Example #1
0
mp_result find_strong_prime(mp_int seed, FILE *fb)
{
  mp_result res;
  mpz_t     t;

  mp_int_init(&t);
  for(;;) {
    if ((res = find_prime(seed, fb)) != MP_TRUE)
      break;
    if ((res = mp_int_copy(seed, &t)) != MP_OK)
      break;

    if ((res = mp_int_mul_pow2(&t, 1, &t)) != MP_OK ||
	(res = mp_int_add_value(&t, 1, &t)) != MP_OK) 
      break;

    if ((res = mp_int_is_prime(&t)) == MP_TRUE) {
      if (fb != NULL)
	fputc('!', fb);

      res = mp_int_copy(&t, seed);
      break;
    }
    else if (res != MP_FALSE) 
      break;

    if (fb != NULL)
      fputc('x', fb);
    if ((res = mp_int_add_value(seed, 2, seed)) != MP_OK)
      break;
  }

  mp_int_clear(&t);
  return res;
}
Example #2
0
/* Find the first apparent prime in ascending order from z */
mp_result mp_int_find_prime(mp_int z)
{
  mp_result  res;

  if(mp_int_is_even(z) && ((res = mp_int_add_value(z, 1, z)) != MP_OK))
    return res;

  while((res = mp_int_is_prime(z)) == MP_FALSE) {
    if((res = mp_int_add_value(z, 2, z)) != MP_OK)
      break;

  }

  return res;
}
int test_add(testspec_t *t, FILE *ofp)
{
  mp_int in[3], out[1];
  int    v;
  mp_result res, expect;

  if(!parse_int_values(t, in, out, &expect))
    return imath_errno = MP_BADARG, 0;

  if(strcmp(t->code, "addv") == 0) {
    if((res = mp_int_to_int(in[1], &v)) != MP_OK)
      return imath_errno = res, 0;
    if((res = mp_int_add_value(in[0], v, in[2])) != expect)
      return imath_errno = res, 0;
  } else {
    if((res = mp_int_add(in[0], in[1], in[2])) != expect)
      return imath_errno = res, 0;
  }

  if(expect == MP_OK && mp_int_compare(in[2], out[0]) != 0) {
    mp_int_to_string(in[2], 10, g_output, OUTPUT_LIMIT);
    return imath_errno = OTHER_ERROR, 0;
  }

  return 1;
}
Example #4
0
mp_result find_prime(mp_int seed, FILE *fb)
{
  mp_result res;
  int       count = 0;

  if(mp_int_is_even(seed))
    if((res = mp_int_add_value(seed, 1, seed)) != MP_OK)
      return res;
  
  while((res = mp_int_is_prime(seed)) == MP_FALSE) {
    ++count;

    if(fb != NULL && (count % 50) == 0)
      fputc('.', fb);

    if((res = mp_int_add_value(seed, 2, seed)) != MP_OK)
      return res;
  }

  if(res == MP_TRUE && fb != NULL)
    fputc('+', fb);
  
  return res;
}
Example #5
0
int main(int argc, char *argv[])
{
  int       opt, modbits;
  FILE     *ofp = stdout;
  char     *expt = NULL;
  rsa_key   the_key;
  mp_result res;

  /* Process command-line arguments */
  while((opt = getopt(argc, argv, "e:")) != EOF) {
    switch(opt) {
    case 'e':
      expt = optarg;
      break;
    default:
      fprintf(stderr, "Usage: rsakey [-e <expt>] <modbits> [<outfile>]\n");
      return 1;
    }
  }
  
  if(optind >= argc) {
    fprintf(stderr, "Error:  You must specify the number of modulus bits.\n");
    fprintf(stderr, "Usage: rsakey [-e <expt>] <modbits> [<outfile>]\n");
    return 1;
  }
  modbits = (int) strtol(argv[optind++], NULL, 0);
  if(modbits < CHAR_BIT) {
    fprintf(stderr, "Error:  Invalid value for number of modulus bits.\n");
    return 1;
  }
  if(modbits % 2 == 1)
    ++modbits;

  /* Check if output file is specified */
  if(optind < argc) {
    if((ofp = fopen(argv[optind], "wt")) == NULL) {
      fprintf(stderr, "Error:  Unable to open output file for writing.\n"
	      " - Filename: %s\n"
	      " - Error:    %s\n", argv[optind], strerror(errno));
      return 1;
    }
  }
  
  if((res = rsa_key_init(&the_key)) != MP_OK) {
    fprintf(stderr, "Error initializing RSA key structure:\n"
	    " - %s (%d)\n", mp_error_string(res), res);
    return 1;
  }

  /* If specified, try to load the key exponent */
  if(expt != NULL) {
    if((res = mp_int_read_string(&(the_key.e), 10, expt)) != MP_OK) {
      fprintf(stderr, "Error:  Invalid value for encryption exponent.\n"
	      " - %s (%d)\n", mp_error_string(res), res);
      goto EXIT;
    }
  }

  if((res = mp_int_randomize(&(the_key.p), (modbits / 2))) != MP_OK) {
    fprintf(stderr, "Error:  Unable to randomize first prime.\n"
	    " - %s (%d)\n", mp_error_string(res), res);
    goto EXIT;
  }
  fprintf(stderr, "p: ");
  find_prime(&(the_key.p), stderr);

  if((res = mp_int_randomize(&(the_key.q), (modbits / 2))) != MP_OK) {
    fprintf(stderr, "Error:  Unable to randomize second prime.\n"
	    " - %s (%d)\n", mp_error_string(res), res);
    goto EXIT;
  }
  fprintf(stderr, "\nq: ");
  find_prime(&(the_key.q), stderr);
  fputc('\n', stderr);

  /* Temporarily, the key's "n" field will be (p - 1) * (q - 1) for
     purposes of computing the decryption exponent.
   */
  mp_int_mul(&(the_key.p), &(the_key.q), &(the_key.n));
  mp_int_sub(&(the_key.n), &(the_key.p), &(the_key.n));
  mp_int_sub(&(the_key.n), &(the_key.q), &(the_key.n));
  mp_int_add_value(&(the_key.n), 1, &(the_key.n));

  if(expt == NULL &&
     (res = mp_int_randomize(&(the_key.e), (modbits / 2))) != MP_OK) {
    fprintf(stderr, "Error:  Unable to randomize encryption exponent.\n"
	    " - %s (%d)\n", mp_error_string(res), res);
    goto EXIT;
  }
  while((res = mp_int_invmod(&(the_key.e), &(the_key.n), 
			     &(the_key.d))) != MP_OK) {
    if(expt != NULL) {
      fprintf(stderr, "Error:  Unable to compute decryption exponent.\n"
	      " - %s (%d)\n", mp_error_string(res), res);
      goto EXIT;
    }
    if((res = mp_int_randomize(&(the_key.e), (modbits / 2))) != MP_OK) {
      fprintf(stderr, "Error:  Unable to re-randomize encryption exponent.\n"
	      " - %s (%d)\n", mp_error_string(res), res);
      goto EXIT;
    }
  }

  /* Recompute the real modulus, now that exponents are done. */
  mp_int_mul(&(the_key.p), &(the_key.q), &(the_key.n));

  /* Write completed key to the specified output file */
  rsa_key_write(&the_key, ofp);

 EXIT:
  fclose(ofp);
  rsa_key_clear(&the_key);
  return 0;
}