Example #1
0
void goalPos(goal_t *goal) {
	int x, y;
	float dx, dy, da, dd, goal_a;

	x = goal->data.pos_data.x;
	y = goal->data.pos_data.y;
	dx = x - current_pos.x;
	dy = y - current_pos.y;
	goal_a = atan2(dy, dx);
	da = (goal_a - current_pos.angle);
	da = moduloTwoPI(da);
	dd = sqrt(pow(dx, 2.0)+pow(dy, 2.0));

	if (goal->data.pos_data.d == ANY) {
		if (abs(da) > CONE_ALIGNEMENT) {
			da = moduloPI(da);
			dd = - dd;
		}
	} else if (goal->data.pos_data.d == BACKWARD) {
		dd = - dd;
		da = moduloTwoPI(da+M_PI);
	}

	if (controlPos(dd, da) & POS_REACHED) {
		goal->is_reached = 1;
	}
	applyPID();
}
Example #2
0
/* Implementation du modele d'evolution du robot a partir de l'odometrie
 * A appeler a intervalle regulier (a voir pour la mettre sur une interruption timer)
 * */
void computeRobotState(){
	static long prev_value_left_enc = 0;
	static long prev_value_right_enc = 0;

	static unsigned long prevTime = 0;

	/*calcul du deplacement depuis la derniere fois en ticks */
	long dl = value_left_enc - prev_value_left_enc;
	long dr = value_right_enc - prev_value_right_enc;

	/*preparation de la prochaine iteration*/
	prev_value_left_enc = value_left_enc;
	prev_value_right_enc = value_right_enc;

	/*calcul de la vitesse en mm/s */
	unsigned long duree = micros() - prevTime;
	double speed_left = ((double)dl/(double)duree)*1000000.0;
	double speed_right = ((double)dr/(double)duree)*1000000.0;
	double speed = (speed_left+speed_right)/2.0; /*estimation : simple moyenne*/
	prevTime = micros();

	/* calcul du changement d'orientation en rad */
	double delta_angle = (double)(dr-dl)/(double)ENC_CENTER_DIST_TICKS;

	/* calcul du deplacement */
	double delta_dist = (double)(dr+dl)/2.0;

	/* mise a jour de la position en ticks
	 * on utilise des cos et des sin et c'est pas tres opti.
	 * A voir si l'approximation par un dev limite d'ordre 2 est plus efficace
	 */
	double dx = delta_dist*cos(robot_state.angle+delta_angle); //FIXME y a peut etre un delta_angle/2 ici, a verifier
	double dy = delta_dist*sin(robot_state.angle+delta_angle);

	/*mise a jour de l'etat du robot  */
	robot_state.speed = speed;
	robot_state.angle =  moduloPI(robot_state.angle + delta_angle);
	robot_state.x += dx;
	robot_state.y += dy;
}
Example #3
0
void RobotObserver::compute(TICKS left_value, TICKS right_value) {

	TICKS dl = (left_value - _prev_left_value);
	TICKS dr = (right_value - _prev_right_value);
	
	// vitesse de rotation
	_speed_a = (dr-dl)/(double)ENC_CENTER_DIST_TICKS;
	//_speed_a = atan2(dr-dl, ENC_CENTER_DIST_TICKS);

	// vitesse
	_speed = (dr+dl)/2.0;
	
	// mise a jour de l'etat du robot
	_a =  moduloPI(((double)(right_value - left_value)) / (double)ENC_CENTER_DIST_TICKS);

	TICKS_100 delta = (dr+dl) * 50; // (dr+dl)*100/2
	_x += ((double)delta)*cos(_a);//(1.0-0.5*_a*_a);//cos(_a);
	_y += ((double)delta)*sin(_a);//(_a-_a*_a*_a/6.0);//sin(_a);

	
	// preparation de la prochaine iteration
	_prev_left_value = left_value;
	_prev_right_value = right_value;
}
Example #4
0
/* Calcule les pwm a appliquer pour un asservissement en position
 * <> value_pwm_left : la pwm a appliquer sur la roue gauche [-255,255]
 * <> value_pwm_right : la pwm a appliquer sur la roue droite [-255,255]
 * */
void positionControl(int* value_pwm_left, int* value_pwm_right){

	static bool initDone = false;

	if(!initDone){
		output4Delta = 0;
		output4Alpha = 0;
		currentDelta = .0;
		currentAlpha = .0;
		consigneDelta = .0;
		consigneAlpha = .0;
		pid4DeltaControl.Reset();
		pid4DeltaControl.SetInputLimits(-TABLE_DISTANCE_MAX_MM/ENC_TICKS_TO_MM,TABLE_DISTANCE_MAX_MM/ENC_TICKS_TO_MM);
		pid4DeltaControl.SetSampleTime(DUREE_CYCLE);
		pid4DeltaControl.SetOutputLimits(-current_goal.speed,current_goal.speed); /*composante liee a la vitesse lineaire*/
		pid4DeltaControl.SetMode(AUTO);
		pid4AlphaControl.Reset();
		pid4AlphaControl.SetSampleTime(DUREE_CYCLE);
		pid4AlphaControl.SetInputLimits(-M_PI,M_PI);
		pid4AlphaControl.SetOutputLimits(-255,255); /*composante lie a la vitesse de rotation*/
		pid4AlphaControl.SetMode(AUTO);
		initDone = true;
	}

	/* Gestion de l'arret d'urgence */
	if(current_goal.isCanceled){
		initDone = false;
		current_goal.isReached = true;
		current_goal.isCanceled = false;
		/* et juste pour etre sur */
		(*value_pwm_right) = 0;
		(*value_pwm_left) = 0;
		return;
	}

	/* Gestion de la pause */
	if(current_goal.isPaused){
		(*value_pwm_right) = 0;
		(*value_pwm_left) = 0;
		return;
	}


	/*calcul de l'angle alpha a combler avant d'etre aligne avec le point cible
	 * borne = [-PI PI] */
	double angularCoeff = atan2(current_goal.y-robot_state.y,current_goal.x-robot_state.x); /*arctan(y/x) -> [-PI,PI]*/
	currentAlpha = moduloPI(angularCoeff - robot_state.angle); /* il faut un modulo ici, c'est sur !


	/* En fait, le sens est donne par l'ecart entre le coeff angulaire et l'angle courant du robot.
	 * Si cet angle est inferieur a PI/2 en valeur absolue, le robot avance en marche avant (il avance quoi)
	 * Si cet angle est superieur a PI/2 en valeur absolue, le robot recule en marche arriere (= il recule)
	 */
	int sens = 1;
	if(abs(currentAlpha) > M_PI/2){/* c'est a dire qu'on a meilleur temps de partir en marche arriere */
		sens = -1;
		currentAlpha = moduloPI(M_PI + angularCoeff - robot_state.angle);
	}
	
	currentAlpha = -currentAlpha;


 	double dx = current_goal.x-robot_state.x;
	double dy = current_goal.y-robot_state.y;
	currentDelta = -sens * sqrt(dx*dx+dy*dy); // - parce que l'ecart doit etre negatif pour partir en avant

	/*
	Serial.print("coeff:");
	Serial.print(angularCoeff);
	Serial.print("  angle:");
	Serial.print(robot_state.angle);
	Serial.print("  alpha:");
	Serial.print(currentAlpha);
	Serial.print("  delta:");
	Serial.print(currentDelta);
	Serial.print("  x:");
	Serial.print(current_goal.x);
	Serial.print("  y:");
	Serial.println(current_goal.y);
	*/
	
	
	
	/* on limite la vitesse lineaire quand on s'approche du but */
	if (abs(currentDelta)<250){
		pid4DeltaControl.SetOutputLimits(-min(50,current_goal.speed),min(50,current_goal.speed)); // composante liee a la vitesse lineaire
		pid4AlphaControl.SetOutputLimits(-150,150); // composante liee a la vitesse de rotation
	}
	else if (abs(currentDelta)<500){
		pid4DeltaControl.SetOutputLimits(-min(60,current_goal.speed),min(60,current_goal.speed)); // composante liee a la vitesse lineaire
		pid4AlphaControl.SetOutputLimits(-150,150); // composante liee a la vitesse de rotation
	}
	else if (abs(currentDelta)<750){
		pid4DeltaControl.SetOutputLimits(-min(80,current_goal.speed),min(80,current_goal.speed)); // composante liee a la vitesse lineaire
		pid4AlphaControl.SetOutputLimits(-150,150); // composante liee a la vitesse de rotation
	}
	else if (abs(currentDelta)<1000){
		pid4DeltaControl.SetOutputLimits(-min(100,current_goal.speed),min(100,current_goal.speed)); // composante liee a la vitesse lineaire
		pid4AlphaControl.SetOutputLimits(-150,150); // composante liee a la vitesse de rotation
	}
	else if (abs(currentDelta)<1250){
		pid4DeltaControl.SetOutputLimits(-min(150,current_goal.speed),min(150,current_goal.speed)); // composante liee a la vitesse lineaire
		pid4AlphaControl.SetOutputLimits(-150,150); // composante liee a la vitesse de rotation
	}
	else if (abs(currentDelta)<1500){
		pid4DeltaControl.SetOutputLimits(-min(200,current_goal.speed),min(200,current_goal.speed)); // composante liee a la vitesse lineaire
		pid4AlphaControl.SetOutputLimits(-150,150); // composante liee a la vitesse de rotation
	}

	if(abs(currentDelta) < 5*ENC_MM_TO_TICKS) /*si l'ecart n'est plus que de 6 mm, on considere la consigne comme atteinte*/
		current_goal.phase = PHASE_2;
	else
		current_goal.phase = PHASE_1;

	pid4AlphaControl.Compute();
	pid4DeltaControl.Compute();

	if(current_goal.phase == PHASE_2){
		(*value_pwm_right) = 0;
		(*value_pwm_left) = 0;
	}
	else{
		double pwm4Delta = 0.0;

		//FIXME probleme de debordemment
		//alpha 200 delta 255 / delta+alpha = 455 / delta-alpha = 55 / => alpha 200 delta 55
		//alpha 200 delta -255 / delta+alpha = -55 / delta-alpha = -455 / => alpha 200 delta -55
		//alpha -200 delta 255 / delta+alpha = 55 / delta-alpha = 455 / => alpha -200 delta 55
		//alpha -200 delta -255 / delta+alpha = -455 / delta-alpha = -55 / => alpha -200 delta -55
		/*
		 Correction by thomas
		 if(output4Delta+output4Alpha>255 || output4Delta-output4Alpha>255)
			pwm4Delta = 255-output4Alpha;
		else if(output4Delta+output4Alpha<-255 || output4Delta-output4Alpha<-255)
			pwm4Delta = -255+output4Alpha;
		else
			pwm4Delta = output4Delta;*/

		(*value_pwm_right) = output4Delta+output4Alpha;
		(*value_pwm_left) = output4Delta-output4Alpha;
		
		// Correction by thomas
		if ((*value_pwm_right) > 255)
			(*value_pwm_right) = 255;
		else if ((*value_pwm_right) < -255)
			(*value_pwm_right) = -255;
		
		if ((*value_pwm_left) > 255)
			(*value_pwm_left) = 255;
		else if ((*value_pwm_left) < -255)
			(*value_pwm_left) = -255;
	}

	if(current_goal.phase == PHASE_2){
		if(current_goal.id != -1 && !current_goal.isMessageSent){
			//le message d'arrivee n'a pas encore ete envoye a l'intelligence
			//envoi du message
			sendMessage(current_goal.id,2);
			current_goal.isMessageSent = true;
		}
		/*condition d'arret = si on a atteint le but et qu'un nouveau but attends dans la fifo*/
		if(!fifoIsEmpty()){ //on passe a la tache suivante
			current_goal.isReached = true;
			initDone = false;
		}
	}

}
Example #5
0
/* Calcule les pwm a appliquer pour un asservissement en angle
 * <> value_pwm_left : la pwm a appliquer sur la roue gauche [-255,255]
 * <> value_pwm_right : la pwm a appliquer sur la roue droite [-255,255]
 * */
void angleControl(int* value_pwm_left, int* value_pwm_right){

	static bool initDone = false;

	if(!initDone){
		pwm = 0;
		currentEcart = .0;
		consigne = .0;
		pid4AngleControl.Reset();
		pid4AngleControl.SetInputLimits(-M_PI,M_PI);
		pid4AngleControl.SetOutputLimits(-current_goal.speed,current_goal.speed);
		pid4AngleControl.SetSampleTime(DUREE_CYCLE);
		pid4AngleControl.SetMode(AUTO);
		initDone = true;
	}

	/* Gestion de l'arret d'urgence */
	if(current_goal.isCanceled){
		initDone = false;
		current_goal.isReached = true;
		current_goal.isCanceled = false;
		/* et juste pour etre sur */
		(*value_pwm_right) = 0;
		(*value_pwm_left) = 0;
		return;
	}

	/* Gestion de la pause */
	if(current_goal.isPaused){
		(*value_pwm_right) = 0;
		(*value_pwm_left) = 0;
		return;
	}

	/*l'angle consigne doit etre comprise entre ]-PI, PI]

	En fait pour simplifier, l'entree du PID sera l'ecart entre le l'angle courant et l'angle cible (consigne - angle courant)
	la consigne (SetPoint) du PID sera 0
	la sortie du PID sera le double pwm
	*/
	currentEcart = -moduloPI(current_goal.angle - robot_state.angle);

	/*
	Serial.print("goal: ");
	Serial.print(current_goal.angle);
	Serial.print(" current: ");
	Serial.print(robot_state.angle);
	Serial.print(" ecart: ");
	Serial.println(currentEcart);
	*/

	if(abs(currentEcart) < 3.0f*M_PI/360.0f) /*si l'erreur est inferieur a 3deg, on concidere la consigne atteinte*/
		current_goal.phase = PHASE_2;
	else
		current_goal.phase = PHASE_1;

	pid4AngleControl.Compute();

	if(current_goal.phase == PHASE_2){
		(*value_pwm_right) = 0;
		(*value_pwm_left) = 0;
	}
	else{
		(*value_pwm_right) = pwm;
		(*value_pwm_left) = -pwm;
	}

	if(current_goal.phase == PHASE_2){
		if(current_goal.id != -1 && !current_goal.isMessageSent){
			//le message d'arrivee n'a pas encore ete envoye a l'intelligence
			//envoi du message
			sendMessage(current_goal.id,2);
			current_goal.isMessageSent = true;
		}
		if(!fifoIsEmpty()){ //on passe a la tache suivante
			/*condition d'arret = si on a atteint le but et qu'un nouveau but attends dans la fifo*/
			current_goal.isReached = true;
			initDone = false;
		}
	}
}
Example #6
0
/* Calcule les pwm a appliquer pour un asservissement en position
 * <> value_pwm_left : la pwm a appliquer sur la roue gauche [-255,255]
 * <> value_pwm_right : la pwm a appliquer sur la roue droite [-255,255]
 * */
void positionControl(int* value_pwm_left, int* value_pwm_right){

	static bool initDone = false;

	if(!initDone){
		output4Delta = 0;
		output4Alpha = 0;
		currentDelta = .0;
		currentAlpha = .0;
		consigneDelta = .0;
		consigneAlpha = .0;
		pid4DeltaControl.Reset();
		pid4DeltaControl.SetInputLimits(-TABLE_DISTANCE_MAX_MM/ENC_TICKS_TO_MM,TABLE_DISTANCE_MAX_MM/ENC_TICKS_TO_MM);
		pid4DeltaControl.SetSampleTime(DUREE_CYCLE);
		pid4DeltaControl.SetOutputLimits(-current_goal.speed,current_goal.speed); /*composante liee a la vitesse lineaire*/
		pid4DeltaControl.SetMode(AUTO);
		pid4AlphaControl.Reset();
		pid4AlphaControl.SetSampleTime(DUREE_CYCLE);
		pid4AlphaControl.SetInputLimits(-M_PI,M_PI);
		pid4AlphaControl.SetOutputLimits(-255,255); /*composante lie a la vitesse de rotation*/
		pid4AlphaControl.SetMode(AUTO);
		initDone = true;
	}

	/* Gestion de l'arret d'urgence */
	if(current_goal.isCanceled){
		initDone = false;
		current_goal.isReached = true;
		current_goal.isCanceled = false;
		/* et juste pour etre sur */
		(*value_pwm_right) = 0;
		(*value_pwm_left) = 0;
		return;
	}

	/* Gestion de la pause */
	if(current_goal.isPaused){
		(*value_pwm_right) = 0;
		(*value_pwm_left) = 0;
		return;
	}


	/*calcul de l'angle alpha a combler avant d'etre aligne avec le point cible
	 * borne = [-PI PI] */
	double angularCoeff = atan2(current_goal.y-robot_state.y,current_goal.x-robot_state.x); /*arctan(y/x) -> [-PI,PI]*/
	currentAlpha = moduloPI(angularCoeff - robot_state.angle); /* il faut un modulo ici, c'est sur !


	/* En fait, le sens est donne par l'ecart entre le coeff angulaire et l'angle courant du robot.
	 * Si cet angle est inferieur a PI/2 en valeur absolue, le robot avance en marche avant (il avance quoi)
	 * Si cet angle est superieur a PI/2 en valeur absolue, le robot recule en marche arriere (= il recule)
	 */
	int sens = 1;
	if(current_goal.phase != PHASE_1 and abs(currentAlpha) > M_PI/2){/* c'est a dire qu'on a meilleur temps de partir en marche arriere */
		sens = -1;
		currentAlpha = moduloPI(M_PI + angularCoeff - robot_state.angle);
	}
	
	currentAlpha = -currentAlpha;


 	double dx = current_goal.x-robot_state.x;
	double dy = current_goal.y-robot_state.y;
	currentDelta = -sens * sqrt(dx*dx+dy*dy); // - parce que l'ecart doit etre negatif pour partir en avant
	
	

	switch(current_goal.phase)
	{
		case PHASE_1:
			if(abs(currentDelta)<1500) /*si l'ecart n'est plus que de 6 mm, on considere la consigne comme atteinte*/
			{
				current_goal.phase = PHASE_DECEL;
			}
		break;
		
		case PHASE_DECEL:
			if (fifoIsEmpty())
			{
				/* on limite la vitesse lineaire quand on s'approche du but */
				if (abs(currentDelta)<250){
					pid4DeltaControl.SetOutputLimits(-min(50,current_goal.speed),min(50,current_goal.speed)); // composante liee a la vitesse lineaire
					pid4AlphaControl.SetOutputLimits(-150,150); // composante liee a la vitesse de rotation
				}
				else if (abs(currentDelta)<500){
					pid4DeltaControl.SetOutputLimits(-min(60,current_goal.speed),min(60,current_goal.speed)); // composante liee a la vitesse lineaire
					pid4AlphaControl.SetOutputLimits(-150,150); // composante liee a la vitesse de rotation
				}
				else if (abs(currentDelta)<750){
					pid4DeltaControl.SetOutputLimits(-min(80,current_goal.speed),min(80,current_goal.speed)); // composante liee a la vitesse lineaire
					pid4AlphaControl.SetOutputLimits(-150,150); // composante liee a la vitesse de rotation
				}
				else if (abs(currentDelta)<1000){
					pid4DeltaControl.SetOutputLimits(-min(100,current_goal.speed),min(100,current_goal.speed)); // composante liee a la vitesse lineaire
					pid4AlphaControl.SetOutputLimits(-150,150); // composante liee a la vitesse de rotation
				}
				else if (abs(currentDelta)<1250){
					pid4DeltaControl.SetOutputLimits(-min(150,current_goal.speed),min(150,current_goal.speed)); // composante liee a la vitesse lineaire
					pid4AlphaControl.SetOutputLimits(-150,150); // composante liee a la vitesse de rotation
				}
				else {
					pid4DeltaControl.SetOutputLimits(-min(200,current_goal.speed),min(200,current_goal.speed)); // composante liee a la vitesse lineaire
					pid4AlphaControl.SetOutputLimits(-150,150); // composante liee a la vitesse de rotation
				}
			}
			if(abs(currentDelta) < 5*ENC_MM_TO_TICKS) /*si l'ecart n'est plus que de 6 mm, on considere la consigne comme atteinte*/
			{
				//envoi du message
				sendMessage(current_goal.id,2);
				current_goal.isMessageSent = true;
				
				current_goal.phase = PHASE_ARRET;
			}
		break;

		case PHASE_ARRET:
			if (abs(currentDelta) > 5*ENC_MM_TO_TICKS)
			{
				current_goal.phase = PHASE_CORRECTION;
			}
		break;

		case PHASE_CORRECTION:
			pid4DeltaControl.SetOutputLimits(-min(50,current_goal.speed),min(50,current_goal.speed)); // composante liee a la vitesse lineaire
			pid4AlphaControl.SetOutputLimits(-150,150); // composante liee a la vitesse de rotation
			if (abs(currentDelta) < 5*ENC_MM_TO_TICKS)
			{
				current_goal.phase = PHASE_ARRET;
			}
		default:
		
		break;
	}

	if (!fifoIsEmpty() and (current_goal.phase == PHASE_ARRET or current_goal.phase == PHASE_CORRECTION)) { //on passe a la tache suivante si la fifo n'est pas vide
		current_goal.isReached = true;
		initDone = false;
	}
		

	pid4AlphaControl.Compute();
	pid4DeltaControl.Compute();

	if (current_goal.phase == PHASE_ARRET)
	{
		(*value_pwm_right) = 0;
		(*value_pwm_left) = 0;
	}
	else
	{
		(*value_pwm_right) = output4Delta+output4Alpha;
		(*value_pwm_left) = output4Delta-output4Alpha;
		
		// Débordement
		if ((*value_pwm_right) > 255)
			(*value_pwm_right) = 255;
		else if ((*value_pwm_right) < -255)
			(*value_pwm_right) = -255;
		
		if ((*value_pwm_left) > 255)
			(*value_pwm_left) = 255;
		else if ((*value_pwm_left) < -255)
			(*value_pwm_left) = -255;
	}
}
Example #7
0
double alpha_diff(double a, double b)
{
	//return atan2(sin(a-b), cos(a-b));
	return moduloPI(a - b);
}
Example #8
0
/**
 * Analyse le message et effectue les actions associees
 *
 * @param id : l'identifiant associe au message
 * @param header : le type de message (en-tete)
 * @param args : le tableau d'entier contenant les arguments
 * */
void cmd(int id, int id_cmd, int* args, int size){
	/* On analyse le message en fonction de son type */
	switch(id_cmd){

		case QA_ID: /* Identification */
		{
			sendMessage(id, ID_ASSERV, (char*)"asserv");
			break;
		}

		case QA_PING:
		{
			sendMessage(id, (char*)"Pong");
			break;
		}

		case QA_SETPID:
		{
			//ENC_CENTER_DIST_MM = args[0]/10.0;
			break;
		}

		case QA_GOTO:
		{
			if (size < 3)
				sendMessage(id, E_INVALID_PARAMETERS_NUMBERS);
			else
			{
				pushGoalPosition(id,(double)args[0]*ENC_MM_TO_TICKS, (double)args[1]*ENC_MM_TO_TICKS, (double)args[2]);
				sendMessage(id, 1);
			}
			break;
		}

		case QA_GOTOR:
		{
			if (size < 3)
				sendMessage(id, E_INVALID_PARAMETERS_NUMBERS);
			else
			{
				double co = cos(robot_get_angle());
				double si = sin(robot_get_angle());

				pushGoalPosition(id,((double)args[0]*co-(double)args[1]*si)*18+robot_get_x()*0.01, ((double)args[0]*si+(double)args[1]*co)*18+robot_get_y()*0.01, (double)args[2]);
				sendMessage(id, 1);
			}
			break;
		}

		case QA_TURN:
		{
			if (size < 2)
				sendMessage(id, E_INVALID_PARAMETERS_NUMBERS);
			else
			{
				double angle = moduloPI(((double)args[0]) * DEG_TO_RAD);
				sendMessage(-1, (int)(angle*100.0));
				pushGoalOrientation(id,angle,args[1]);
				sendMessage(id, 1);
			}
			break;
		}

		case QA_TURNR:
		{
			if (size < 2)
				sendMessage(id, E_INVALID_PARAMETERS_NUMBERS);
			else
			{
				double angle = moduloPI(((double)args[0]) * DEG_TO_RAD + robot_get_angle());
				pushGoalOrientation(id,angle,args[1]);
				sendMessage(id, 1);
			}
			break;
		}

		case QA_POS:
		{
			int x_mm = robot_get_x()*0.01*ENC_TICKS_TO_MM;
			int y_mm = robot_get_y()*0.01*ENC_TICKS_TO_MM;
			int a_deg = robot_get_angle()*RAD_TO_DEG;
			int tab[] = {x_mm,y_mm,a_deg};
			sendMessage(id,tab,3);
	        break;
		}

		case QA_SET_POS:
		{
			if (size < 2)
				sendMessage(id, E_INVALID_PARAMETERS_NUMBERS);
			else {
				robot_set_mm_x(args[0]);
				robot_set_mm_y(args[1]);
				robot_set_deg_angle(args[2]);
				value_left_enc = 0;
				value_right_enc = 0;
				sendMessage(id, 0);
			}
			break;
		}

		case QA_PWM:
		{
			if (size < 2)
				sendMessage(id, E_INVALID_PARAMETERS_NUMBERS);
			else
			{
				pushGoalPwm(id,args[0],args[1],args[2]);
				sendMessage(id, 1);
			}
			break;
		}
/*
		case Q_MODIF_GOAL_ABS:
		{
			if (size < 3)
				sendMessage(id, E_INVALID_PARAMETERS_NUMBERS);
			else
			{
				current_goal.type = TYPE_POSITION;
				current_goal.isReached = false;
				current_goal.x = (double)args[0]*ENC_MM_TO_TICKS;
				current_goal.y = (double)args[1]*ENC_MM_TO_TICKS;
				current_goal.speed = args[2];
				sendMessage(id, 1);
			}
			break;
		}

		case Q_MODIF_GOAL_REL:
		{
			if (size < 3)
				sendMessage(id, E_INVALID_PARAMETERS_NUMBERS);
			else
			{
				double co = cos(robot_state.angle);
				double si = sin(robot_state.angle);

				current_goal.type = TYPE_POSITION;
				current_goal.isReached = false;
				current_goal.x = (args[0]*co-args[1]*si)*18+robot_state.x;
				current_goal.y = (args[0]*si+args[1]*co)*18+robot_state.y;
				current_goal.speed = args[2];
				sendMessage(id, 1);
			}
			break;
		}
		*/
		case QA_CANCEL: /* comme stop */
		{
			clearGoals();
			current_goal.isCanceled = true;
			sendMessage(id, 0);
			break;
		}

		case QA_STOP: /* comme pause */
		{
			current_goal.isPaused = true;
			sendMessage(id, 0);
			break;
		}

		case QA_RESUME: /* comme resume */
		{
			current_goal.isPaused = false;
			sendMessage(id, 0);
			break;
		}

		case QA_RESET:
		{
			clearGoals();
			current_goal.isCanceled = true;
			current_goal.isPaused = false;
			value_left_enc = 0;
			value_right_enc = 0;
			robot_set_rad_angle(0.0);
			robot_set_x(0);
			robot_set_y(0);
			sendMessage(id, 0);
			break;
		}

		case QA_GETSENS:
		{
			if (value_pwm_right > 0)
				sendMessage(id, AVANT);
			else if (value_pwm_right < 0)
				sendMessage(id, ARRIERE);
			else
				sendMessage(id, ARRET);
			break;
		}

		case QA_GETENC:
		{
			int tab[2] = {value_left_enc,value_right_enc};
			sendMessage(id, tab, 2);
			break;
		}

		case Q_DEBUG : //TODO a degager quand tout marche
		{
			/*Serial.print("?,_________________§");
			Serial.print("uptime: ");Serial.print(millis());
			Serial.print("§angle: ");Serial.print(robot_state.angle, DEC);
			Serial.print("§speed: ");Serial.print(robot_state.speed*ENC_TICKS_TO_MM, DEC);
			Serial.print("§speedt: ");Serial.print(robot_state.speed, DEC);
			Serial.print("§x: ");Serial.print(robot_state.x*ENC_TICKS_TO_MM, DEC);
			Serial.print("§xt: ");Serial.print(robot_state.x, DEC);
			Serial.print("§y: ");Serial.print(robot_state.y*ENC_TICKS_TO_MM, DEC);
			Serial.print("§yt: ");Serial.print(robot_state.y, DEC);
			Serial.print("§encL: ");Serial.print(value_left_enc);
			Serial.print("§encR: ");Serial.println(value_right_enc);*/
			break;
		}
		

		default:
		{
			sendMessage(id,E_INVALID_CMD);
			break;
		}
	}
}