Object* UnMarshaller::get_positive_varint() { bool done; unsigned long val = get_varint(&done); bool is_fixnum = done; mp_int mp_val; // do we need to switch to bignum math? if(!done) { int shift = sizeof(long) * 7; mp_int a; mp_init_set_int(&mp_val, val); mp_init(&a); #if (__WORDSIZE == 64) // mp_(init_)set_int can only deal with 32 bit values, // so the above call only copied the lower 32 bits of _val_. // Handle the upper 32 bits as well: mp_set_int(&a, val >> 32); mp_mul_2d(&a, 32, &a); mp_add(&a, &mp_val, &mp_val); #endif while(!done) { unsigned int byte = stream.get(); mp_set_int(&a, byte & ~128); mp_mul_2d(&a, shift, &a); mp_add(&a, &mp_val, &mp_val); shift += 7; done = byte < 128; } mp_clear(&a); }
/* Store non-zero to ret if arg is square, and zero if not */ int mp_is_square(mp_int *arg,int *ret) { int res; mp_digit c; mp_int t; unsigned long r; /* Default to Non-square :) */ *ret = MP_NO; if (arg->sign == MP_NEG) { return MP_VAL; } /* digits used? (TSD) */ if (arg->used == 0) { return MP_OKAY; } /* First check mod 128 (suppose that DIGIT_BIT is at least 7) */ if (rem_128[127 & DIGIT(arg,0)] == 1) { return MP_OKAY; } /* Next check mod 105 (3*5*7) */ if ((res = mp_mod_d(arg,105,&c)) != MP_OKAY) { return res; } if (rem_105[c] == 1) { return MP_OKAY; } /* product of primes less than 2^31 */ if ((res = mp_init_set_int(&t,11L*13L*17L*19L*23L*29L*31L)) != MP_OKAY) { return res; } if ((res = mp_mod(arg,&t,&t)) != MP_OKAY) { goto ERR; } r = mp_get_int(&t); /* Check for other prime modules, note it's not an ERROR but we must * free "t" so the easiest way is to goto ERR. We know that res * is already equal to MP_OKAY from the mp_mod call */ if ( (1L<<(r%11)) & 0x5C4L ) goto ERR; if ( (1L<<(r%13)) & 0x9E4L ) goto ERR; if ( (1L<<(r%17)) & 0x5CE8L ) goto ERR; if ( (1L<<(r%19)) & 0x4F50CL ) goto ERR; if ( (1L<<(r%23)) & 0x7ACCA0L ) goto ERR; if ( (1L<<(r%29)) & 0xC2EDD0CL ) goto ERR; if ( (1L<<(r%31)) & 0x6DE2B848L ) goto ERR; /* Final check - is sqr(sqrt(arg)) == arg ? */ if ((res = mp_sqrt(arg,&t)) != MP_OKAY) { goto ERR; } if ((res = mp_sqr(&t,&t)) != MP_OKAY) { goto ERR; } *ret = (mp_cmp_mag(&t,arg) == MP_EQ) ? MP_YES : MP_NO; ERR:mp_clear(&t); return res; }
/* two complement or */ int mp_tc_or(const mp_int *a, const mp_int *b, mp_int *c) { int res = MP_OKAY, bits; int as = mp_isneg(a), bs = mp_isneg(b); mp_int *mx = NULL, _mx, acpy, bcpy; if ((as != MP_NO) || (bs != MP_NO)) { bits = MAX(mp_count_bits(a), mp_count_bits(b)); res = mp_init_set_int(&_mx, 1uL); if (res != MP_OKAY) { goto end; } mx = &_mx; res = mp_mul_2d(mx, bits + 1, mx); if (res != MP_OKAY) { goto end; } if (as != MP_NO) { res = mp_init(&acpy); if (res != MP_OKAY) { goto end; } res = mp_add(mx, a, &acpy); if (res != MP_OKAY) { mp_clear(&acpy); goto end; } a = &acpy; } if (bs != MP_NO) { res = mp_init(&bcpy); if (res != MP_OKAY) { goto end; } res = mp_add(mx, b, &bcpy); if (res != MP_OKAY) { mp_clear(&bcpy); goto end; } b = &bcpy; } } res = mp_or(a, b, c); if (((as != MP_NO) || (bs != MP_NO)) && (res == MP_OKAY)) { res = mp_sub(c, mx, c); } end: if (a == &acpy) { mp_clear(&acpy); } if (b == &bcpy) { mp_clear(&bcpy); } if (mx == &_mx) { mp_clear(mx); } return res; }
/* Sets ret to nonzero value if arg is square, 0 if not Sets t to the square root of arg if one is available, 0 if not */ static int mp_issquare(mp_int *arg, int *ret, mp_int *t) { int res; mp_digit c; mp_int tmp; unsigned long r; /* Default to Non-square :) */ *ret = MP_NO; if (arg->sign == MP_NEG) { return MP_VAL; } /* digits used? (TSD) */ if (arg->used == 0) { return MP_OKAY; } /* First check mod 128 (suppose that DIGIT_BIT is at least 7) */ if (rem_128[127 & DIGIT(arg, 0)] == 1) { mp_set_int(t, (mp_digit)(0)); return MP_OKAY; } /* Next check mod 105 (3*5*7) */ if ((res = mp_mod_d(arg, 105, &c)) != MP_OKAY) { mp_set_int(t, (mp_digit)(0)); return res; } if (rem_105[c] == 1) { mp_set_int(t, (mp_digit)(0)); return MP_OKAY; } if ((res = mp_init_set_int(t, 11L * 13L * 17L * 19L * 23L * 29L * 31L)) != MP_OKAY) { mp_set_int(t, (mp_digit)(0)); return res; } if ((res = mp_mod(arg, t, t)) != MP_OKAY) { goto ERR; } r = mp_get_int(t); /* Check for other prime modules. We know that res * is already equal to MP_OKAY from the mp_mod call */ if ((1L << (r % 11)) & 0x5C4L) goto ERR; if ((1L << (r % 13)) & 0x9E4L) goto ERR; if ((1L << (r % 17)) & 0x5CE8L) goto ERR; if ((1L << (r % 19)) & 0x4F50CL) goto ERR; if ((1L << (r % 23)) & 0x7ACCA0L) goto ERR; if ((1L << (r % 29)) & 0xC2EDD0CL) goto ERR; if ((1L << (r % 31)) & 0x6DE2B848L) goto ERR; /* Final check - is sqr(sqrt(arg)) == arg ? */ if ((res = mp_sqrt(arg, t)) != MP_OKAY) { goto ERR; } mp_init(&tmp); if ((res = mp_sqr(t, &tmp)) != MP_OKAY) { goto ERR; } *ret = (mp_cmp_mag(&tmp, arg) == MP_EQ) ? MP_YES : MP_NO; mp_clear(&tmp); return res; ERR: mp_set_int(t, (mp_digit)(0)); mp_clear(&tmp); return res; }
/* two complement and */ int mp_tc_and(const mp_int *a, const mp_int *b, mp_int *c) { int res = MP_OKAY, bits, abits, bbits; int sa = a->sign, sb = b->sign; mp_int *mx = NULL, _mx, acpy, bcpy; if ((sa == MP_NEG) || (sb == MP_NEG)) { abits = mp_count_bits(a); bbits = mp_count_bits(b); bits = MP_MAX(abits, bbits); res = mp_init_set_int(&_mx, 1uL); if (res != MP_OKAY) { goto end; } mx = &_mx; res = mp_mul_2d(mx, bits + 1, mx); if (res != MP_OKAY) { goto end; } if (sa == MP_NEG) { res = mp_init(&acpy); if (res != MP_OKAY) { goto end; } res = mp_add(mx, a, &acpy); if (res != MP_OKAY) { mp_clear(&acpy); goto end; } a = &acpy; } if (sb == MP_NEG) { res = mp_init(&bcpy); if (res != MP_OKAY) { goto end; } res = mp_add(mx, b, &bcpy); if (res != MP_OKAY) { mp_clear(&bcpy); goto end; } b = &bcpy; } } res = mp_and(a, b, c); if ((sa == MP_NEG) && (sb == MP_NEG) && (res == MP_OKAY)) { res = mp_sub(c, mx, c); } end: if (a == &acpy) { mp_clear(&acpy); } if (b == &bcpy) { mp_clear(&bcpy); } if (mx == &_mx) { mp_clear(mx); } return res; }