Example #1
0
	void normalize(){ (*this) /= modulus(); }
Example #2
0
	Point normalized(){ Point p = *this; return p / modulus(); }
void _reentrant verify_result(){
	WORD temp, temp1, i;
	WORD no_words, rem_bytes;
	WORD bytes = num_bytes;

	if (sysaddr_mod != 0){
		verify_modulo();
		return;
	}

	if (start_byte_send != start_byte_receive){
		shift_bytes();
		
		// update start_byte_send and start_byte_receive
		start_byte_send = 0;
		start_byte_receive = 0;
	}

	// If start_byte_receive != 0, we check the first address location
	if (start_byte_receive != 0) {
		if (start_byte_receive == 1) {
			if(bytes == 1) {
				temp = source_data[0] & 0x00FF00;
				temp1 = returned_data[0] & 0x00FF00; 
				if (temp != temp1) {
					TEST_FAILED;
					test_result[j++] = extaddr_lo;
				}
				return;
			}
			else if (bytes > 1) {
				temp = source_data[0] & 0xFFFF00;
				temp1 = returned_data[0] & 0xFFFF00;
				if (temp != temp1) {
					TEST_FAILED;
					test_result[j++] = extaddr_lo;
					return;
				}
				bytes -= 2;
			}
		}
	
		if (start_byte_receive == 2) {
			temp = source_data[0] & 0xFF0000;
			temp1 = returned_data[0] & 0xFF0000; 
			if (temp != temp1) {
				TEST_FAILED;
				test_result[j++] = extaddr_lo;
				return;
			}
			bytes--;
		}
	
		no_words = divide(bytes, 3);
		rem_bytes = modulus(bytes, 3); 

		for (i=1; i <= no_words; i++){
			if(source_data[i] != returned_data[i]){
				TEST_FAILED;
				test_result[j++] = extaddr_lo;
				return;
			}
		}
	}
	else { // start_byte_receive = 0
		no_words = divide(num_bytes,3);
		rem_bytes = modulus(num_bytes,3); 

		for (i=0; i<no_words; i++){
			if(source_data[i] != returned_data[i]){
				TEST_FAILED;
				test_result[j++] = extaddr_lo;
				return;
			}
		}
	}
	
	if (rem_bytes == 1) { // each mem loc = 3 bytes
		temp = source_data[i] & 0xFF;
		temp1 = returned_data[i] & 0xFF;
		if (temp != temp1) {
			TEST_FAILED;
			test_result[j++] = extaddr_lo;
		}
	} 
	else if (rem_bytes == 2) { 
		temp = source_data[i] & 0xFFFF;
		temp1 = returned_data[i] & 0xFFFF;
		if (temp != temp1) {
			TEST_FAILED;
			test_result[j++] = extaddr_lo;
		}
	}
	
}
Example #4
0
/* Try to do an accelerated tile of the pTile into pRegion of pDrawable.
 * Based on fbFillRegionTiled(), fbTile().
 */
Bool
exaFillRegionTiled (DrawablePtr pDrawable, RegionPtr pRegion, PixmapPtr pTile,
		    DDXPointPtr pPatOrg, CARD32 planemask, CARD32 alu,
		    unsigned int clientClipType)
{
    ExaScreenPriv(pDrawable->pScreen);
    PixmapPtr pPixmap;
    ExaPixmapPrivPtr pExaPixmap;
    ExaPixmapPrivPtr pTileExaPixmap = ExaGetPixmapPriv(pTile);
    int xoff, yoff;
    int tileWidth, tileHeight;
    int nbox = REGION_NUM_RECTS (pRegion);
    BoxPtr pBox = REGION_RECTS (pRegion);
    Bool ret = FALSE;
    int i;

    tileWidth = pTile->drawable.width;
    tileHeight = pTile->drawable.height;

    /* If we're filling with a solid color, grab it out and go to
     * FillRegionSolid, saving numerous copies.
     */
    if (tileWidth == 1 && tileHeight == 1)
	return exaFillRegionSolid(pDrawable, pRegion,
				  exaGetPixmapFirstPixel (pTile), planemask,
				  alu, clientClipType);

    pPixmap = exaGetDrawablePixmap (pDrawable);
    pExaPixmap = ExaGetPixmapPriv (pPixmap);

    if (pExaScr->fallback_counter || pExaPixmap->accel_blocked ||
	    pTileExaPixmap->accel_blocked)
	return FALSE;

    if (pExaScr->do_migration) {
	ExaMigrationRec pixmaps[2];

	pixmaps[0].as_dst = TRUE;
	pixmaps[0].as_src = FALSE;
	pixmaps[0].pPix = pPixmap;
	pixmaps[0].pReg = exaGCReadsDestination(pDrawable, planemask, FillTiled,
						alu, clientClipType) ? NULL : pRegion;
	pixmaps[1].as_dst = FALSE;
	pixmaps[1].as_src = TRUE;
	pixmaps[1].pPix = pTile;
	pixmaps[1].pReg = NULL;

	exaDoMigration (pixmaps, 2, TRUE);
    }

    pPixmap = exaGetOffscreenPixmap (pDrawable, &xoff, &yoff);

    if (!pPixmap || !exaPixmapIsOffscreen(pTile))
	return FALSE;

    if ((*pExaScr->info->PrepareCopy) (pTile, pPixmap, 1, 1, alu, planemask))
    {
	if (xoff || yoff)
	    REGION_TRANSLATE(pScreen, pRegion, xoff, yoff);

	for (i = 0; i < nbox; i++)
	{
	    int height = pBox[i].y2 - pBox[i].y1;
	    int dstY = pBox[i].y1;
	    int tileY;

	    if (alu == GXcopy)
		height = min(height, tileHeight);

	    modulus(dstY - yoff - pDrawable->y - pPatOrg->y, tileHeight, tileY);

	    while (height > 0) {
		int width = pBox[i].x2 - pBox[i].x1;
		int dstX = pBox[i].x1;
		int tileX;
		int h = tileHeight - tileY;

		if (alu == GXcopy)
		    width = min(width, tileWidth);

		if (h > height)
		    h = height;
		height -= h;

		modulus(dstX - xoff - pDrawable->x - pPatOrg->x, tileWidth,
			tileX);

		while (width > 0) {
		    int w = tileWidth - tileX;
		    if (w > width)
			w = width;
		    width -= w;

		    (*pExaScr->info->Copy) (pPixmap, tileX, tileY, dstX, dstY,
					    w, h);
		    dstX += w;
		    tileX = 0;
		}
		dstY += h;
		tileY = 0;
	    }
	}
	(*pExaScr->info->DoneCopy) (pPixmap);

	/* With GXcopy, we only need to do the basic algorithm up to the tile
	 * size; then, we can just keep doubling the destination in each
	 * direction until it fills the box. This way, the number of copy
	 * operations is O(log(rx)) + O(log(ry)) instead of O(rx * ry), where
	 * rx/ry is the ratio between box and tile width/height. This can make
	 * a big difference if each driver copy incurs a significant constant
	 * overhead.
	 */
	if (alu != GXcopy)
	    ret = TRUE;
	else {
	    Bool more_copy = FALSE;

	    for (i = 0; i < nbox; i++) {
		int dstX = pBox[i].x1 + tileWidth;
		int dstY = pBox[i].y1 + tileHeight;

		if ((dstX < pBox[i].x2) || (dstY < pBox[i].y2)) {
		    more_copy = TRUE;
		    break;
		}
	    }

	    if (more_copy == FALSE)
		ret = TRUE;

	    if (more_copy && (*pExaScr->info->PrepareCopy) (pPixmap, pPixmap,
							    1, 1, alu, planemask)) {
		for (i = 0; i < nbox; i++)
		{
		    int dstX = pBox[i].x1 + tileWidth;
		    int dstY = pBox[i].y1 + tileHeight;
		    int width = min(pBox[i].x2 - dstX, tileWidth);
		    int height = min(pBox[i].y2 - pBox[i].y1, tileHeight);

		    while (dstX < pBox[i].x2) {
			(*pExaScr->info->Copy) (pPixmap, pBox[i].x1, pBox[i].y1,
						dstX, pBox[i].y1, width, height);
			dstX += width;
			width = min(pBox[i].x2 - dstX, width * 2);
		    }

		    width = pBox[i].x2 - pBox[i].x1;
		    height = min(pBox[i].y2 - dstY, tileHeight);

		    while (dstY < pBox[i].y2) {
			(*pExaScr->info->Copy) (pPixmap, pBox[i].x1, pBox[i].y1,
						pBox[i].x1, dstY, width, height);
			dstY += height;
			height = min(pBox[i].y2 - dstY, height * 2);
		    }
		}

		(*pExaScr->info->DoneCopy) (pPixmap);

		ret = TRUE;
	    }
	}

	exaMarkSync(pDrawable->pScreen);

	if (xoff || yoff)
	    REGION_TRANSLATE(pScreen, pRegion, -xoff, -yoff);
    }

    return ret;
}
Example #5
0
void NetChannel::SendReliables()//actually sends to the server
{
	//ok, lets check if we need to resend anything
	int received_seq = -1;
	for (int i = 0; i < NumberWindows; i++)
	{
		if (window[i].recieved == false && window[i].data)
		{
			//if we got an ack for packet after this one and still havent
			//received ack for this one, we should resend
			unsigned int minrtt = this->rtt > 100 ? rtt * 2 : 100;
			if ((received_seq > (int)window[i].sequence && window[i].resends == 0) || (window[i].sendtime + minrtt < NetGetTime()))
			{
				this->lastsendtime = NetGetTime();

				netlogf("[%s] Resending sequence %d\n", this->server ? "Server" : "Client", window[i].sequence);

				bool fragmented = false;
				if (window[i].numfragments > 1)
					fragmented = true;

				//resend
				char d[2056];
				NetMsg msg(2056, d);
				int seq = window[i].sequence;//this->sequence;
				//todo, handle sequence number overflow//seq &= ~(1<<31);//this is not OOB
				seq |= 1 << ReliableFlagBit;//this is for if reliable;

				if (fragmented)
					seq |= 1 << FragmentFlagBit;//this signifies split packet

				if (window[i].channel != -1)//sequence channel -1 = unsequenced
					seq |= 1 << OrderedFlagBit;

				//dont send this if not reliable
				msg.WriteInt(seq);//if MSB bit high, then fragmented 

				msg.WriteInt(recieved_sequence);
				msg.WriteInt(this->GetAckBits());//then write bits with last recieved sequences

				if (window[i].channel != -1)
				{
					msg.WriteByte(window[i].channel);
					msg.WriteShort(window[i].channel_sequence);
				}

				if (fragmented)
				{
					msg.WriteShort(window[i].fragment);
					msg.WriteShort(window[i].numfragments);

					msg.WriteData(window[i].data + window[i].fragment*NET_FRAGMENT_SIZE, (window[i].size - window[i].fragment*NET_FRAGMENT_SIZE) < NET_FRAGMENT_SIZE ? window[i].size - window[i].fragment*NET_FRAGMENT_SIZE : NET_FRAGMENT_SIZE);
				}
				else
				{
					//msg.WriteShort(window[i].size);
					msg.WriteData(window[i].data, window[i].size);
				}

				window[i].sendtime = NetGetTime();//+500;
				window[i].resends += 1;

				this->unsent_acks = 0;
				this->connection->Send(this->remoteaddr, msg.data, msg.cursize);
			}
		}
		else if (window[i].recieved == true && window[i].data)
		{
			if ((int)window[i].sequence > received_seq)
				received_seq = window[i].sequence;
		}
	}

	if (this->reliable_sending.empty() == true)
		return;

	//why do I do this?
	//if (this->sequence == 0)
	//	this->sequence = 1;

	while (this->reliable_sending.empty() == false)
	{
		RPacket front = this->reliable_sending.front();
		bool fragmented = false;
		int numfrags = 1;
		if (front.size > NET_FRAGMENT_SIZE)
		{
			numfrags = front.size / NET_FRAGMENT_SIZE + 1;
			fragmented = true;
		}
		int fragment = 0;//fix this, dont subtract from sequence number!!
		int mw = modulus(this->sequence - 1, NumberWindows);
		//check if we are in the middle of sending packet
		if (window[mw].data && window[mw].fragment + 1 != window[mw].numfragments)
		{
			//netlog("we were in the middle of sending split packet, try and send more\n");
			fragment = window[mw].fragment + 1;
		}

		for (; fragment < numfrags; fragment++)
		{
			//check if we can slide the window
			int zw = modulus(this->sequence - (NumberWindows-1), NumberWindows);//(this->sequence - 33) % 33;
			mw = modulus(this->sequence, NumberWindows);

			if (window[zw].recieved == true || window[zw].data == 0)
			{
				if (window[zw].data && window[zw].fragment + 1 == window[zw].numfragments)//delete old data
				{
					delete[] window[zw].data;

					window[zw].data = 0;
				}
			}
			else if (window[zw].data)//ok, we cant let this break on us
			{
				//netlog("[NetCon] Couldn't send packet because sending old one\n");
				return;//we havent gotten ack on 31st packet, so cant slide
			}

			this->lastsendtime = NetGetTime();

			char d[2056];
			NetMsg msg(2056, d);
			int seq = this->sequence;
			//todo, handle sequence number overflow//seq &= ~(1<<31);//this is not OOB
			seq |= 1 << ReliableFlagBit;//this is for if reliable;
			if (fragmented)
				seq |= 1 << FragmentFlagBit;//this signifies split packet
			if (front.channel != -1)
				seq |= 1 << OrderedFlagBit;

			//dont send this if not reliable
			msg.WriteInt(seq);//if MSB bit high, then fragmented 

			msg.WriteInt(recieved_sequence);
			msg.WriteInt(this->GetAckBits());//then write bits with last recieved sequences

			if (front.channel != -1)
			{
				msg.WriteByte(front.channel);
				msg.WriteShort(this->outgoing_ordered_sequence[front.channel]);
			}

			if (fragmented)
			{
				msg.WriteShort(fragment);
				msg.WriteShort(numfrags);
			}

			//fill out latest window slot
			window[mw].recieved = false;
			window[mw].data = front.data;
			window[mw].size = front.size;
			window[mw].sendtime = NetGetTime();
			window[mw].sequence = this->sequence;
			window[mw].resends = 0;
			window[mw].fragment = fragment;
			window[mw].numfragments = numfrags;
			window[mw].channel = front.channel;
			if (window[mw].channel != -1)
				window[mw].channel_sequence = this->outgoing_ordered_sequence[window[mw].channel];

			if (window[mw].fragment == numfrags - 1 || numfrags == 1)
			{
				this->outgoing_ordered_sequence[window[mw].channel]++;
			}

			//ok, pack in the data, make sure we dont pack too much
			while (this->reliable_sending.empty() == false)
			{
				RPacket pack = this->reliable_sending.front();
				//write size of packet
				if (fragmented)
				{
					msg.WriteData(pack.data + fragment*NET_FRAGMENT_SIZE, (pack.size - fragment*NET_FRAGMENT_SIZE) < NET_FRAGMENT_SIZE ? pack.size - fragment*NET_FRAGMENT_SIZE : NET_FRAGMENT_SIZE);
				}
				else
				{
					//msg.WriteShort(pack.size);
					msg.WriteData(pack.data, pack.size);
				}

				break;//only send 1 for now
			}

			this->unsent_acks = 0;
			this->connection->Send(this->remoteaddr, msg.data, msg.cursize);

			if (this->sequence < MaxSequenceNumber)
				this->sequence++;//increment sequence number
			else
				this->sequence = 0;
		}
		if (window[modulus(this->sequence - 1, NumberWindows)].fragment + 1 == numfrags)
			this->reliable_sending.pop();//pop if finished with packet
	}
}//actually does the networking
Example #6
0
/** @brief Extract keypoint feature vector
 *
 * ----INPUT----
 * @param x_key
 * @param y_key
 * @param sigma_key
 * @param theta_key      keypoint coordinates.
 *
 * @param imX
 * @param imX          precomputed gradient relative to the nearest scale.
 *
 * ----PARAM----
 * @param lambda_descr   (=6)
 *                       - The gaussian window has a standard deviation of lambda_descr X=* sigma_key
 *                       - The patch P^descr is ( 2 * lambda_descr * sigma_key * (1+1/Nhist) wide
 *
 * @param Nhist          (=4) number of histograms in each of the two directions,
 * @param Nbins          (=8) number of bins covering the range [0,2pi]
 *
 * ----OUTPUT----
 * @output descr
 *
 * ----RETURN----
 * @return count         number of sample contributing to the descriptor
 */
void sift_extract_feature_vector(float x_key, float y_key, float sigma_key,
                                 float theta_key,
                                 const float* imX, const float* imY,
                                 int w, int h,
                                 int Nhist,
                                 int Nbins,
                                 float lambda_descr,
                                 float* descr)
{
    // Initialize descr tab
    for(int i = 0; i < Nhist*Nhist*Nbins; i++){descr[i] = 0.0;}
    // Contributing pixels are inside a patch [siMin;siMax]X[sjMin;sjMax] of
    // width 2*lambda_descr*sigma_key*(nhist+1)/nhist
    float R =  (1+1/(float)Nhist)*lambda_descr*sigma_key;
    float Rp =  M_SQRT2*R;
    int siMin = MAX(0, (int)(x_key - Rp +0.5));
    int sjMin = MAX(0, (int)(y_key - Rp +0.5));
    int siMax = MIN((int)(x_key + Rp +0.5), h-1);
    int sjMax = MIN((int)(y_key + Rp +0.5), w-1);
    /// For each pixel inside the patch.
    for(int si = siMin; si < siMax; si++){
        for(int sj = sjMin; sj < sjMax; sj++){
            // Compute pixel coordinates (sX,sY) on keypoint's invariant referential.
            float X = si - x_key;
            float Y = sj - y_key;
            apply_rotation(X, Y, &X, &Y, -theta_key);
            // Does this sample fall inside the descriptor area ?
            if (MAX(ABS(X),ABS(Y)) < R) {
                // Compute the gradient orientation (theta) on keypoint referential.
                double dx = imX[si*w+sj];
                double dy = imY[si*w+sj];
                float ori = atan2(dy, dx) - theta_key;
                ori = modulus(ori, 2*M_PI);
                // Compute the gradient magnitude and apply a Gaussian weighing to give less emphasis to distant sample
                double t = lambda_descr*sigma_key;
                double M = hypot(dx, dy) * exp(-(X*X+Y*Y)/(2*t*t));

                // bin indices, Compute the (tri)linear weightings ...
                float alpha = X/(2*lambda_descr*sigma_key/Nhist) + (Nhist-1.0)/2.0;
                float beta  = Y/(2*lambda_descr*sigma_key/Nhist) + (Nhist-1.0)/2.0;
                float gamma = ori/(2*M_PI)*Nbins;
                //    ...and add contributions to respective bins in different histograms.
                // a loop with 1 or two elements
                int i0 = floor(alpha);
                int j0 = floor(beta);
                for(int i = MAX(0,i0);i<=MIN(i0+1,Nhist-1);i++){
                    for(int j = MAX(0,j0);j<=MIN(j0+1,Nhist-1);j++){ // looping through all surrounding histograms.

                        int k;
                        // Contribution to left bin.
                        k = ((int)gamma+Nbins)%Nbins;
                        descr[i*Nhist*Nbins+j*Nbins+k] += (1.-(gamma-floor(gamma)))
                                                         *(1.0-ABS((float)i-alpha))
                                                         *(1.0-ABS((float)j-beta))
                                                         *M;

                        // Contribution to right bin.
                        k = ((int)gamma+1+Nbins)%Nbins;
                        descr[i*Nhist*Nbins+j*Nbins+k] += (1.0-(floor(gamma)+1-gamma))
                                                         *(1.0-ABS((float)i-alpha))
                                                         *(1.0-ABS((float)j-beta))
                                                         *M;
                        

                    }
                }
            }
        }
    }
}
Example #7
0
static int
process (jack_nframes_t  nframes,
         void           *arg)
{
  state *data = arg;

  if (nframes != data->block_size)
    return -1;

  jack_sample_t *input_buffer  = jack_port_get_buffer (data->input_port,  nframes);
  jack_sample_t *output_buffer = jack_port_get_buffer (data->output_port, nframes);

  int buffer_size = data->block_count * nframes;
  int block_index = data->block_index % data->block_count;

  memcpy (data->sample_data + buffer_size + block_index * nframes - nframes, input_buffer, nframes * sizeof (jack_sample_t));

  if (block_index)
    memcpy (data->sample_data + block_index * nframes - nframes, input_buffer, nframes * sizeof (jack_sample_t));

  int i;

  for (i = 0; i < buffer_size; i++)
    data->input_data[i] = data->window_data[i] * data->sample_data[block_index * nframes + i];

  fftw_execute (data->fft_object);

  double maximum = 0;

  for (i = 0; i < buffer_size / 2 + 1; i++)
  {
    data->modulus_data[i] = modulus (data->output_data[i]);

    if (maximum < data->modulus_data[i])
      maximum = data->modulus_data[i];
  }

  for (i = 0; i < nframes; i++)
    output_buffer[i] = 0;

  double factor = 1600; /* XXX */

  for (i = 0; i < buffer_size / 2 + 1; i++)
  {
    if (data->modulus_data[i] > THRESHOLD * maximum)
    {
      double amplitude = data->modulus_data[i] / factor;
      double frequency = 1.0 * i / buffer_size;
      double phase     = data->block_index * nframes;

      int j;

      for (j = 0; j < nframes; j++)
        output_buffer[j] += amplitude * square (frequency * (phase + j));
    }
  }

  data->block_index++;

  return 0;
}
Example #8
0
void NetChannel::ProcessPacket(char* buffer, int recvsize, std::vector<Packet>& container)
{
	NetMsg msg(2048, buffer);
	int rsequence = msg.ReadInt();//sequence
	int reliable = rsequence & (1 << ReliableFlagBit);
	bool shoulduse = this->ProcessHeader(buffer, recvsize);
	if (shoulduse == false)
	{
		netlog("[NetChan] Dropped packet, for any number of reasons!\n");
		return;
	}

	if (rsequence == -1)//OOB
	{
		if (recvsize < 4)
			return;//bad packet

#ifdef NET_VERBOSE_DEBUG
		netlogf("[%s] Got OOB packet\n", this->server ? "Server" : "Client");
#endif

		Packet p;
		p.size = recvsize - 4;
		p.data = new char[p.size];
		memcpy(p.data, &buffer[4], p.size);
		container.push_back(p);
	}
	else if (reliable == false)
	{
#ifdef NET_VERBOSE_DEBUG
		netlogf("[%s] Decoding Packet %d bytes\n", this->server ? "Server" : "Client", recvsize);
#endif

		int ackbits = msg.ReadInt();//this is ackbits

		int ptr = 8;//points to size of sub-packet
		while (ptr < recvsize)//can have multiple packets
		{
			unsigned short packetsize = *(unsigned short*)&buffer[ptr];
			//packetsize = msg.ReadInt();

			if (packetsize & 1 << SplitFlagBit)
			{
				packetsize &= ~(1 << SplitFlagBit);

				//range check
				if (packetsize + 5 + ptr > recvsize)
				{
					netlog("[NetChan] ERROR: Got packetsize that is too large!! Malformed packet!!\n");
					break;
				}

				NetMsg msg2 = NetMsg(2048, &buffer[ptr + 2]);

				unsigned char sequence = msg2.ReadByte();
				unsigned char frag = msg2.ReadByte();
				unsigned char numfrags = msg2.ReadByte();

#ifdef NET_VERBOSE_DEBUG
				netlogf("	Got unreliable split packet %d of %d\n", frag + 1, numfrags);
#endif
				if (sequence == this->unreliable_fragment.sequence)
				{
					if (frag == this->unreliable_fragment.frags_recieved)//it is next packet in set
					{
						this->unreliable_fragment.frags_recieved++;
						//msg.ReadData(&this->unreliable_fragment.data[this->unreliable_fragment.curpos], packetsize);

						memcpy(&this->unreliable_fragment.data[this->unreliable_fragment.curpos], &buffer[ptr + 5], packetsize);
						this->unreliable_fragment.curpos += packetsize;
					}
				}
				else//make sure its newer
				{
					if (this->unreliable_fragment.data)
						delete[] this->unreliable_fragment.data;

					this->unreliable_fragment.data = new char[numfrags*NET_FRAGMENT_SIZE];
					this->unreliable_fragment.sequence = sequence;
					this->unreliable_fragment.frags_recieved = 1;
					this->unreliable_fragment.curpos = packetsize;
					//msg.ReadData(this->unreliable_fragment.data, packetsize);
					memcpy(this->unreliable_fragment.data, &buffer[ptr + 5], packetsize);
				}

				ptr += 5 + packetsize;

				if (frag + 1 == numfrags)
				{
					//we should be done
					if (this->unreliable_fragment.frags_recieved == numfrags)
					{
#ifdef NET_VERBOSE_DEBUG
						netlog("		Was final packet in split unreliable set.\n");
#endif
						//return this->unreliable_fragment.data;
						Packet p;
						p.reliable = false;
						p.size = this->unreliable_fragment.curpos;
						p.data = this->unreliable_fragment.data;
						this->unreliable_fragment.data = 0;
						container.push_back(p);
					}
				}
			}
			else
			{
				//range check
				if (packetsize + 2 + ptr > recvsize)
				{
					netlog("[NetChan] ERROR: Got packetsize that is too large!! Malformed packet!!\n");
					break;
				}
#ifdef NET_VERBOSE_DEBUG
				netlogf("	Got packet of %d bytes at %d\n", packetsize, ptr);
#endif
				Packet p;
				p.reliable = false;
				p.size = packetsize;
				//msg.cursize += packetsize;
				p.data = new char[p.size];
				memcpy(p.data, &buffer[ptr + 2], p.size);
				container.push_back(p);

				ptr += 2 + packetsize;
			}
		}
	}
	else//safe
	{
		//check if the packet is complete if fragmented
		rsequence &= ~(1 << ReliableFlagBit);
		if (rsequence & (1 << FragmentFlagBit))
		{
			rsequence &= ~(1 << FragmentFlagBit);//remove the bit
			//check if we have whole packet, if not continue

			if (rsequence & 1 << OrderedFlagBit)
			{
				if (recvsize < 19)
					return;//bad packet

				rsequence &= ~(1 << OrderedFlagBit);
				unsigned char chan = *(unsigned char*)&buffer[12];
				unsigned short seq = *(unsigned short*)&buffer[13];
				int frag = *(unsigned short*)&buffer[15];
				int numfrags = *(unsigned short*)&buffer[17];

				if (frag + 1 > numfrags)
				{
					netlog("[NetChan] ERROR: Fragment number over maximum number of fragments for set!\n");
					return;
				}
				else if (numfrags > NET_MAX_FRAGMENTS)
				{
					netlog("[NetChan] ERROR: Fragmented packet too large, over NET_MAX_FRAGMENTS!\n");
					return;
				}

#ifdef NET_VERBOSE_DEBUG
				netlogf("[Client] Got ordered reliable split packet %d of %d\n", frag + 1, numfrags);
#endif

				//we need to copy data into a buffer
				int startseq = rsequence - frag;
				int frag_index = modulus(startseq, NumberReliableFragments);
				if (reliable_frags[frag_index].sequence == startseq)
				{
					reliable_frags[frag_index].frags_recieved += 1;
				}
				else
				{
					//delete the old one
					//if (reliable_frags[startseq%20].data)
					//delete[] reliable_frags[startseq%20].data;

					//first packet we got in the set
					reliable_frags[frag_index].num_frags = numfrags;
					reliable_frags[frag_index].frags_recieved = 1;
					reliable_frags[frag_index].data = new char[NET_FRAGMENT_SIZE*numfrags];
					reliable_frags[frag_index].sequence = startseq;
					reliable_frags[frag_index].curpos = 0;
				}

				//ok, copy in the data
				memcpy(reliable_frags[frag_index].data + frag*NET_FRAGMENT_SIZE, &buffer[16 + 3], recvsize - 19);
				reliable_frags[frag_index].curpos += recvsize - 19;

				if (reliable_frags[frag_index].frags_recieved == numfrags)
				{
#ifdef NET_VERBOSE_DEBUG
					netlog("[Client] We got the whole split reliable packet\n");
#endif
					Packet p;
					p.reliable = true;
					p.size = reliable_frags[frag_index].curpos;//frags_recieved*(FRAGMENT_SIZE-1) + (recvsize - 16);//reliable_frags[startseq%20].frags_recieved*FRAGMENT_SIZE;//approximate
					p.data = reliable_frags[frag_index].data;
					reliable_frags[frag_index].data = 0;

					if (this->incoming_ordered_sequence[chan] + 1 == seq)
					{
						this->incoming_ordered_sequence[chan]++;
#ifdef NET_VERBOSE_DEBUG
						netlogf("Pushed ordered pack %d\n", incoming_ordered_sequence[chan]);
#endif
						container.push_back(p);

						//check map to see if next packet is availible
						while (this->ordered_buffer[chan].find(this->incoming_ordered_sequence[chan] + 1) != this->ordered_buffer[chan].end())
						{
							container.push_back(this->ordered_buffer[chan][this->incoming_ordered_sequence[chan] + 1]);
							this->ordered_buffer[chan].erase(this->ordered_buffer[chan].find(this->incoming_ordered_sequence[chan] + 1));

							this->incoming_ordered_sequence[chan]++;
#ifdef NET_VERBOSE_DEBUG
							netlogf("Pushed ordered pack %d\n", incoming_ordered_sequence[chan]);
#endif
						}
					}
					else
					{
						//hold it for a while until we get packets before it
						this->ordered_buffer[chan][seq] = p;
					}
				}
			}
			else
			{
				if (recvsize < 16)
					return;//bad packet

				int frag = *(unsigned short*)&buffer[12];
				int numfrags = *(unsigned short*)&buffer[14];
#ifdef NET_VERBOSE_DEBUG
				netlogf("[Client] Got reliable split packet %d of %d\n", frag + 1, numfrags);
#endif

				//we need to copy data into a buffer
				int startseq = rsequence - frag;
				int frag_index = modulus(startseq, NumberReliableFragments);
				if (reliable_frags[frag_index].sequence == startseq)
				{
					reliable_frags[frag_index].frags_recieved += 1;
				}
				else
				{
					//delete the old one
					//if (reliable_frags[startseq%20].data)
					//delete[] reliable_frags[startseq%20].data;

					//first packet we got in the set
					reliable_frags[frag_index].frags_recieved = 1;
					reliable_frags[frag_index].data = new char[NET_FRAGMENT_SIZE*numfrags];
					reliable_frags[frag_index].sequence = startseq;
					reliable_frags[frag_index].curpos = 0;
				}

				//ok, copy in the data
				memcpy(reliable_frags[frag_index].data + frag*NET_FRAGMENT_SIZE, &buffer[16], recvsize - 16);
				reliable_frags[frag_index].curpos += recvsize - 16;

				if (reliable_frags[frag_index].frags_recieved == numfrags)
				{
#ifdef NET_VERBOSE_DEBUG
					netlog("[Client] We got the whole split reliable packet\n");
#endif
					Packet p;
					p.reliable = true;
					p.size = reliable_frags[frag_index].curpos;//frags_recieved*(FRAGMENT_SIZE-1) + (recvsize - 16);//reliable_frags[startseq%20].frags_recieved*FRAGMENT_SIZE;//approximate
					p.data = reliable_frags[frag_index].data;
					reliable_frags[frag_index].data = 0;
					container.push_back(p);
				}
			}
		}
		else//safe
		{
			if (rsequence & 1 << OrderedFlagBit)
			{
				if (recvsize < 15)
					return;//bad packet

#ifdef NET_VERBOSE_DEBUG
				netlog("[NetChan] Got Ordered Reliable Packet\n");
#endif
				//size at 15
				//chan at 12
				//seq at 13
				unsigned short seq = *(unsigned short*)&buffer[13];
				unsigned char chan = *(unsigned char*)&buffer[12];

				Packet p;
				p.reliable = true;
				p.size = recvsize - (14 + 1);

				//lets make copy
				p.data = new char[p.size];
				memcpy(p.data, &buffer[14 + 1], p.size);
				if (this->incoming_ordered_sequence[chan] + 1 == seq)
				{
					this->incoming_ordered_sequence[chan]++;
#ifdef NET_VERBOSE_DEBUG
					netlogf("Pushed ordered pack %d\n", incoming_ordered_sequence[chan]);
#endif
					container.push_back(p);

					//check map to see if next packet is availible
					while (this->ordered_buffer[chan].find(this->incoming_ordered_sequence[chan] + 1) != this->ordered_buffer[chan].end())
					{
						container.push_back(this->ordered_buffer[chan][this->incoming_ordered_sequence[chan] + 1]);
						this->ordered_buffer[chan].erase(this->ordered_buffer[chan].find(this->incoming_ordered_sequence[chan] + 1));

						this->incoming_ordered_sequence[chan]++;
#ifdef NET_VERBOSE_DEBUG
						netlogf("Pushed ordered pack %d\n", incoming_ordered_sequence[chan]);
#endif
					}
				}
				else
				{
#ifdef NET_VERBOSE_DEBUG
					netlogf("Got ordered pack %d\n", seq);
#endif
					//hold it for a while until we get packets before it
					this->ordered_buffer[chan][seq] = p;
				}
			}
			else
			{
				if (recvsize < 12)
					return;//bad packet

#ifdef NET_VERBOSE_DEBUG
				netlog("[Client] Got Reliable packet\n");
#endif

				//not split packet, or ordered
				Packet p;
				p.reliable = true;
				p.size = recvsize - 12;
				p.data = new char[p.size];
				memcpy(p.data, &buffer[12], p.size);
				container.push_back(p);
			}
		}
	}
};
Example #9
0
/* Try to do an accelerated tile of the pTile into pRegion of pDrawable.
 * Based on fbFillRegionTiled(), fbTile().
 */
Bool
uxa_fill_region_tiled(DrawablePtr pDrawable,
		      RegionPtr pRegion,
		      PixmapPtr pTile,
		      DDXPointPtr pPatOrg, CARD32 planemask, CARD32 alu)
{
	uxa_screen_t *uxa_screen = uxa_get_screen(pDrawable->pScreen);
	PixmapPtr pPixmap;
	int xoff, yoff;
	int tileWidth, tileHeight;
	int nbox = REGION_NUM_RECTS(pRegion);
	BoxPtr pBox = REGION_RECTS(pRegion);
	Bool ret = FALSE;

	tileWidth = pTile->drawable.width;
	tileHeight = pTile->drawable.height;

	/* If we're filling with a solid color, grab it out and go to
	 * FillRegionsolid, saving numerous copies.
	 */
	if (tileWidth == 1 && tileHeight == 1)
		return uxa_fill_region_solid(pDrawable, pRegion,
					     uxa_get_pixmap_first_pixel(pTile),
					     planemask, alu);

	pPixmap = uxa_get_offscreen_pixmap(pDrawable, &xoff, &yoff);
	if (!pPixmap || !uxa_pixmap_is_offscreen(pTile))
		goto out;

	if (uxa_screen->info->check_copy &&
	    !uxa_screen->info->check_copy(pTile, pPixmap, alu, planemask))
		return FALSE;

	REGION_TRANSLATE(pScreen, pRegion, xoff, yoff);

	if ((*uxa_screen->info->prepare_copy) (pTile, pPixmap, 1, 1, alu,
					       planemask)) {
		while (nbox--) {
			int height = pBox->y2 - pBox->y1;
			int dstY = pBox->y1;
			int tileY;

			modulus(dstY - yoff - pDrawable->y - pPatOrg->y,
				tileHeight, tileY);

			while (height > 0) {
				int width = pBox->x2 - pBox->x1;
				int dstX = pBox->x1;
				int tileX;
				int h = tileHeight - tileY;

				if (h > height)
					h = height;
				height -= h;

				modulus(dstX - xoff - pDrawable->x - pPatOrg->x,
					tileWidth, tileX);

				while (width > 0) {
					int w = tileWidth - tileX;
					if (w > width)
						w = width;
					width -= w;

					(*uxa_screen->info->copy) (pPixmap,
								   tileX, tileY,
								   dstX, dstY,
								   w, h);
					dstX += w;
					tileX = 0;
				}
				dstY += h;
				tileY = 0;
			}
			pBox++;
		}
		(*uxa_screen->info->done_copy) (pPixmap);

		ret = TRUE;
	}

out:
	REGION_TRANSLATE(pScreen, pRegion, -xoff, -yoff);

	return ret;
}
Example #10
0
void BenchMarkAll(double t)
{
	logtotal = 0;
	logcount = 0;

	cout << "<TABLE border=1><COLGROUP><COL align=left><COL align=right><COL align=right><COL align=right>" << endl;
	cout << "<THEAD><TR><TH>Algorithm<TH>Bytes Processed<TH>Time Taken<TH>Megabytes(2^20 bytes)/Second\n<TBODY>" << endl;

	BenchMarkKeyless<CRC32>("CRC-32", t);
	BenchMarkKeyless<Adler32>("Adler-32", t);
	BenchMarkKeyless<MD2>("MD2", t);
	BenchMarkKeyless<MD5>("MD5", t);
	BenchMarkKeyless<SHA>("SHA-1", t);
	BenchMarkKeyless<SHA256>("SHA-256", t);
	BenchMarkKeyless<SHA512>("SHA-512", t);
	BenchMarkKeyless<HAVAL3>("HAVAL (pass=3)", t);
	BenchMarkKeyless<HAVAL4>("HAVAL (pass=4)", t);
	BenchMarkKeyless<HAVAL5>("HAVAL (pass=5)", t);
#ifdef WORD64_AVAILABLE
	BenchMarkKeyless<Tiger>("Tiger", t);
#endif
	BenchMarkKeyless<RIPEMD160>("RIPE-MD160", t);
	BenchMarkKeyless<PanamaHash<false> >("Panama Hash (little endian)", t);
	BenchMarkKeyless<PanamaHash<true> >("Panama Hash (big endian)", t);
	BenchMarkKeyed<MDC<MD5> >("MDC/MD5", t);
	BenchMarkKeyed<LREncryption<MD5> >("Luby-Rackoff/MD5", t);
	BenchMarkKeyed<DESEncryption>("DES", t);
	BenchMarkKeyed<DES_XEX3_Encryption>("DES-XEX3", t);
	BenchMarkKeyed<DES_EDE3_Encryption>("DES-EDE3", t);
	BenchMarkKeyed<IDEAEncryption>("IDEA", t);
	BenchMarkKeyed<RC2Encryption>("RC2", t);
	BenchMarkKeyed<RC5Encryption>("RC5 (r=16)", t);
	BenchMarkKeyed<BlowfishEncryption>("Blowfish", t);
	BenchMarkKeyed<Diamond2Encryption>("Diamond2", t);
	BenchMarkKeyed<Diamond2LiteEncryption>("Diamond2 Lite", t);
	BenchMarkKeyed<ThreeWayDecryption>("3-WAY", t);
	BenchMarkKeyed<TEAEncryption>("TEA", t);
	BenchMarkKeyed<SAFER_SK64_Encryption>("SAFER (r=8)", t);
	BenchMarkKeyed<GOSTEncryption>("GOST", t);
#ifdef WORD64_AVAILABLE
	BenchMarkKeyed<SHARKEncryption>("SHARK (r=6)", t);
#endif
	BenchMarkKeyed<CAST128Encryption>("CAST-128", t);
	BenchMarkKeyed<CAST256Encryption>("CAST-256", t);
	BenchMarkKeyed<SquareEncryption>("Square", t);
	BenchMarkKeyed<SKIPJACKEncryption>("SKIPJACK", t);
	BenchMarkKeyed<RC6Encryption>("RC6", t);
	BenchMarkKeyed<MARSEncryption>("MARS", t);
	BenchMarkKeyedVariable<RijndaelEncryption>("Rijndael (128-bit key)", t, 16);
	BenchMarkKeyedVariable<RijndaelEncryption>("Rijndael (192-bit key)", t, 24);
	BenchMarkKeyedVariable<RijndaelEncryption>("Rijndael (256-bit key)", t, 32);
	BenchMarkKeyed<TwofishEncryption>("Twofish", t);
	BenchMarkKeyed<SerpentEncryption>("Serpent", t);
	BenchMarkKeyed<ARC4>("ARC4", t);
	BenchMarkKeyed<SEAL>("SEAL", t);
	{
		WAKEEncryption c(key, new BitBucket);
		BenchMark("WAKE", c, t);
	}
	BenchMarkKeyed<PanamaCipher<false> >("Panama Cipher (little endian)", t);
	BenchMarkKeyed<PanamaCipher<true> >("Panama Cipher (big endian)", t);
	BenchMarkKeyed<SapphireEncryption>("Sapphire", t);
	BenchMarkKeyed<MD5MAC>("MD5-MAC", t);
	BenchMarkKeyed<XMACC<MD5> >("XMACC/MD5", t);
	BenchMarkKeyed<HMAC<MD5> >("HMAC/MD5", t);
	BenchMarkKeyed<CBC_MAC<RijndaelEncryption> >("CBC-MAC/Rijndael", t);
	BenchMarkKeyed<DMAC<RijndaelEncryption> >("DMAC/Rijndael", t);

	{
		Integer p("CB6C,B8CE,6351,164F,5D0C,0C9E,9E31,E231,CF4E,D551,CBD0,E671,5D6A,7B06,D8DF,C4A7h");
		Integer q("FD2A,8594,A132,20CC,4E6D,DE77,3AAA,CF15,CD9E,E447,8592,FF46,CC77,87BE,9876,A2AFh");
		Integer s("63239752671357255800299643604761065219897634268887145610573595874544114193025997412441121667211431");
		BlumBlumShub c(p, q, s);
		BenchMark("BlumBlumShub 512", c, t);
	}
	{
		Integer p("FD2A,8594,A132,20CC,4E6D,DE77,3AAA,CF15,CD9E,E447,8592,FF46,CC77,87BE,9876,9E2C,"
				  "8572,64C3,4CF4,188A,44D4,2130,1135,7982,6FF6,EDD3,26F0,5FAA,BAF4,A81E,7ADC,B80Bh");
		Integer q("C8B9,5797,B349,6BA3,FD72,F2C0,A796,8A65,EE0F,B4BA,272F,4FEE,4DB1,06D5,ECEB,7142,"
				  "E8A8,E5A8,6BF9,A32F,BA37,BACC,8A75,8A6B,2DCE,D6EC,B515,980A,4BB1,08FB,6F2C,2383h");
		Integer s("3578,8F00,2965,71A4,4382,699F,45FD,3922,8238,241B,CEBA,0543,3443,E8D9,12FB,AC46,"
				  "7EC4,8505,EC9E,7EE8,5A23,9B2A,B615,D0C4,9448,F23A,ADEE,E850,1A7A,CA30,0B5B,A408,"
				  "D936,21BA,844E,BDD6,7848,3D1E,9137,CC87,DAA5,773B,D45A,C8BB,5392,1393,108B,6992,"
				  "74E3,C5E2,C235,A321,0111,3BA4,BAB4,1A2F,17EE,C371,DE67,01C9,0F3D,907A,B252,9BDDh");
		BlumBlumShub c(p, q, s);
		BenchMark("BlumBlumShub 1024", c, t);
	}
	{
		Integer p("EB56,978A,7BA7,B5D9,1383,4611,94F5,4766,FCEF,CF41,958A,FC41,43D0,839F,C56B,B568,"
				  "4ED3,9E5A,BABB,5ACE,8B11,CEBC,88A2,7C12,FFEE,E6E8,CF0A,E231,5BC2,DEDE,80B7,32F6,"
				  "340E,D8A6,B7DE,C779,7EE5,0E16,9C88,FC9F,2A0E,EE6C,7D47,C5F2,6B06,EB8C,F1C8,2E67,"
				  "5B82,8C28,4FB8,542F,2874,C355,CEEE,7A54,1B06,A8AB,8B66,6A5C,9DB2,72B8,74F3,7BC7h");
		Integer q("EB6B,3645,4591,8343,7331,7CAC,B02E,4BB9,DEF5,8EDC,1772,DB9B,9571,5FAB,1CDD,4FB1,"
				  "7B9A,07CD,E715,D448,F552,CBBD,D387,C037,DE70,6661,F360,D0E8,D42E,292A,9321,DDCB,"
				  "0BF9,C514,BFAC,3F2C,C06E,DF64,A9B8,50D6,AC4F,B9E4,014B,5624,2B40,A0D4,5D0B,6DD4,"
				  "0989,D00E,0268,99AB,21DB,0BB4,DB38,84DA,594F,575F,95AC,1B70,45E4,96C8,C6AD,CE67h");
		Integer s("C75A,8A0D,E231,295F,C08A,1716,8611,D5EC,E9EF,B565,90EC,58C0,57D0,DA7D,C6E6,DB00,"
				  "2282,1CA7,EA31,D64E,768C,0B19,8563,36DF,2226,F4EC,74A4,2844,2E8D,37E8,53DC,0172,"
				  "5F56,8CF9,B444,CA02,78B3,17AF,7C78,D320,16AE,AC3D,B97F,7259,1B8F,9C84,6A16,B878,"
				  "0595,70BB,9C52,18B5,9100,9C1F,E85A,4035,06F3,5F38,7462,F01D,0462,BFBC,A4CD,4A45,"
				  "3A77,E7F8,DED1,D6EF,CEF7,0937,CD3F,3AF1,4F88,932D,6D4B,002C,3735,304C,C5D3,B88A,"
				  "B57B,24B6,5346,9B46,5153,B7ED,B216,C181,B1C6,C52E,CD2B,E0AA,B1BB,0A93,C92E,4F79,"
				  "4931,E303,7C8F,A408,8ACF,56CD,6EC0,76A2,5015,6BA4,4C50,C44D,53B9,E168,5F84,B381,"
				  "2514,10B2,00E5,B4D1,4156,A2FE,0BF6,6F33,0A1B,91C6,31B8,1C90,02F1,FB1F,C494,8B65h");
		BlumBlumShub c(p, q, s);
		BenchMark("BlumBlumShub 2048", c, t);
	}
	cout << "</TABLE>" << endl;

	cout << "<TABLE border=1><COLGROUP><COL align=left><COL align=right><COL align=right><COL align=right>" << endl;
	cout << "<THEAD><TR><TH>Operation<TH>Iterations<TH>Total Time<TH>Milliseconds/Operation" << endl;
	cout << "<TBODY style=\"background: yellow\">" << endl;
	BenchMarkCrypto<RSAES_OAEP_SHA_Decryptor, RSAES_OAEP_SHA_Encryptor>("rsa512.dat", "RSA 512", t);
	BenchMarkCrypto<RabinDecryptor, RabinEncryptor>("rabi512.dat", "Rabin 512", t);
	BenchMarkCrypto<BlumGoldwasserPrivateKey, BlumGoldwasserPublicKey>("blum512.dat", "BlumGoldwasser 512", t);
	BenchMarkCrypto<LUCES_OAEP_SHA_Decryptor, LUCES_OAEP_SHA_Encryptor>("luc512.dat", "LUC 512", t);
	BenchMarkCrypto<ElGamalDecryptor, ElGamalEncryptor>("elgc512.dat", "ElGamal 512", t);

	cout << "<TBODY style=\"background: white\">" << endl;
	BenchMarkCrypto<RSAES_OAEP_SHA_Decryptor, RSAES_OAEP_SHA_Encryptor>("rsa1024.dat", "RSA 1024", t);
	BenchMarkCrypto<RabinDecryptor, RabinEncryptor>("rabi1024.dat", "Rabin 1024", t);
	BenchMarkCrypto<BlumGoldwasserPrivateKey, BlumGoldwasserPublicKey>("blum1024.dat", "BlumGoldwasser 1024", t);
	BenchMarkCrypto<LUCES_OAEP_SHA_Decryptor, LUCES_OAEP_SHA_Encryptor>("luc1024.dat", "LUC 1024", t);
	BenchMarkCrypto<ElGamalDecryptor, ElGamalEncryptor>("elgc1024.dat", "ElGamal 1024", t);
	BenchMarkCrypto<LUCELG_Decryptor, LUCELG_Encryptor>("lucc512.dat", "LUCELG 512", t);

	cout << "<TBODY style=\"background: yellow\">" << endl;
	BenchMarkCrypto<RSAES_OAEP_SHA_Decryptor, RSAES_OAEP_SHA_Encryptor>("rsa2048.dat", "RSA 2048", t);
	BenchMarkCrypto<RabinDecryptor, RabinEncryptor>("rabi2048.dat", "Rabin 2048", t);
	BenchMarkCrypto<BlumGoldwasserPrivateKey, BlumGoldwasserPublicKey>("blum2048.dat", "BlumGoldwasser 2048", t);
	BenchMarkCrypto<LUCES_OAEP_SHA_Decryptor, LUCES_OAEP_SHA_Encryptor>("luc2048.dat", "LUC 2048", t);
	BenchMarkCrypto<ElGamalDecryptor, ElGamalEncryptor>("elgc2048.dat", "ElGamal 2048", t);
	BenchMarkCrypto<LUCELG_Decryptor, LUCELG_Encryptor>("lucc1024.dat", "LUCELG 1024", t);

	cout << "<TBODY style=\"background: white\">" << endl;
	BenchMarkSignature<RSASSA_PKCS1v15_SHA_Signer, RSASSA_PKCS1v15_SHA_Verifier>("rsa512.dat", "RSA 512", t);
	BenchMarkSignature<RabinSignerWith(SHA), RabinVerifierWith(SHA) >("rabi512.dat", "Rabin 512", t);
	BenchMarkSignature<RWSigner<SHA>, RWVerifier<SHA> >("rw512.dat", "RW 512", t);
	BenchMarkSignature<LUCSSA_PKCS1v15_SHA_Signer, LUCSSA_PKCS1v15_SHA_Verifier>("luc512.dat", "LUC 512", t);
	BenchMarkSignature<NRSigner<SHA>, NRVerifier<SHA> >("nr512.dat", "NR 512", t);
	BenchMarkSignature<DSAPrivateKey, DSAPublicKey>("dsa512.dat", "DSA 512", t);

	cout << "<TBODY style=\"background: yellow\">" << endl;
	BenchMarkSignature<RSASSA_PKCS1v15_SHA_Signer, RSASSA_PKCS1v15_SHA_Verifier>("rsa1024.dat", "RSA 1024", t);
	BenchMarkSignature<RabinSignerWith(SHA), RabinVerifierWith(SHA) >("rabi1024.dat", "Rabin 1024", t);
	BenchMarkSignature<RWSigner<SHA>, RWVerifier<SHA> >("rw1024.dat", "RW 1024", t);
	BenchMarkSignature<LUCSSA_PKCS1v15_SHA_Signer, LUCSSA_PKCS1v15_SHA_Verifier>("luc1024.dat", "LUC 1024", t);
	BenchMarkSignature<NRSigner<SHA>, NRVerifier<SHA> >("nr1024.dat", "NR 1024", t);
	BenchMarkSignature<DSAPrivateKey, DSAPublicKey>("dsa1024.dat", "DSA 1024", t);
	BenchMarkSignature<LUCELG_Signer<SHA>, LUCELG_Verifier<SHA> >("lucs512.dat", "LUCELG 512", t);

	cout << "<TBODY style=\"background: white\">" << endl;
	BenchMarkSignature<RSASSA_PKCS1v15_SHA_Signer, RSASSA_PKCS1v15_SHA_Verifier>("rsa2048.dat", "RSA 2048", t);
	BenchMarkSignature<RabinSignerWith(SHA), RabinVerifierWith(SHA) >("rabi2048.dat", "Rabin 2048", t);
	BenchMarkSignature<RWSigner<SHA>, RWVerifier<SHA> >("rw2048.dat", "RW 2048", t);
	BenchMarkSignature<LUCSSA_PKCS1v15_SHA_Signer, LUCSSA_PKCS1v15_SHA_Verifier>("luc2048.dat", "LUC 2048", t);
	BenchMarkSignature<NRSigner<SHA>, NRVerifier<SHA> >("nr2048.dat", "NR 2048", t);
	BenchMarkSignature<LUCELG_Signer<SHA>, LUCELG_Verifier<SHA> >("lucs1024.dat", "LUCELG 1024", t);

	cout << "<TBODY style=\"background: yellow\">" << endl;
	BenchMarkKeyAgreement<XTR_DH>("xtrdh171.dat", "XTR-DH 171", t);
	BenchMarkKeyAgreement<XTR_DH>("xtrdh342.dat", "XTR-DH 342", t);
	BenchMarkKeyAgreement<DH>("dh512.dat", "DH 512", t);
	BenchMarkKeyAgreement<DH>("dh1024.dat", "DH 1024", t);
	BenchMarkKeyAgreement<DH>("dh2048.dat", "DH 2048", t);
	BenchMarkKeyAgreement<LUCDIF>("lucd512.dat", "LUCDIF 512", t);
	BenchMarkKeyAgreement<LUCDIF>("lucd1024.dat", "LUCDIF 1024", t);
	BenchMarkKeyAgreement<MQV>("mqv512.dat", "MQV 512", t);
	BenchMarkKeyAgreement<MQV>("mqv1024.dat", "MQV 1024", t);
	BenchMarkKeyAgreement<MQV>("mqv2048.dat", "MQV 2048", t);

	cout << "<TBODY style=\"background: white\">" << endl;
	{
		Integer modulus("199999999999999999999999980586675243082581144187569");
		Integer a("659942,b7261b,249174,c86bd5,e2a65b,45fe07,37d110h");
		Integer b("3ece7d,09473d,666000,5baef5,d4e00e,30159d,2df49ah");
		Integer x("25dd61,4c0667,81abc0,fe6c84,fefaa3,858ca6,96d0e8h");
		Integer y("4e2477,05aab0,b3497f,d62b5e,78a531,446729,6c3fach");
		Integer r("100000000000000000000000000000000000000000000000151");
		Integer k(2);
		Integer d("76572944925670636209790912427415155085360939712345");

		ECP ec(modulus, a, b);
		ECP::Point P(x, y);
		P = ec.Multiply(k, P);
		ECP::Point Q(ec.Multiply(d, P));
		ECDecryptor<ECP> cpriv(ec, P, r, Q, d);
		ECEncryptor<ECP> cpub(cpriv);
		ECSigner<ECP, SHA> spriv(cpriv);
		ECVerifier<ECP, SHA> spub(spriv);
		ECDHC<ECP> ecdhc(ec, P, r, k);
		ECMQVC<ECP> ecmqvc(ec, P, r, k);

		BenchMarkEncryption("ECIES over GF(p) 168", cpub, t);
		BenchMarkDecryption("ECIES over GF(p) 168", cpriv, cpub, t);
		BenchMarkSigning("ECNR over GF(p) 168", spriv, t);
		BenchMarkVerification("ECNR over GF(p) 168", spriv, spub, t);
		BenchMarkKeyGen("ECDHC over GF(p) 168", ecdhc, t);
		BenchMarkAgreement("ECDHC over GF(p) 168", ecdhc, t);
		BenchMarkKeyGen("ECMQVC over GF(p) 168", ecmqvc, t);
		BenchMarkAgreement("ECMQVC over GF(p) 168", ecmqvc, t);
	}

	cout << "<TBODY style=\"background: yellow\">" << endl;
	{
		Integer r("3805993847215893016155463826195386266397436443");
		Integer k(12);
		Integer d("2065729449256706362097909124274151550853609397");

		GF2NT gf2n(155, 62, 0);
		byte b[]={0x7, 0x33, 0x8f};
		EC2N ec(gf2n, PolynomialMod2::Zero(), PolynomialMod2(b,3));
		EC2N::Point P(0x7B, 0x1C8);
		P = ec.Multiply(k, P);
		EC2N::Point Q(ec.Multiply(d, P));
		ECDecryptor<EC2N> cpriv(ec, P, r, Q, d);
		ECEncryptor<EC2N> cpub(cpriv);
		ECSigner<EC2N, SHA> spriv(cpriv);
		ECVerifier<EC2N, SHA> spub(spriv);
		ECDHC<EC2N> ecdhc(ec, P, r, k);
		ECMQVC<EC2N> ecmqvc(ec, P, r, k);

		BenchMarkEncryption("ECIES over GF(2^n) 155", cpub, t);
		BenchMarkDecryption("ECIES over GF(2^n) 155", cpriv, cpub, t);
		BenchMarkSigning("ECNR over GF(2^n) 155", spriv, t);
		BenchMarkVerification("ECNR over GF(2^n) 155", spriv, spub, t);
		BenchMarkKeyGen("ECDHC over GF(2^n) 155", ecdhc, t);
		BenchMarkAgreement("ECDHC over GF(2^n) 155", ecdhc, t);
		BenchMarkKeyGen("ECMQVC over GF(2^n) 155", ecmqvc, t);
		BenchMarkAgreement("ECMQVC over GF(2^n) 155", ecmqvc, t);
	}
	cout << "</TABLE>" << endl;

	cout << "Throughput Geometric Average: " << setiosflags(ios::fixed) << exp(logtotal/logcount) << endl;
}
void costmap_cb(const nav_msgs::GridCells::ConstPtr& msg) {
    ODOM_FRAME = msg->header.frame_id;
    
    geometry_msgs::PoseArray ff_msg;
    ff_msg.header.stamp = msg->header.stamp;
    ff_msg.header.frame_id = ODOM_FRAME;
    
    last_fv = msg->header.stamp;
    force_vector[0] = force_vector[1] = 0;
    std::vector<geometry_msgs::Point> points = msg->cells;
    
    std::vector<geometry_msgs::Pose> poses;
    
    int count = 0;
    float total_weight = 0.0;
    
    for (std::vector<std::string>::size_type i = 0; i < points.size(); i++) {
        geometry_msgs::PointStamped point, point_trans;
        point.header.stamp = msg->header.stamp;
        point.header.frame_id = ODOM_FRAME;
        point.point.x = points[i].x;
        point.point.y = points[i].y;
        tf_listener->waitForTransform(BASE_FRAME, ODOM_FRAME, point.header.stamp, ros::Duration(0.1));
        try {
            tf_listener->transformPoint(BASE_FRAME, point, point_trans);
        }
        catch (tf::ExtrapolationException e) {
            ROS_ERROR("Unable to get tf transform: %s", e.what());
            return;
        }
        
        float x = point_trans.point.x;
        float y = point_trans.point.y;
        float yaw = atan(y / x);
        if (x > 0) yaw = modulus(yaw + PI, 2*PI);
        
        std::vector<float> point_vector = point_to_vector(x, y);
        
        if (point_vector.size() > 0) {
            count++;
            //float weight = 0.75*(MAX_RANGE - BASE_RADIUS - CLEARING_DIST)/(sqrt(pow(x, 2) + pow(y, 2)) - BASE_RADIUS - CLEARING_DIST);
            //if ( weight < 0 )             
            //    std::cout << "evil" << std::endl;
            //length += weight;
            //float weight = (PI - abs(yaw)) / PI;
            force_vector[0] += point_vector[0];
            force_vector[1] += point_vector[1];

            geometry_msgs::PoseStamped pose, pose_trans;
            pose.header.stamp = msg->header.stamp;
            pose.header.frame_id = BASE_FRAME;
            pose.pose.position.x = x;
            pose.pose.position.y = y;
            pose.pose.orientation = tf::createQuaternionMsgFromYaw(yaw);

            tf_listener->waitForTransform(ODOM_FRAME, BASE_FRAME, pose.header.stamp, ros::Duration(0.1));
            try {
                tf_listener->transformPose(ODOM_FRAME, pose, pose_trans);
            }
            catch (tf::ExtrapolationException e) {
                ROS_ERROR("Unable to get tf transform: %s", e.what());
                return;
            }
            
            poses.push_back(pose_trans.pose);
        }
    }
    
    //force_vector[0] /= length + 1;
    //force_vector[1] /= length + 1;
    
    std::cout << force_vector[0] << "," << force_vector[1] << std::endl;
    
    // publish resulting force vector as Pose
    geometry_msgs::PoseStamped force, force_trans;
    force.header.stamp = msg->header.stamp;
    force.header.frame_id = BASE_FRAME;
    float force_yaw = atan(force_vector[1] / force_vector[0]);
    if (force_vector[0] > 0) force_yaw = modulus(force_yaw + PI, 2*PI);
    force.pose.orientation = tf::createQuaternionMsgFromYaw(force_yaw);    
    tf_listener->waitForTransform(BASE_FRAME, ODOM_FRAME, msg->header.stamp, ros::Duration(0.1));
    try {
        tf_listener->transformPose(ODOM_FRAME, force, force_trans);
    }
    catch (tf::ExtrapolationException e) {
        ROS_ERROR("Unable to get tf transform: %s", e.what());
        return;
    }
    force_obst_pub.publish(force_trans);    
    
    // publish force field as PoseArray
    ff_msg.poses = poses;  
    force_field_pub.publish(ff_msg);
}
Example #12
0
Vector3 Vector3::normalize() const {
	double mod = modulus();
	if (mod == 0.0) return Vector3(*this);
	return Vector3(x / mod, y / mod, z / mod);
}
Example #13
0
void BenchmarkAll2(double t)
{
	cout << "<TABLE border=1><COLGROUP><COL align=left><COL align=right><COL align=right><COL align=right>" << endl;
	cout << "<THEAD><TR><TH>Operation<TH>Iterations<TH>Total Time<TH>Milliseconds/Operation" << endl;

	cout << "<TBODY style=\"background: yellow\">" << endl;
	BenchMarkCrypto<RSAES<OAEP<SHA> > >("rsa1024.dat", "RSA 1024", t);
	BenchMarkCrypto<RabinES<OAEP<SHA> > >("rabi1024.dat", "Rabin 1024", t);
	BenchMarkCrypto<LUCES<OAEP<SHA> > >("luc1024.dat", "LUC 1024", t);
	BenchMarkCrypto<DLIES<> >("dlie1024.dat", "DLIES 1024", t);
	BenchMarkCrypto<LUC_IES<> >("lucc512.dat", "LUCELG 512", t);

	cout << "<TBODY style=\"background: white\">" << endl;
	BenchMarkCrypto<RSAES<OAEP<SHA> > >("rsa2048.dat", "RSA 2048", t);
	BenchMarkCrypto<RabinES<OAEP<SHA> > >("rabi2048.dat", "Rabin 2048", t);
	BenchMarkCrypto<LUCES<OAEP<SHA> > >("luc2048.dat", "LUC 2048", t);
	BenchMarkCrypto<DLIES<> >("dlie2048.dat", "DLIES 2048", t);
	BenchMarkCrypto<LUC_IES<> >("lucc1024.dat", "LUCELG 1024", t);

	cout << "<TBODY style=\"background: yellow\">" << endl;
	BenchMarkSignature<RSASS<PSSR, SHA> >("rsa1024.dat", "RSA 1024", t);
	BenchMarkSignature<RabinSS<PSSR, SHA> >("rabi1024.dat", "Rabin 1024", t);
	BenchMarkSignature<RWSS<PSSR, SHA> >("rw1024.dat", "RW 1024", t);
	BenchMarkSignature<LUCSS<PSSR, SHA> >("luc1024.dat", "LUC 1024", t);
	BenchMarkSignature<NR<SHA> >("nr1024.dat", "NR 1024", t);
	BenchMarkSignature<DSA>("dsa1024.dat", "DSA 1024", t);
	BenchMarkSignature<LUC_HMP<SHA> >("lucs512.dat", "LUC-HMP 512", t);
	BenchMarkSignature<ESIGN<SHA> >("esig1023.dat", "ESIGN 1023", t);
	BenchMarkSignature<ESIGN<SHA> >("esig1536.dat", "ESIGN 1536", t);

	cout << "<TBODY style=\"background: white\">" << endl;
	BenchMarkSignature<RSASS<PSSR, SHA> >("rsa2048.dat", "RSA 2048", t);
	BenchMarkSignature<RabinSS<PSSR, SHA> >("rabi2048.dat", "Rabin 2048", t);
	BenchMarkSignature<RWSS<PSSR, SHA> >("rw2048.dat", "RW 2048", t);
	BenchMarkSignature<LUCSS<PSSR, SHA> >("luc2048.dat", "LUC 2048", t);
	BenchMarkSignature<NR<SHA> >("nr2048.dat", "NR 2048", t);
	BenchMarkSignature<LUC_HMP<SHA> >("lucs1024.dat", "LUC-HMP 1024", t);
	BenchMarkSignature<ESIGN<SHA> >("esig2046.dat", "ESIGN 2046", t);

	cout << "<TBODY style=\"background: yellow\">" << endl;
	BenchMarkKeyAgreement<XTR_DH>("xtrdh171.dat", "XTR-DH 171", t);
	BenchMarkKeyAgreement<XTR_DH>("xtrdh342.dat", "XTR-DH 342", t);
	BenchMarkKeyAgreement<DH>("dh1024.dat", "DH 1024", t);
	BenchMarkKeyAgreement<DH>("dh2048.dat", "DH 2048", t);
	BenchMarkKeyAgreement<LUC_DH>("lucd512.dat", "LUCDIF 512", t);
	BenchMarkKeyAgreement<LUC_DH>("lucd1024.dat", "LUCDIF 1024", t);
	BenchMarkKeyAgreement<MQV>("mqv1024.dat", "MQV 1024", t);
	BenchMarkKeyAgreement<MQV>("mqv2048.dat", "MQV 2048", t);

	cout << "<TBODY style=\"background: white\">" << endl;
	{
		Integer modulus("199999999999999999999999980586675243082581144187569");
		Integer a("659942,b7261b,249174,c86bd5,e2a65b,45fe07,37d110h");
		Integer b("3ece7d,09473d,666000,5baef5,d4e00e,30159d,2df49ah");
		Integer x("25dd61,4c0667,81abc0,fe6c84,fefaa3,858ca6,96d0e8h");
		Integer y("4e2477,05aab0,b3497f,d62b5e,78a531,446729,6c3fach");
		Integer r("100000000000000000000000000000000000000000000000151");
		Integer k(2);
		Integer d("76572944925670636209790912427415155085360939712345");

		ECP ec(modulus, a, b);
		ECP::Point P(x, y);
		P = ec.Multiply(k, P);
		ECP::Point Q(ec.Multiply(d, P));
		ECIES<ECP>::Decryptor cpriv(ec, P, r, d);
		ECIES<ECP>::Encryptor cpub(cpriv);
		ECDSA<ECP, SHA>::Signer spriv(cpriv);
		ECDSA<ECP, SHA>::Verifier spub(spriv);
		ECDH<ECP>::Domain ecdhc(ec, P, r, k);
		ECMQV<ECP>::Domain ecmqvc(ec, P, r, k);

		BenchMarkEncryption("ECIES over GF(p) 168", cpub, t);
		BenchMarkDecryption("ECIES over GF(p) 168", cpriv, cpub, t);
		BenchMarkSigning("ECNR over GF(p) 168", spriv, t);
		BenchMarkVerification("ECNR over GF(p) 168", spriv, spub, t);
		BenchMarkKeyGen("ECDHC over GF(p) 168", ecdhc, t);
		BenchMarkAgreement("ECDHC over GF(p) 168", ecdhc, t);
		BenchMarkKeyGen("ECMQVC over GF(p) 168", ecmqvc, t);
		BenchMarkAgreement("ECMQVC over GF(p) 168", ecmqvc, t);
	}

	cout << "<TBODY style=\"background: yellow\">" << endl;
	{
		Integer r("3805993847215893016155463826195386266397436443");
		Integer k(12);
		Integer d("2065729449256706362097909124274151550853609397");

		GF2NT gf2n(155, 62, 0);
		byte b[]={0x7, 0x33, 0x8f};
		EC2N ec(gf2n, PolynomialMod2::Zero(), PolynomialMod2(b,3));
		EC2N::Point P(0x7B, 0x1C8);
		P = ec.Multiply(k, P);
		EC2N::Point Q(ec.Multiply(d, P));
		ECIES<EC2N>::Decryptor cpriv(ec, P, r, d);
		ECIES<EC2N>::Encryptor cpub(cpriv);
		ECDSA<EC2N, SHA>::Signer spriv(cpriv);
		ECDSA<EC2N, SHA>::Verifier spub(spriv);
		ECDH<EC2N>::Domain ecdhc(ec, P, r, k);
		ECMQV<EC2N>::Domain ecmqvc(ec, P, r, k);

		BenchMarkEncryption("ECIES over GF(2^n) 155", cpub, t);
		BenchMarkDecryption("ECIES over GF(2^n) 155", cpriv, cpub, t);
		BenchMarkSigning("ECNR over GF(2^n) 155", spriv, t);
		BenchMarkVerification("ECNR over GF(2^n) 155", spriv, spub, t);
		BenchMarkKeyGen("ECDHC over GF(2^n) 155", ecdhc, t);
		BenchMarkAgreement("ECDHC over GF(2^n) 155", ecdhc, t);
		BenchMarkKeyGen("ECMQVC over GF(2^n) 155", ecmqvc, t);
		BenchMarkAgreement("ECMQVC over GF(2^n) 155", ecmqvc, t);
	}
	cout << "</TABLE>" << endl;
}