;
				if ( samples_to_copy > sample_space )
				{
					samples_to_copy = sample_space;
				}
				int dst_bytes = samples_to_copy * dst_stride;

				if ( scrub || mlt_properties_get_double( properties, "_speed" ) == 1 )
				{
					if ( channels == self->out_channels )
					{
						memcpy( &self->audio_buffer[ self->audio_avail ], pcm, dst_bytes );
						pcm += samples_to_copy * channels;
					}
					else
					{
						int16_t *dest = (int16_t*) &self->audio_buffer[ self->audio_avail ];
						int i = samples_to_copy + 1;
						while ( --i )
						{
							memcpy( dest, pcm, dst_stride );
							pcm += channels;
							dest += self->out_channels;
						}
					}
				}
				else
				{
					memset( &self->audio_buffer[ self->audio_avail ], 0, dst_bytes );
					pcm += samples_to_copy * channels;
				}
				self->audio_avail += dst_bytes;
				samples_copied += samples_to_copy;
			}
			pthread_cond_broadcast( &self->audio_cond );
		}
		pthread_mutex_unlock( &self->audio_mutex );
	}
	else
	{
		self->playing = 1;
	}

	return init_audio;
}
Example #10
0
	HRESULT render( mlt_frame frame )
	{
		HRESULT result = S_OK;
		// Get the audio		
		double speed = mlt_properties_get_double( MLT_FRAME_PROPERTIES(frame), "_speed" );
		if ( speed == 1.0 )
		{
			mlt_audio_format format = mlt_audio_s16;
			int frequency = bmdAudioSampleRate48kHz;
			int samples = mlt_sample_calculator( m_fps, frequency, m_count );
			int16_t *pcm = 0;
			
			if ( !mlt_frame_get_audio( frame, (void**) &pcm, &format, &frequency, &m_channels, &samples ) )
			{
				int count = samples;
				
				if ( !m_isPrerolling )
				{
					uint32_t audioCount = 0;
					uint32_t videoCount = 0;
					
					// Check for resync
					m_deckLinkOutput->GetBufferedAudioSampleFrameCount( &audioCount );
					m_deckLinkOutput->GetBufferedVideoFrameCount( &videoCount );
					
					// Underflow typically occurs during non-normal speed playback.
					if ( audioCount < 1 || videoCount < 1 )
					{
						// Upon switching to normal playback, buffer some frames faster than realtime.
						mlt_log_info( &m_consumer, "buffer underrun: audio buf %u video buf %u frames\n", audioCount, videoCount );
						m_prerollCounter = 0;
					}
					
					// While rebuffering
					if ( isBuffering() )
					{
						// Only append audio to reach the ideal level and not overbuffer.
						int ideal = ( m_preroll - 1 ) * bmdAudioSampleRate48kHz / m_fps;
						int actual = m_fifo->used / m_channels + audioCount;
						int diff = ideal / 2 - actual;
						count = diff < 0 ? 0 : diff < count ? diff : count;
					}
				}
				if ( count > 0 )
					sample_fifo_append( m_fifo, pcm, count * m_channels );
			}
		}
		
		// Create video frames while pre-rolling
		if ( m_isPrerolling )
		{
			createFrame();
			if ( !m_videoFrame )
			{
				mlt_log_error( &m_consumer, "failed to create video frame\n" );
				return S_FALSE;
			}
		}
		
		// Get the video
		if ( mlt_properties_get_int( MLT_FRAME_PROPERTIES( frame ), "rendered") )
		{
			mlt_image_format format = mlt_image_yuv422;
			uint8_t* image = 0;
			uint8_t* buffer = 0;

			if ( !mlt_frame_get_image( frame, &image, &format, &m_width, &m_height, 0 ) )
			{
				m_videoFrame = (IDeckLinkMutableVideoFrame*) mlt_deque_pop_back( m_videoFrameQ );
				m_videoFrame->GetBytes( (void**) &buffer );
				if ( m_displayMode->GetFieldDominance() == bmdUpperFieldFirst )
					// convert lower field first to top field first
					swab( image, buffer + m_width * 2, m_width * ( m_height - 1 ) * 2 );
				else
					swab( image, buffer, m_width * m_height * 2 );
				m_deckLinkOutput->ScheduleVideoFrame( m_videoFrame, m_count * m_duration, m_duration, m_timescale );
				mlt_deque_push_front( m_videoFrameQ, m_videoFrame );
			}
		}
		else
		{
			mlt_log_verbose( &m_consumer, "dropped video frame\n" );
		}
		++m_count;

		// Check for end of pre-roll
		if ( ++m_prerollCounter > m_preroll && m_isPrerolling )
		{
			// Start audio and video output
			m_deckLinkOutput->EndAudioPreroll();
			m_deckLinkOutput->StartScheduledPlayback( 0, m_timescale, 1.0 );
			m_isPrerolling = false;
		}

		return result;
	}
Example #11
0
static int producer_get_audio( mlt_frame frame, int16_t** buffer, mlt_audio_format* format, int* frequency, int* channels, int* samples )
{
	mlt_producer producer = (mlt_producer)mlt_frame_pop_audio( frame );
	mlt_properties producer_properties = MLT_PRODUCER_PROPERTIES( producer );
	char* sound = mlt_properties_get( producer_properties, "sound" );
	double fps = mlt_producer_get_fps( producer );
	mlt_position position = mlt_frame_original_position( frame );
	int size = 0;
	int do_beep = 0;
	time_info info;

	if( fps == 0 ) fps = 25;

	// Correct the returns if necessary
	*format = mlt_audio_float;
	*frequency = *frequency <= 0 ? 48000 : *frequency;
	*channels = *channels <= 0 ? 2 : *channels;
	*samples = *samples <= 0 ? mlt_sample_calculator( fps, *frequency, position ) : *samples;

	// Allocate the buffer
	size = *samples * *channels * sizeof( float );
	*buffer = mlt_pool_alloc( size );

	mlt_service_lock( MLT_PRODUCER_SERVICE( producer ) );

	get_time_info( producer, frame, &info );

	// Determine if this should be a tone or silence.
	if( strcmp( sound, "none") )
	{
		if( !strcmp( sound, "2pop" ) )
		{
			mlt_position out = mlt_properties_get_int( producer_properties, "out" );
			mlt_position frames = out - position;

			if( frames == ( info.fps * 2 ) )
			{
				do_beep = 1;
			}
		}
		else if( !strcmp( sound, "frame0" ) )
		{
			if( info.frames == 0 )
			{
				do_beep = 1;
			}
		}
	}

	if( do_beep )
	{
		fill_beep( producer_properties, (float*)*buffer, *frequency, *channels, *samples );
	}
	else
	{
		// Fill silence.
		memset( *buffer, 0, size );
	}

	mlt_service_unlock( MLT_PRODUCER_SERVICE( producer ) );

	// Set the buffer for destruction
	mlt_frame_set_audio( frame, *buffer, *format, size, mlt_pool_release );
	return 0;
}