int main (int argc, char* argv[]) { //======== 【1】命令行参数解析================================= parseCommandLine (argc, argv); //======== 【2】新建必要的 指针变量============================ pcl::PointCloud<PointType>::Ptr model (new pcl::PointCloud<PointType> ());//模型点云 pcl::PointCloud<PointType>::Ptr model_keypoints (new pcl::PointCloud<PointType> ());//模型点云的关键点 点云 pcl::PointCloud<PointType>::Ptr scene (new pcl::PointCloud<PointType> ());//场景点云 pcl::PointCloud<PointType>::Ptr scene_keypoints (new pcl::PointCloud<PointType> ());//场景点云的 关键点 点云 pcl::PointCloud<NormalType>::Ptr model_normals (new pcl::PointCloud<NormalType> ());//模型点云的 法线向量 pcl::PointCloud<NormalType>::Ptr scene_normals (new pcl::PointCloud<NormalType> ());//场景点云的 法线向量 pcl::PointCloud<DescriptorType>::Ptr model_descriptors (new pcl::PointCloud<DescriptorType> ());//模型点云 特征点的 特征描述子 pcl::PointCloud<DescriptorType>::Ptr scene_descriptors (new pcl::PointCloud<DescriptorType> ());//场景点云 特征点的 特征描述子 //=======【3】载入点云========================================= if (pcl::io::loadPCDFile (model_filename_, *model) < 0) { std::cout << "Error loading model cloud." << std::endl; showHelp (argv[0]); return (-1); } if (pcl::io::loadPCDFile (scene_filename_, *scene) < 0) { std::cout << "Error loading scene cloud." << std::endl; showHelp (argv[0]); return (-1); } //========【5】计算 法向量和曲率 =========================================== pcl::NormalEstimationOMP<PointType, NormalType> norm_est;//多核 计算法线模型 norm_est.setKSearch (10);//最近10个点 协方差矩阵PCA分解 计算 法线向量 norm_est.setInputCloud (model);//模型点云 norm_est.compute (*model_normals);//模型点云的法线向量 norm_est.setInputCloud (scene);//场景点云 norm_est.compute (*scene_normals);//场景点云的法线向量 //=======【6】下采样滤波使用均匀采样(可以试试体素格子下采样)得到关键点========== pcl::UniformSampling<PointType> uniform_sampling;//下采样滤波模型 uniform_sampling.setInputCloud (model);//模型点云 uniform_sampling.setRadiusSearch (model_ss_);//模型点云下采样滤波搜索半径 uniform_sampling.filter (*model_keypoints);//下采样得到的关键点 std::cout << "Model total points: " << model->size () << "; Selected Keypoints: " << model_keypoints->size () << std::endl; uniform_sampling.setInputCloud (scene);//场景点云 uniform_sampling.setRadiusSearch (scene_ss_);//场景点云下采样滤波搜索半径 uniform_sampling.filter (*scene_keypoints);//下采样得到的关键点 std::cout << "Scene total points: " << scene->size () << "; Selected Keypoints: " << scene_keypoints->size () << std::endl; //========【7】为keypoints关键点计算SHOT描述子Descriptor================= pcl::SHOTEstimationOMP<PointType, NormalType, DescriptorType> descr_est;//shot描述子 descr_est.setRadiusSearch (descr_rad_); descr_est.setInputCloud (model_keypoints);//输入模型的关键点 descr_est.setInputNormals (model_normals);//输入模型的法线 descr_est.setSearchSurface (model);//输入的点云 descr_est.compute (*model_descriptors);//模型点云描述子 descr_est.setInputCloud (scene_keypoints); descr_est.setInputNormals (scene_normals); descr_est.setSearchSurface (scene); descr_est.compute (*scene_descriptors);//场景点云描述子 //========【8】按存储方法KDTree匹配两个点云(描述子向量匹配)点云分组得到匹配的组======== pcl::CorrespondencesPtr model_scene_corrs (new pcl::Correspondences ());//最佳匹配点对组 pcl::KdTreeFLANN<DescriptorType> match_search;//匹配搜索 设置配准的方法 match_search.setInputCloud (model_descriptors);//模型点云描述子 std::vector<int> model_good_keypoints_indices; std::vector<int> scene_good_keypoints_indices; // 为 场景点云 的每一个关键点 匹配模型点云一个 描述子最相似的 点 < 0.25f for (size_t i = 0; i < scene_descriptors->size (); ++i) { std::vector<int> neigh_indices (1);//设置最近邻点的索引 std::vector<float> neigh_sqr_dists (1);//申明最近邻平方距离值 if (!pcl_isfinite (scene_descriptors->at (i).descriptor[0]))//跳过NAN点 { continue; } // sscene_descriptors->at (i)是给定点云描述子, 1是临近点个数 ,neigh_indices临近点的索引 neigh_sqr_dists是与临近点的平方距离值 int found_neighs = match_search.nearestKSearch (scene_descriptors->at (i), 1, neigh_indices, neigh_sqr_dists); if (found_neighs == 1 && neigh_sqr_dists[0] < 0.25f)//(描述子与临近的距离在一般在0到1之间)才添加匹配 //在模型点云中 找 距离 场景点云点i shot描述子距离 <0.25 的点 { pcl::Correspondence corr (neigh_indices[0], static_cast<int> (i), neigh_sqr_dists[0]); model_scene_corrs->push_back (corr); model_good_keypoints_indices.push_back (corr.index_query);//模型点云好的 关键点 scene_good_keypoints_indices.push_back (corr.index_match);//场景点云好的管家的奶奶 } } pcl::PointCloud<PointType>::Ptr model_good_kp (new pcl::PointCloud<PointType> ()); pcl::PointCloud<PointType>::Ptr scene_good_kp (new pcl::PointCloud<PointType> ()); pcl::copyPointCloud (*model_keypoints, model_good_keypoints_indices, *model_good_kp); pcl::copyPointCloud (*scene_keypoints, scene_good_keypoints_indices, *scene_good_kp); std::cout << "Correspondences found: " << model_scene_corrs->size () << std::endl; //===========【9】实际的配准方法的实现 执行聚类================ //变换矩阵 旋转矩阵与平移矩阵 // 对eigen中的固定大小的类使用STL容器的时候,如果直接使用就会出错 需要使用 Eigen::aligned_allocator 对齐技术 std::vector<Eigen::Matrix4f, Eigen::aligned_allocator<Eigen::Matrix4f> > rototranslations; std::vector<pcl::Correspondences> clustered_corrs;//匹配点 相互连线的索引 // clustered_corrs[i][j].index_query 模型点 索引 // clustered_corrs[i][j].index_match 场景点 索引 if (use_hough_)// 使用 Hough3D 3D霍夫 算法寻找匹配点 { //=========计算参考帧的Hough(也就是关键点)========= pcl::PointCloud<RFType>::Ptr model_rf (new pcl::PointCloud<RFType> ()); pcl::PointCloud<RFType>::Ptr scene_rf (new pcl::PointCloud<RFType> ()); pcl::BOARDLocalReferenceFrameEstimation<PointType, NormalType, RFType> rf_est; rf_est.setFindHoles (true); rf_est.setRadiusSearch (rf_rad_); rf_est.setInputCloud (model_keypoints); rf_est.setInputNormals (model_normals); rf_est.setSearchSurface (model); rf_est.compute (*model_rf); rf_est.setInputCloud (scene_keypoints); rf_est.setInputNormals (scene_normals); rf_est.setSearchSurface (scene); rf_est.compute (*scene_rf); // 聚类 聚类的方法 Clustering //对输入点与的聚类,以区分不同的实例的场景中的模型 pcl::Hough3DGrouping<PointType, PointType, RFType, RFType> clusterer; clusterer.setHoughBinSize (cg_size_); clusterer.setHoughThreshold (cg_thresh_); clusterer.setUseInterpolation (true); clusterer.setUseDistanceWeight (false); clusterer.setInputCloud (model_keypoints); clusterer.setInputRf (model_rf); clusterer.setSceneCloud (scene_keypoints); clusterer.setSceneRf (scene_rf); clusterer.setModelSceneCorrespondences (model_scene_corrs); clusterer.recognize (rototranslations, clustered_corrs); } else// 或者使用几何一致性性质 Using GeometricConsistency { pcl::GeometricConsistencyGrouping<PointType, PointType> gc_clusterer; gc_clusterer.setGCSize (cg_size_);//设置几何一致性的大小 gc_clusterer.setGCThreshold (cg_thresh_);//阀值 gc_clusterer.setInputCloud (model_keypoints); gc_clusterer.setSceneCloud (scene_keypoints); gc_clusterer.setModelSceneCorrespondences (model_scene_corrs); gc_clusterer.recognize (rototranslations, clustered_corrs); } /** * Stop if no instances */ if (rototranslations.size () <= 0) { cout << "*** No instances found! ***" << endl; return (0); } else { cout << "Recognized Instances: " << rototranslations.size () << endl << endl; } /** * Generates clouds for each instances found */ std::vector<pcl::PointCloud<PointType>::ConstPtr> instances; for (size_t i = 0; i < rototranslations.size (); ++i) { pcl::PointCloud<PointType>::Ptr rotated_model (new pcl::PointCloud<PointType> ()); pcl::transformPointCloud (*model, *rotated_model, rototranslations[i]); instances.push_back (rotated_model); } //ICP 点云配准========================================================== std::vector<pcl::PointCloud<PointType>::ConstPtr> registered_instances; if (true) { cout << "--- ICP ---------" << endl; for (size_t i = 0; i < rototranslations.size (); ++i) { pcl::IterativeClosestPoint<PointType, PointType> icp; icp.setMaximumIterations (icp_max_iter_); icp.setMaxCorrespondenceDistance (icp_corr_distance_); icp.setInputTarget (scene);//场景 icp.setInputSource (instances[i]);//场景中的实例 pcl::PointCloud<PointType>::Ptr registered (new pcl::PointCloud<PointType>); icp.align (*registered);//匹配到的点云 registered_instances.push_back (registered); cout << "Instance " << i << " "; if (icp.hasConverged ()) { cout << "Aligned!" << endl; } else { cout << "Not Aligned!" << endl; } } cout << "-----------------" << endl << endl; } // 模型假设验证 Hypothesis Verification===================================== cout << "--- Hypotheses Verification ---" << endl; std::vector<bool> hypotheses_mask; // Mask Vector to identify positive hypotheses pcl::GlobalHypothesesVerification<PointType, PointType> GoHv; GoHv.setSceneCloud (scene); // Scene Cloud GoHv.addModels (registered_instances, true); //Models to verify GoHv.setInlierThreshold (hv_inlier_th_); GoHv.setOcclusionThreshold (hv_occlusion_th_); GoHv.setRegularizer (hv_regularizer_); GoHv.setRadiusClutter (hv_rad_clutter_); GoHv.setClutterRegularizer (hv_clutter_reg_); GoHv.setDetectClutter (hv_detect_clutter_); GoHv.setRadiusNormals (hv_rad_normals_); GoHv.verify (); GoHv.getMask (hypotheses_mask); // i-element TRUE if hvModels[i] verifies hypotheses for (int i = 0; i < hypotheses_mask.size (); i++) { if (hypotheses_mask[i]) { cout << "Instance " << i << " is GOOD! <---" << endl; } else { cout << "Instance " << i << " is bad!" << endl; } } cout << "-------------------------------" << endl; //======可视化 Visualization==================================================== pcl::visualization::PCLVisualizer viewer ("Hypotheses Verification"); viewer.addPointCloud (scene, "scene_cloud"); pcl::PointCloud<PointType>::Ptr off_scene_model (new pcl::PointCloud<PointType> ()); pcl::PointCloud<PointType>::Ptr off_scene_model_keypoints (new pcl::PointCloud<PointType> ()); pcl::PointCloud<PointType>::Ptr off_model_good_kp (new pcl::PointCloud<PointType> ()); pcl::transformPointCloud (*model, *off_scene_model, Eigen::Vector3f (-1, 0, 0), Eigen::Quaternionf (1, 0, 0, 0)); pcl::transformPointCloud (*model_keypoints, *off_scene_model_keypoints, Eigen::Vector3f (-1, 0, 0), Eigen::Quaternionf (1, 0, 0, 0)); pcl::transformPointCloud (*model_good_kp, *off_model_good_kp, Eigen::Vector3f (-1, 0, 0), Eigen::Quaternionf (1, 0, 0, 0)); if (show_keypoints_) { CloudStyle modelStyle = style_white; pcl::visualization::PointCloudColorHandlerCustom<PointType> off_scene_model_color_handler (off_scene_model, modelStyle.r, modelStyle.g, modelStyle.b); viewer.addPointCloud (off_scene_model, off_scene_model_color_handler, "off_scene_model"); viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, modelStyle.size, "off_scene_model"); } if (show_keypoints_) { CloudStyle goodKeypointStyle = style_violet; pcl::visualization::PointCloudColorHandlerCustom<PointType> model_good_keypoints_color_handler (off_model_good_kp, goodKeypointStyle.r, goodKeypointStyle.g, goodKeypointStyle.b); viewer.addPointCloud (off_model_good_kp, model_good_keypoints_color_handler, "model_good_keypoints"); viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, goodKeypointStyle.size, "model_good_keypoints"); pcl::visualization::PointCloudColorHandlerCustom<PointType> scene_good_keypoints_color_handler (scene_good_kp, goodKeypointStyle.r, goodKeypointStyle.g, goodKeypointStyle.b); viewer.addPointCloud (scene_good_kp, scene_good_keypoints_color_handler, "scene_good_keypoints"); viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, goodKeypointStyle.size, "scene_good_keypoints"); } for (size_t i = 0; i < instances.size (); ++i) { std::stringstream ss_instance; ss_instance << "instance_" << i; CloudStyle clusterStyle = style_red; pcl::visualization::PointCloudColorHandlerCustom<PointType> instance_color_handler (instances[i], clusterStyle.r, clusterStyle.g, clusterStyle.b); viewer.addPointCloud (instances[i], instance_color_handler, ss_instance.str ()); viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, clusterStyle.size, ss_instance.str ()); CloudStyle registeredStyles = hypotheses_mask[i] ? style_green : style_cyan; ss_instance << "_registered" << endl; pcl::visualization::PointCloudColorHandlerCustom<PointType> registered_instance_color_handler (registered_instances[i], registeredStyles.r, registeredStyles.g, registeredStyles.b); viewer.addPointCloud (registered_instances[i], registered_instance_color_handler, ss_instance.str ()); viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, registeredStyles.size, ss_instance.str ()); } while (!viewer.wasStopped ()) { viewer.spinOnce (); } return (0); }
int main (int argc, char *argv[]) { parseCommandLine (argc, argv); pcl::PointCloud<PointType>::Ptr model (new pcl::PointCloud<PointType> ()); pcl::PointCloud<PointType>::Ptr model_keypoints (new pcl::PointCloud<PointType> ()); pcl::PointCloud<PointType>::Ptr scene (new pcl::PointCloud<PointType> ()); pcl::PointCloud<PointType>::Ptr scene_keypoints (new pcl::PointCloud<PointType> ()); pcl::PointCloud<NormalType>::Ptr model_normals (new pcl::PointCloud<NormalType> ()); pcl::PointCloud<NormalType>::Ptr scene_normals (new pcl::PointCloud<NormalType> ()); pcl::PointCloud<DescriptorType>::Ptr model_descriptors (new pcl::PointCloud<DescriptorType> ()); pcl::PointCloud<DescriptorType>::Ptr scene_descriptors (new pcl::PointCloud<DescriptorType> ()); /** * Load Clouds */ if (pcl::io::loadPCDFile (model_filename_, *model) < 0) { std::cout << "Error loading model cloud." << std::endl; showHelp (argv[0]); return (-1); } if (pcl::io::loadPCDFile (scene_filename_, *scene) < 0) { std::cout << "Error loading scene cloud." << std::endl; showHelp (argv[0]); return (-1); } /** * Compute Normals */ pcl::NormalEstimationOMP<PointType, NormalType> norm_est; norm_est.setKSearch (10); norm_est.setInputCloud (model); norm_est.compute (*model_normals); norm_est.setInputCloud (scene); norm_est.compute (*scene_normals); /** * Downsample Clouds to Extract keypoints */ pcl::UniformSampling<PointType> uniform_sampling; uniform_sampling.setInputCloud (model); uniform_sampling.setRadiusSearch (model_ss_); uniform_sampling.filter (*model_keypoints); std::cout << "Model total points: " << model->size () << "; Selected Keypoints: " << model_keypoints->size () << std::endl; uniform_sampling.setInputCloud (scene); uniform_sampling.setRadiusSearch (scene_ss_); uniform_sampling.filter (*scene_keypoints); std::cout << "Scene total points: " << scene->size () << "; Selected Keypoints: " << scene_keypoints->size () << std::endl; /** * Compute Descriptor for keypoints */ pcl::SHOTEstimationOMP<PointType, NormalType, DescriptorType> descr_est; descr_est.setRadiusSearch (descr_rad_); descr_est.setInputCloud (model_keypoints); descr_est.setInputNormals (model_normals); descr_est.setSearchSurface (model); descr_est.compute (*model_descriptors); descr_est.setInputCloud (scene_keypoints); descr_est.setInputNormals (scene_normals); descr_est.setSearchSurface (scene); descr_est.compute (*scene_descriptors); /** * Find Model-Scene Correspondences with KdTree */ pcl::CorrespondencesPtr model_scene_corrs (new pcl::Correspondences ()); pcl::KdTreeFLANN<DescriptorType> match_search; match_search.setInputCloud (model_descriptors); std::vector<int> model_good_keypoints_indices; std::vector<int> scene_good_keypoints_indices; for (size_t i = 0; i < scene_descriptors->size (); ++i) { std::vector<int> neigh_indices (1); std::vector<float> neigh_sqr_dists (1); if (!pcl_isfinite (scene_descriptors->at (i).descriptor[0])) //skipping NaNs { continue; } int found_neighs = match_search.nearestKSearch (scene_descriptors->at (i), 1, neigh_indices, neigh_sqr_dists); if (found_neighs == 1 && neigh_sqr_dists[0] < 0.25f) { pcl::Correspondence corr (neigh_indices[0], static_cast<int> (i), neigh_sqr_dists[0]); model_scene_corrs->push_back (corr); model_good_keypoints_indices.push_back (corr.index_query); scene_good_keypoints_indices.push_back (corr.index_match); } } pcl::PointCloud<PointType>::Ptr model_good_kp (new pcl::PointCloud<PointType> ()); pcl::PointCloud<PointType>::Ptr scene_good_kp (new pcl::PointCloud<PointType> ()); pcl::copyPointCloud (*model_keypoints, model_good_keypoints_indices, *model_good_kp); pcl::copyPointCloud (*scene_keypoints, scene_good_keypoints_indices, *scene_good_kp); std::cout << "Correspondences found: " << model_scene_corrs->size () << std::endl; /** * Clustering */ std::vector<Eigen::Matrix4f, Eigen::aligned_allocator<Eigen::Matrix4f> > rototranslations; std::vector < pcl::Correspondences > clustered_corrs; if (use_hough_) { pcl::PointCloud<RFType>::Ptr model_rf (new pcl::PointCloud<RFType> ()); pcl::PointCloud<RFType>::Ptr scene_rf (new pcl::PointCloud<RFType> ()); pcl::BOARDLocalReferenceFrameEstimation<PointType, NormalType, RFType> rf_est; rf_est.setFindHoles (true); rf_est.setRadiusSearch (rf_rad_); rf_est.setInputCloud (model_keypoints); rf_est.setInputNormals (model_normals); rf_est.setSearchSurface (model); rf_est.compute (*model_rf); rf_est.setInputCloud (scene_keypoints); rf_est.setInputNormals (scene_normals); rf_est.setSearchSurface (scene); rf_est.compute (*scene_rf); // Clustering pcl::Hough3DGrouping<PointType, PointType, RFType, RFType> clusterer; clusterer.setHoughBinSize (cg_size_); clusterer.setHoughThreshold (cg_thresh_); clusterer.setUseInterpolation (true); clusterer.setUseDistanceWeight (false); clusterer.setInputCloud (model_keypoints); clusterer.setInputRf (model_rf); clusterer.setSceneCloud (scene_keypoints); clusterer.setSceneRf (scene_rf); clusterer.setModelSceneCorrespondences (model_scene_corrs); clusterer.recognize (rototranslations, clustered_corrs); } else { pcl::GeometricConsistencyGrouping<PointType, PointType> gc_clusterer; gc_clusterer.setGCSize (cg_size_); gc_clusterer.setGCThreshold (cg_thresh_); gc_clusterer.setInputCloud (model_keypoints); gc_clusterer.setSceneCloud (scene_keypoints); gc_clusterer.setModelSceneCorrespondences (model_scene_corrs); gc_clusterer.recognize (rototranslations, clustered_corrs); } /** * Stop if no instances */ if (rototranslations.size () <= 0) { cout << "*** No instances found! ***" << endl; return (0); } else { cout << "Recognized Instances: " << rototranslations.size () << endl << endl; } /** * Generates clouds for each instances found */ std::vector<pcl::PointCloud<PointType>::ConstPtr> instances; for (size_t i = 0; i < rototranslations.size (); ++i) { pcl::PointCloud<PointType>::Ptr rotated_model (new pcl::PointCloud<PointType> ()); pcl::transformPointCloud (*model, *rotated_model, rototranslations[i]); instances.push_back (rotated_model); } /** * ICP */ std::vector<pcl::PointCloud<PointType>::ConstPtr> registered_instances; if (true) { cout << "--- ICP ---------" << endl; for (size_t i = 0; i < rototranslations.size (); ++i) { pcl::IterativeClosestPoint<PointType, PointType> icp; icp.setMaximumIterations (icp_max_iter_); icp.setMaxCorrespondenceDistance (icp_corr_distance_); icp.setInputTarget (scene); icp.setInputSource (instances[i]); pcl::PointCloud<PointType>::Ptr registered (new pcl::PointCloud<PointType>); icp.align (*registered); registered_instances.push_back (registered); cout << "Instance " << i << " "; if (icp.hasConverged ()) { cout << "Aligned!" << endl; } else { cout << "Not Aligned!" << endl; } } cout << "-----------------" << endl << endl; } /** * Hypothesis Verification */ cout << "--- Hypotheses Verification ---" << endl; std::vector<bool> hypotheses_mask; // Mask Vector to identify positive hypotheses pcl::GlobalHypothesesVerification<PointType, PointType> GoHv; GoHv.setSceneCloud (scene); // Scene Cloud GoHv.addModels (registered_instances, true); //Models to verify GoHv.setInlierThreshold (hv_inlier_th_); GoHv.setOcclusionThreshold (hv_occlusion_th_); GoHv.setRegularizer (hv_regularizer_); GoHv.setRadiusClutter (hv_rad_clutter_); GoHv.setClutterRegularizer (hv_clutter_reg_); GoHv.setDetectClutter (hv_detect_clutter_); GoHv.setRadiusNormals (hv_rad_normals_); GoHv.verify (); GoHv.getMask (hypotheses_mask); // i-element TRUE if hvModels[i] verifies hypotheses for (int i = 0; i < hypotheses_mask.size (); i++) { if (hypotheses_mask[i]) { cout << "Instance " << i << " is GOOD! <---" << endl; } else { cout << "Instance " << i << " is bad!" << endl; } } cout << "-------------------------------" << endl; /** * Visualization */ pcl::visualization::PCLVisualizer viewer ("Hypotheses Verification"); viewer.addPointCloud (scene, "scene_cloud"); pcl::PointCloud<PointType>::Ptr off_scene_model (new pcl::PointCloud<PointType> ()); pcl::PointCloud<PointType>::Ptr off_scene_model_keypoints (new pcl::PointCloud<PointType> ()); pcl::PointCloud<PointType>::Ptr off_model_good_kp (new pcl::PointCloud<PointType> ()); pcl::transformPointCloud (*model, *off_scene_model, Eigen::Vector3f (-1, 0, 0), Eigen::Quaternionf (1, 0, 0, 0)); pcl::transformPointCloud (*model_keypoints, *off_scene_model_keypoints, Eigen::Vector3f (-1, 0, 0), Eigen::Quaternionf (1, 0, 0, 0)); pcl::transformPointCloud (*model_good_kp, *off_model_good_kp, Eigen::Vector3f (-1, 0, 0), Eigen::Quaternionf (1, 0, 0, 0)); if (show_keypoints_) { CloudStyle modelStyle = style_white; pcl::visualization::PointCloudColorHandlerCustom<PointType> off_scene_model_color_handler (off_scene_model, modelStyle.r, modelStyle.g, modelStyle.b); viewer.addPointCloud (off_scene_model, off_scene_model_color_handler, "off_scene_model"); viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, modelStyle.size, "off_scene_model"); } if (show_keypoints_) { CloudStyle goodKeypointStyle = style_violet; pcl::visualization::PointCloudColorHandlerCustom<PointType> model_good_keypoints_color_handler (off_model_good_kp, goodKeypointStyle.r, goodKeypointStyle.g, goodKeypointStyle.b); viewer.addPointCloud (off_model_good_kp, model_good_keypoints_color_handler, "model_good_keypoints"); viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, goodKeypointStyle.size, "model_good_keypoints"); pcl::visualization::PointCloudColorHandlerCustom<PointType> scene_good_keypoints_color_handler (scene_good_kp, goodKeypointStyle.r, goodKeypointStyle.g, goodKeypointStyle.b); viewer.addPointCloud (scene_good_kp, scene_good_keypoints_color_handler, "scene_good_keypoints"); viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, goodKeypointStyle.size, "scene_good_keypoints"); } for (size_t i = 0; i < instances.size (); ++i) { std::stringstream ss_instance; ss_instance << "instance_" << i; CloudStyle clusterStyle = style_red; pcl::visualization::PointCloudColorHandlerCustom<PointType> instance_color_handler (instances[i], clusterStyle.r, clusterStyle.g, clusterStyle.b); viewer.addPointCloud (instances[i], instance_color_handler, ss_instance.str ()); viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, clusterStyle.size, ss_instance.str ()); CloudStyle registeredStyles = hypotheses_mask[i] ? style_green : style_cyan; ss_instance << "_registered" << endl; pcl::visualization::PointCloudColorHandlerCustom<PointType> registered_instance_color_handler (registered_instances[i], registeredStyles.r, registeredStyles.g, registeredStyles.b); viewer.addPointCloud (registered_instances[i], registered_instance_color_handler, ss_instance.str ()); viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, registeredStyles.size, ss_instance.str ()); } while (!viewer.wasStopped ()) { viewer.spinOnce (); } return (0); }