real atan(const real & a) { real x; mpfr_atan(x.r, a.r, MPFR_RNDN); return x; }
mpcomplex mpcomplex::PI(const mp_prec_t &p, const mp_rnd_t &r) { mpfr_t pi; mpfr_t one; mpfr_init2(one, p); mpfr_set_ui(one , 1, r); mpfr_init2(pi, p); mpfr_atan(pi, one , r ); mpfr_mul_ui( pi , pi , 4 , r); return mpcomplex( pi ); }
decimal r_atan(const decimal& a,bool round) { #ifdef USE_CGAL CGAL::Gmpfr m; CGAL::Gmpfr n=to_gmpfr(a); mpfr_atan(m.fr(),n.fr(),MPFR_RNDN); return r_round_preference(decimal(m),round); #else return r_round_preference(atan(a),round); #endif }
//------------------------------------------------------------------------------ // Name: //------------------------------------------------------------------------------ knumber_base *knumber_float::atan() { #ifdef KNUMBER_USE_MPFR mpfr_t mpfr; mpfr_init_set_f(mpfr, mpf_, rounding_mode); mpfr_atan(mpfr, mpfr, rounding_mode); mpfr_get_f(mpf_, mpfr, rounding_mode); mpfr_clear(mpfr); return this; #else const double x = mpf_get_d(mpf_); if(isinf(x)) { delete this; return new knumber_error(knumber_error::ERROR_POS_INFINITY); } else { return execute_libc_func< ::atan>(x); } #endif }
/* https://sympa.inria.fr/sympa/arc/mpfr/2011-05/msg00008.html * Incorrect flags (in debug mode on a 32-bit machine, assertion failure). */ static void reduced_expo_range (void) { mpfr_exp_t emin, emax; mpfr_t x, y, ex_y; int inex, ex_inex; unsigned int flags, ex_flags; emin = mpfr_get_emin (); emax = mpfr_get_emax (); mpfr_inits2 (12, x, y, ex_y, (mpfr_ptr) 0); mpfr_set_str (x, "0.1e-5", 2, MPFR_RNDN); set_emin (-5); set_emax (-5); mpfr_clear_flags (); inex = mpfr_atan (y, x, MPFR_RNDN); flags = __gmpfr_flags; set_emin (emin); set_emax (emax); mpfr_set_str (ex_y, "0.1e-5", 2, MPFR_RNDN); ex_inex = 1; ex_flags = MPFR_FLAGS_INEXACT; if (SIGN (inex) != ex_inex || flags != ex_flags || ! mpfr_equal_p (y, ex_y)) { printf ("Error in reduced_expo_range\non x = "); mpfr_dump (x); printf ("Expected y = "); mpfr_out_str (stdout, 2, 0, ex_y, MPFR_RNDN); printf ("\n inex = %d, flags = %u\n", ex_inex, ex_flags); printf ("Got y = "); mpfr_out_str (stdout, 2, 0, y, MPFR_RNDN); printf ("\n inex = %d, flags = %u\n", SIGN (inex), flags); exit (1); } mpfr_clears (x, y, ex_y, (mpfr_ptr) 0); }
REAL _atan(REAL a, REAL, QByteArray &) { mpfr_t tmp1; mpfr_init2(tmp1, NUMBITS); mpfr_t result; mpfr_init2(result, NUMBITS); try { // mpfr_init_set_f(tmp1, a.get_mpf_t(), MPFR_RNDN); mpfr_set_str(tmp1, getString(a).data(), 10, MPFR_RNDN); mpfr_atan(result, tmp1, MPFR_RNDN); mpfr_get_f(a.get_mpf_t(), result, MPFR_RNDN); } catch(...) { mpfr_clear(tmp1); mpfr_clear(result); return ZERO; } mpfr_clear(tmp1); mpfr_clear(result); return a; }
void arb_atan_arf_via_mpfr(arb_t z, const arf_t x, slong prec) { mpfr_t t, u; int exact; mpfr_init2(t, 2 + arf_bits(x)); mpfr_init2(u, prec); mpfr_set_emin(MPFR_EMIN_MIN); mpfr_set_emax(MPFR_EMAX_MAX); arf_get_mpfr(t, x, MPFR_RNDD); exact = (mpfr_atan(u, t, MPFR_RNDD) == 0); arf_set_mpfr(arb_midref(z), u); if (!exact) arf_mag_set_ulp(arb_radref(z), arb_midref(z), prec); mpfr_clear(t); mpfr_clear(u); }
/// @brief atan keyword implementation /// void program::rpn_atan(void) { MIN_ARGUMENTS(1); if (_stack->get_type(0) == cmd_number) { floating_t* left = &((number*)_stack->get_obj(0))->_value; CHECK_MPFR(mpfr_atan(left->mpfr, left->mpfr, floating_t::s_mpfr_rnd)); } else if (_stack->get_type(0) == cmd_complex) { number* num; complex* i; // atan(z)=0.5i(ln((1-iz)/(1+iz)) stack::copy_and_push_back(*_stack, _stack->size() - 1, _calc_stack); i = (complex*)_calc_stack.get_obj(0); CHECK_MPFR(mpfr_set_d(i->re()->mpfr, 0.0, floating_t::s_mpfr_rnd)); CHECK_MPFR(mpfr_set_d(i->im()->mpfr, 1.0, floating_t::s_mpfr_rnd)); stack::copy_and_push_back(_calc_stack, 0, *_stack); rpn_mul(); num = (number*)_stack->allocate_back(number::calc_size(), cmd_number); CHECK_MPFR(mpfr_set_d(num->_value.mpfr, 1.0, floating_t::s_mpfr_rnd)); rpn_minus(); // iz-1 rpn_neg(); // 1-iz rpn_dup(); rpn_neg(); // iz-1 num = (number*)_stack->allocate_back(number::calc_size(), cmd_number); CHECK_MPFR(mpfr_set_d(num->_value.mpfr, 2.0, floating_t::s_mpfr_rnd)); rpn_plus(); // iz+1 rpn_div(); rpn_ln(); CHECK_MPFR(mpfr_set_d(i->im()->mpfr, 0.5, floating_t::s_mpfr_rnd)); stack::copy_and_push_back(_calc_stack, 0, *_stack); rpn_mul(); _calc_stack.pop_back(); } else ERR_CONTEXT(ret_bad_operand_type); }
MpfrFloat MpfrFloat::atan(const MpfrFloat& value) { MpfrFloat retval(MpfrFloat::kNoInitialization); mpfr_atan(retval.mData->mFloat, value.mData->mFloat, GMP_RNDN); return retval; }
static void special (void) { mpfr_t x, y, z; int r; int i; mpfr_init2 (x, 53); mpfr_init2 (y, 53); mpfr_init2 (z, 53); mpfr_set_str_binary (x, "1.0000100110000001100111100011001110101110100111011101"); mpfr_set_str_binary (y, "1.1001101101110100101100110011011101101000011010111110e-1"); mpfr_atan (z, x, MPFR_RNDN); if (mpfr_cmp (y, z)) { printf ("Error in mpfr_atan for prec=53, rnd=MPFR_RNDN\n"); printf ("x="); mpfr_out_str (stdout, 2, 0, x, MPFR_RNDN); printf ("\nexpected "); mpfr_out_str (stdout, 2, 0, y, MPFR_RNDN); printf ("\ngot "); mpfr_out_str (stdout, 2, 0, z, MPFR_RNDN); printf ("\n"); exit (1); } /* atan(+Inf) = Pi/2 */ for (r = 0; r < MPFR_RND_MAX ; r++) { mpfr_set_inf (x, 1); mpfr_atan (y, x, (mpfr_rnd_t) r); mpfr_const_pi (x, (mpfr_rnd_t) r); mpfr_div_2exp (x, x, 1, (mpfr_rnd_t) r); if (mpfr_cmp (x, y)) { printf ("Error: mpfr_atan(+Inf), rnd=%s\n", mpfr_print_rnd_mode ((mpfr_rnd_t) r)); exit (1); } } /* atan(-Inf) = - Pi/2 */ for (r = 0; r < MPFR_RND_MAX ; r++) { mpfr_set_inf (x, -1); mpfr_atan (y, x, (mpfr_rnd_t) r); mpfr_const_pi (x, MPFR_INVERT_RND((mpfr_rnd_t) r)); mpfr_neg (x, x, (mpfr_rnd_t) r); mpfr_div_2exp (x, x, 1, (mpfr_rnd_t) r); if (mpfr_cmp (x, y)) { printf ("Error: mpfr_atan(-Inf), rnd=%s\n", mpfr_print_rnd_mode ((mpfr_rnd_t) r)); exit (1); } } /* atan(NaN) = NaN */ mpfr_set_nan (x); mpfr_atan (y, x, MPFR_RNDN); if (!mpfr_nan_p (y)) { printf ("Error: mpfr_atan(NaN) <> NaN\n"); exit (1); } /* atan(+/-0) = +/-0 */ mpfr_set_ui (x, 0, MPFR_RNDN); MPFR_SET_NEG (y); mpfr_atan (y, x, MPFR_RNDN); if (mpfr_cmp_ui (y, 0) || MPFR_IS_NEG (y)) { printf ("Error: mpfr_atan (+0) <> +0\n"); exit (1); } mpfr_atan (x, x, MPFR_RNDN); if (mpfr_cmp_ui (x, 0) || MPFR_IS_NEG (x)) { printf ("Error: mpfr_atan (+0) <> +0 (in place)\n"); exit (1); } mpfr_neg (x, x, MPFR_RNDN); MPFR_SET_POS (y); mpfr_atan (y, x, MPFR_RNDN); if (mpfr_cmp_ui (y, 0) || MPFR_IS_POS (y)) { printf ("Error: mpfr_atan (-0) <> -0\n"); exit (1); } mpfr_atan (x, x, MPFR_RNDN); if (mpfr_cmp_ui (x, 0) || MPFR_IS_POS (x)) { printf ("Error: mpfr_atan (-0) <> -0 (in place)\n"); exit (1); } mpfr_set_prec (x, 32); mpfr_set_prec (y, 32); /* test one random positive argument */ mpfr_set_str_binary (x, "0.10000100001100101001001001011001"); mpfr_atan (x, x, MPFR_RNDN); mpfr_set_str_binary (y, "0.1111010000001111001111000000011E-1"); if (mpfr_cmp (x, y)) { printf ("Error in mpfr_atan (1)\n"); exit (1); } /* test one random negative argument */ mpfr_set_str_binary (x, "-0.1100001110110000010101011001011"); mpfr_atan (x, x, MPFR_RNDN); mpfr_set_str_binary (y, "-0.101001110001010010110001110001"); if (mpfr_cmp (x, y)) { printf ("Error in mpfr_atan (2)\n"); mpfr_print_binary (x); printf ("\n"); mpfr_print_binary (y); printf ("\n"); exit (1); } mpfr_set_prec (x, 3); mpfr_set_prec (y, 192); mpfr_set_prec (z, 192); mpfr_set_str_binary (x, "-0.100e1"); mpfr_atan (z, x, MPFR_RNDD); mpfr_set_str_binary (y, "-0.110010010000111111011010101000100010000101101000110000100011010011000100110001100110001010001011100000001101110000011100110100010010100100000010010011100000100010001010011001111100110001110101"); if (mpfr_cmp (z, y)) { printf ("Error in mpfr_atan (3)\n"); printf ("Expected "); mpfr_print_binary (y); printf ("\n"); printf ("Got "); mpfr_print_binary (z); printf ("\n"); exit (1); } /* Test regression */ mpfr_set_prec (x, 51); mpfr_set_prec (y, 51); mpfr_set_str_binary (x, "0.101100100000101111111010001111111000001000000000000E-11"); i = mpfr_atan (y, x, MPFR_RNDN); if (mpfr_cmp_str (y, "1.01100100000101111111001110011001010110100100000000e-12", 2, MPFR_RNDN) || i >= 0) { printf ("Wrong Regression test (%d)\n", i); mpfr_dump (y); exit (1); } mpfr_set_si (x, -1, MPFR_RNDN); mpfr_atan (x, x, MPFR_RNDN); MPFR_ASSERTN (MPFR_IS_NEG (x)); /* Test regression */ mpfr_set_prec (x, 48); mpfr_set_prec (y, 48); mpfr_set_str_binary (x, "1.11001110010000011111100000010000000000000000000e-19"); mpfr_atan (y, x, MPFR_RNDD); if (mpfr_cmp_str (y, "0.111001110010000011111100000001111111110000010011E-18", 2, MPFR_RNDN)) { printf ("Error in mpfr_atan (4)\n"); printf ("Input 1.11001110010000011111100000010000000000000000000e-19 [prec=48]\n"); printf ("Expected 0.111001110010000011111100000001111111110000010011E-18\n"); printf ("Got "); mpfr_dump (y); exit (1); } mpfr_clear (x); mpfr_clear (y); mpfr_clear (z); }
static void special_overflow (void) { mpfr_t x, y; mpfr_exp_t emin, emax; emin = mpfr_get_emin (); emax = mpfr_get_emax (); set_emin (-125); set_emax (128); mpfr_init2 (x, 24); mpfr_init2 (y, 48); mpfr_set_str_binary (x, "0.101101010001001101111010E0"); mpfr_atan (y, x, MPFR_RNDN); if (mpfr_cmp_str (y, "0.100111011001100111000010111101000111010101011110E0", 2, MPFR_RNDN)) { printf("Special Overflow error.\n"); mpfr_dump (y); exit (1); } /* intermediate Pi overflows while atan(+Inf) = Pi/2 is representable */ set_emax (1); mpfr_set_inf (x, +1); mpfr_clear_flags (); mpfr_atan (y, x, MPFR_RNDN); if (mpfr_cmp_str (y, "C90FDAA22169p-47", 16, MPFR_RNDN) || mpfr_overflow_p ()) { printf("atan(+Inf) = Pi/2 should not overflow when emax = %ld\n", (long int) mpfr_get_emax ()); mpfr_dump (y); exit (1); } /* atan(+Inf) = Pi/2 underflows */ set_emax (128); set_emin (3); mpfr_clear_flags (); mpfr_atan (y, x, MPFR_RNDN); if (mpfr_cmp_ui (y, 0) || !mpfr_underflow_p ()) { printf("atan(+Inf) = Pi/2 should underflow when emin = %ld\n", (long int) mpfr_get_emin ()); mpfr_dump (y); exit (1); } /* intermediate Pi overflows while atan(+1) = Pi/4 is representable */ set_emax (1); set_emin (-128); mpfr_set_ui (x, 1, MPFR_RNDN); mpfr_clear_flags (); mpfr_atan (y, x, MPFR_RNDN); if (mpfr_cmp_str (y, "C90FDAA22169p-48", 16, MPFR_RNDN) || mpfr_overflow_p ()) { printf("atan(+1) = Pi/4 should not overflow when emax = %ld\n", (long int) mpfr_get_emax ()); mpfr_dump (y); exit (1); } /* atan(+1) = Pi/4 underflows and is rounded up to 1 */ set_emax (128); set_emin (1); mpfr_set_prec (y, 2); mpfr_clear_flags (); mpfr_atan (y, x, MPFR_RNDN); if (mpfr_cmp_ui (y, 1) || !mpfr_underflow_p ()) { printf("atan(+1) = Pi/4 should underflow when emin = %+ld\n", (long int) mpfr_get_emin ()); mpfr_dump (y); exit (1); } /* atan(+1) = Pi/4 underflows and is rounded down to 0 */ mpfr_clear_flags (); mpfr_atan (y, x, MPFR_RNDD); if (mpfr_cmp_ui (y, 0) || !mpfr_underflow_p ()) { printf("atan(+1) = Pi/4 should underflow when emin = %+ld\n", (long int) mpfr_get_emin ()); mpfr_dump (y); exit (1); } mpfr_clear (y); mpfr_clear (x); set_emin (emin); set_emax (emax); }
int main (int argc, char *argv[]) { int n, prec, st, st2, N, i; mpfr_t x, y, z; if (argc != 2 && argc != 3) { fprintf(stderr, "Usage: timing digits \n"); exit(1); } printf ("Using MPFR-%s with GMP-%s\n", mpfr_version, gmp_version); n = atoi(argv[1]); prec = (int) ( n * log(10.0) / log(2.0) + 1.0 ); printf("[precision is %u bits]\n", prec); mpfr_init2(x, prec); mpfr_init2(y, prec); mpfr_init2(z, prec); mpfr_set_d(x, 3.0, GMP_RNDN); mpfr_sqrt(x, x, GMP_RNDN); mpfr_sub_ui (x, x, 1, GMP_RNDN); mpfr_set_d(y, 5.0, GMP_RNDN); mpfr_sqrt(y, y, GMP_RNDN); mpfr_log (z, x, GMP_RNDN); N=1; st = cputime(); do { for (i=0;i<N;i++) mpfr_mul(z, x, y, GMP_RNDN); N=2*N; st2=cputime(); } while (st2-st<1000); printf("x*y took %f ms (%d eval in %d ms)\n", (double)(st2-st)/(N-1),N-1,st2-st); N=1; st = cputime(); do { for (i=0;i<N;i++) mpfr_mul(z, x, x, GMP_RNDN); N=2*N; st2=cputime(); } while (st2-st<1000); printf("x*x took %f ms (%d eval in %d ms)\n", (double)(st2-st)/(N-1),N-1,st2-st); N=1; st = cputime(); do { for (i=0;i<N;i++) mpfr_div(z, x, y, GMP_RNDN); N=2*N; st2=cputime(); } while (st2-st<1000); printf("x/y took %f ms (%d eval in %d ms)\n", (double)(st2-st)/(N-1),N-1,st2-st); N=1; st = cputime(); do { for (i=0;i<N;i++) mpfr_sqrt(z, x, GMP_RNDN); N=2*N; st2=cputime(); } while (st2-st<1000); printf("sqrt(x) took %f ms (%d eval in %d ms)\n", (double)(st2-st)/(N-1),N-1,st2-st); N=1; st = cputime(); do { for (i=0;i<N;i++) mpfr_exp(z, x, GMP_RNDN); N=2*N; st2=cputime(); } while (st2-st<1000); printf("exp(x) took %f ms (%d eval in %d ms)\n", (double)(st2-st)/(N-1),N-1,st2-st); N=1; st = cputime(); do { for (i=0;i<N;i++) mpfr_log(z, x, GMP_RNDN); N=2*N; st2=cputime(); } while (st2-st<1000); printf("log(x) took %f ms (%d eval in %d ms)\n", (double)(st2-st)/(N-1),N-1,st2-st); N=1; st = cputime(); do { for (i=0;i<N;i++) mpfr_sin(z, x, GMP_RNDN); N=2*N; st2=cputime(); } while (st2-st<1000); printf("sin(x) took %f ms (%d eval in %d ms)\n", (double)(st2-st)/(N-1),N-1,st2-st); N=1; st = cputime(); do { for (i=0;i<N;i++) mpfr_cos(z, x, GMP_RNDN); N=2*N; st2=cputime(); } while (st2-st<1000); printf("cos(x) took %f ms (%d eval in %d ms)\n", (double)(st2-st)/(N-1),N-1,st2-st); N=1; st = cputime(); do { for (i=0;i<N;i++) mpfr_acos(z, x, GMP_RNDN); N=2*N; st2=cputime(); } while (st2-st<1000); printf("arccos(x) took %f ms (%d eval in %d ms)\n", (double)(st2-st)/(N-1),N-1,st2-st); N=1; st = cputime(); do { for (i=0;i<N;i++) mpfr_atan(z, x, GMP_RNDN); N=2*N; st2=cputime(); } while (st2-st<1000); printf("arctan(x) took %f ms (%d eval in %d ms)\n", (double)(st2-st)/(N-1),N-1,st2-st); mpfr_clear(x); mpfr_clear(y); mpfr_clear(z); return 0; }
int mpfr_asin (mpfr_ptr asin, mpfr_srcptr x, mpfr_rnd_t rnd_mode) { mpfr_t xp; int compared, inexact; mpfr_prec_t prec; mpfr_exp_t xp_exp; MPFR_SAVE_EXPO_DECL (expo); MPFR_ZIV_DECL (loop); MPFR_LOG_FUNC ( ("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode), ("asin[%Pu]=%.*Rg inexact=%d", mpfr_get_prec (asin), mpfr_log_prec, asin, inexact)); /* Special cases */ if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) { if (MPFR_IS_NAN (x) || MPFR_IS_INF (x)) { MPFR_SET_NAN (asin); MPFR_RET_NAN; } else /* x = 0 */ { MPFR_ASSERTD (MPFR_IS_ZERO (x)); MPFR_SET_ZERO (asin); MPFR_SET_SAME_SIGN (asin, x); MPFR_RET (0); /* exact result */ } } /* asin(x) = x + x^3/6 + ... so the error is < 2^(3*EXP(x)-2) */ MPFR_FAST_COMPUTE_IF_SMALL_INPUT (asin, x, -2 * MPFR_GET_EXP (x), 2, 1, rnd_mode, {}); /* Set x_p=|x| (x is a normal number) */ mpfr_init2 (xp, MPFR_PREC (x)); inexact = mpfr_abs (xp, x, MPFR_RNDN); MPFR_ASSERTD (inexact == 0); compared = mpfr_cmp_ui (xp, 1); MPFR_SAVE_EXPO_MARK (expo); if (MPFR_UNLIKELY (compared >= 0)) { mpfr_clear (xp); if (compared > 0) /* asin(x) = NaN for |x| > 1 */ { MPFR_SAVE_EXPO_FREE (expo); MPFR_SET_NAN (asin); MPFR_RET_NAN; } else /* x = 1 or x = -1 */ { if (MPFR_IS_POS (x)) /* asin(+1) = Pi/2 */ inexact = mpfr_const_pi (asin, rnd_mode); else /* asin(-1) = -Pi/2 */ { inexact = -mpfr_const_pi (asin, MPFR_INVERT_RND(rnd_mode)); MPFR_CHANGE_SIGN (asin); } mpfr_div_2ui (asin, asin, 1, rnd_mode); } } else { /* Compute exponent of 1 - ABS(x) */ mpfr_ui_sub (xp, 1, xp, MPFR_RNDD); MPFR_ASSERTD (MPFR_GET_EXP (xp) <= 0); MPFR_ASSERTD (MPFR_GET_EXP (x) <= 0); xp_exp = 2 - MPFR_GET_EXP (xp); /* Set up initial prec */ prec = MPFR_PREC (asin) + 10 + xp_exp; /* use asin(x) = atan(x/sqrt(1-x^2)) */ MPFR_ZIV_INIT (loop, prec); for (;;) { mpfr_set_prec (xp, prec); mpfr_sqr (xp, x, MPFR_RNDN); mpfr_ui_sub (xp, 1, xp, MPFR_RNDN); mpfr_sqrt (xp, xp, MPFR_RNDN); mpfr_div (xp, x, xp, MPFR_RNDN); mpfr_atan (xp, xp, MPFR_RNDN); if (MPFR_LIKELY (MPFR_CAN_ROUND (xp, prec - xp_exp, MPFR_PREC (asin), rnd_mode))) break; MPFR_ZIV_NEXT (loop, prec); } MPFR_ZIV_FREE (loop); inexact = mpfr_set (asin, xp, rnd_mode); mpfr_clear (xp); } MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (asin, inexact, rnd_mode); }
int main() { slong iter; flint_rand_t state; flint_printf("atan...."); fflush(stdout); flint_randinit(state); /* Compare with MPFR */ for (iter = 0; iter < 10000 * arb_test_multiplier(); iter++) { arb_t a, b; fmpq_t q; mpfr_t t; slong prec = 2 + n_randint(state, 200); arb_init(a); arb_init(b); fmpq_init(q); mpfr_init2(t, prec + 100); arb_randtest(a, state, 1 + n_randint(state, 200), 3); arb_randtest(b, state, 1 + n_randint(state, 200), 3); arb_get_rand_fmpq(q, state, a, 1 + n_randint(state, 200)); fmpq_get_mpfr(t, q, MPFR_RNDN); mpfr_atan(t, t, MPFR_RNDN); arb_atan(b, a, prec); if (!arb_contains_mpfr(b, t)) { flint_printf("FAIL: containment\n\n"); flint_printf("a = "); arb_print(a); flint_printf("\n\n"); flint_printf("b = "); arb_print(b); flint_printf("\n\n"); flint_abort(); } arb_atan(a, a, prec); if (!arb_equal(a, b)) { flint_printf("FAIL: aliasing\n\n"); flint_abort(); } arb_clear(a); arb_clear(b); fmpq_clear(q); mpfr_clear(t); } /* Check large arguments. */ for (iter = 0; iter < 10000 * arb_test_multiplier(); iter++) { arb_t a, b, c, d; slong prec1, prec2; prec1 = 2 + n_randint(state, 1000); prec2 = prec1 + 30; arb_init(a); arb_init(b); arb_init(c); arb_init(d); arb_randtest_precise(a, state, 1 + n_randint(state, 1000), 100); arb_atan(b, a, prec1); arb_atan(c, a, prec2); if (!arb_overlaps(b, c)) { flint_printf("FAIL: overlap\n\n"); flint_printf("a = "); arb_print(a); flint_printf("\n\n"); flint_printf("b = "); arb_print(b); flint_printf("\n\n"); flint_printf("c = "); arb_print(c); flint_printf("\n\n"); flint_abort(); } /* check tan(atan(x)) = x */ arb_sin_cos(c, d, b, prec1); arb_div(c, c, d, prec1); if (!arb_contains(c, a)) { flint_printf("FAIL: functional equation\n\n"); flint_printf("a = "); arb_print(a); flint_printf("\n\n"); flint_printf("b = "); arb_print(b); flint_printf("\n\n"); flint_printf("c = "); arb_print(c); flint_printf("\n\n"); flint_printf("d = "); arb_print(d); flint_printf("\n\n"); flint_abort(); } arb_clear(a); arb_clear(b); arb_clear(c); arb_clear(d); } /* Compare with MPFR, higher precision. */ for (iter = 0; iter < 200 * arb_test_multiplier(); iter++) { arb_t a, b; fmpq_t q; mpfr_t t; slong prec = 2 + n_randint(state, 5000); arb_init(a); arb_init(b); fmpq_init(q); mpfr_init2(t, prec + 100); arb_randtest(a, state, 1 + n_randint(state, 5000), 8); arb_randtest(b, state, 1 + n_randint(state, 5000), 8); arb_get_rand_fmpq(q, state, a, 1 + n_randint(state, 200)); fmpq_get_mpfr(t, q, MPFR_RNDN); mpfr_atan(t, t, MPFR_RNDN); arb_atan(b, a, prec); if (!arb_contains_mpfr(b, t)) { flint_printf("FAIL: containment\n\n"); flint_printf("a = "); arb_print(a); flint_printf("\n\n"); flint_printf("a = "); arb_printd(a, 50); flint_printf("\n\n"); flint_printf("a = "); arb_print(a); flint_printf("\n\n"); flint_printf("b = "); arb_printd(b, 50); flint_printf("\n\n"); flint_abort(); } arb_atan(a, a, prec); if (!arb_equal(a, b)) { flint_printf("FAIL: aliasing\n\n"); flint_abort(); } arb_clear(a); arb_clear(b); fmpq_clear(q); mpfr_clear(t); } /* Higher precision + large arguments. */ for (iter = 0; iter < 2000 * arb_test_multiplier(); iter++) { arb_t a, b, c, d; slong prec1, prec2; prec1 = 2 + n_randint(state, 5000); prec2 = prec1 + 30; arb_init(a); arb_init(b); arb_init(c); arb_init(d); arb_randtest_precise(a, state, 1 + n_randint(state, 5000), 100); arb_atan(b, a, prec1); arb_atan(c, a, prec2); if (!arb_overlaps(b, c)) { flint_printf("FAIL: overlap\n\n"); flint_printf("a = "); arb_print(a); flint_printf("\n\n"); flint_printf("b = "); arb_print(b); flint_printf("\n\n"); flint_printf("c = "); arb_print(c); flint_printf("\n\n"); flint_abort(); } /* check tan(atan(x)) = x */ arb_sin_cos(c, d, b, prec1); arb_div(c, c, d, prec1); if (!arb_contains(c, a)) { flint_printf("FAIL: functional equation\n\n"); flint_printf("a = "); arb_print(a); flint_printf("\n\n"); flint_printf("b = "); arb_print(b); flint_printf("\n\n"); flint_printf("c = "); arb_print(c); flint_printf("\n\n"); flint_printf("d = "); arb_print(d); flint_printf("\n\n"); flint_abort(); } arb_clear(a); arb_clear(b); arb_clear(c); arb_clear(d); } /* Check wide arguments. */ for (iter = 0; iter < 100000 * arb_test_multiplier(); iter++) { arb_t a, b, c, d; arb_init(a); arb_init(b); arb_init(c); arb_init(d); arb_randtest_precise(a, state, 1 + n_randint(state, 1000), 100); arb_randtest_precise(b, state, 1 + n_randint(state, 1000), 100); if (n_randint(state, 2)) arb_add(a, a, b, 2 + n_randint(state, 1000)); arb_union(d, a, b, 2 + n_randint(state, 1000)); arb_atan(a, a, 2 + n_randint(state, 2000)); arb_atan(b, b, 2 + n_randint(state, 2000)); arb_atan(c, d, 2 + n_randint(state, 2000)); if (!arb_overlaps(c, a) || !arb_overlaps(c, b)) { flint_printf("FAIL: overlap\n\n"); flint_printf("d = "); arb_print(d); flint_printf("\n\n"); flint_printf("a = "); arb_print(a); flint_printf("\n\n"); flint_printf("b = "); arb_print(b); flint_printf("\n\n"); flint_printf("c = "); arb_print(c); flint_printf("\n\n"); flint_abort(); } arb_clear(a); arb_clear(b); arb_clear(c); arb_clear(d); } flint_randclear(state); flint_cleanup(); flint_printf("PASS\n"); return EXIT_SUCCESS; }
int mpfr_acos (mpfr_ptr acos, mpfr_srcptr x, mpfr_rnd_t rnd_mode) { mpfr_t xp, arcc, tmp; mpfr_exp_t supplement; mpfr_prec_t prec; int sign, compared, inexact; MPFR_SAVE_EXPO_DECL (expo); MPFR_ZIV_DECL (loop); MPFR_LOG_FUNC (("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec(x), mpfr_log_prec, x, rnd_mode), ("acos[%Pu]=%.*Rg inexact=%d", mpfr_get_prec(acos), mpfr_log_prec, acos, inexact)); /* Singular cases */ if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) { if (MPFR_IS_NAN (x) || MPFR_IS_INF (x)) { MPFR_SET_NAN (acos); MPFR_RET_NAN; } else /* necessarily x=0 */ { MPFR_ASSERTD(MPFR_IS_ZERO(x)); /* acos(0)=Pi/2 */ MPFR_SAVE_EXPO_MARK (expo); inexact = mpfr_const_pi (acos, rnd_mode); mpfr_div_2ui (acos, acos, 1, rnd_mode); /* exact */ MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (acos, inexact, rnd_mode); } } /* Set x_p=|x| */ sign = MPFR_SIGN (x); mpfr_init2 (xp, MPFR_PREC (x)); mpfr_abs (xp, x, MPFR_RNDN); /* Exact */ compared = mpfr_cmp_ui (xp, 1); if (MPFR_UNLIKELY (compared >= 0)) { mpfr_clear (xp); if (compared > 0) /* acos(x) = NaN for x > 1 */ { MPFR_SET_NAN(acos); MPFR_RET_NAN; } else { if (MPFR_IS_POS_SIGN (sign)) /* acos(+1) = +0 */ return mpfr_set_ui (acos, 0, rnd_mode); else /* acos(-1) = Pi */ return mpfr_const_pi (acos, rnd_mode); } } MPFR_SAVE_EXPO_MARK (expo); /* Compute the supplement */ mpfr_ui_sub (xp, 1, xp, MPFR_RNDD); if (MPFR_IS_POS_SIGN (sign)) supplement = 2 - 2 * MPFR_GET_EXP (xp); else supplement = 2 - MPFR_GET_EXP (xp); mpfr_clear (xp); prec = MPFR_PREC (acos); prec += MPFR_INT_CEIL_LOG2(prec) + 10 + supplement; /* VL: The following change concerning prec comes from r3145 "Optimize mpfr_acos by choosing a better initial precision." but it doesn't seem to be correct and leads to problems (assertion failure or very important inefficiency) with tiny arguments. Therefore, I've disabled it. */ /* If x ~ 2^-N, acos(x) ~ PI/2 - x - x^3/6 If Prec < 2*N, we can't round since x^3/6 won't be counted. */ #if 0 if (MPFR_PREC (acos) >= MPFR_PREC (x) && MPFR_GET_EXP (x) < 0) { mpfr_uexp_t pmin = (mpfr_uexp_t) (-2 * MPFR_GET_EXP (x)) + 5; MPFR_ASSERTN (pmin <= MPFR_PREC_MAX); if (prec < pmin) prec = pmin; } #endif mpfr_init2 (tmp, prec); mpfr_init2 (arcc, prec); MPFR_ZIV_INIT (loop, prec); for (;;) { /* acos(x) = Pi/2 - asin(x) = Pi/2 - atan(x/sqrt(1-x^2)) */ mpfr_sqr (tmp, x, MPFR_RNDN); mpfr_ui_sub (tmp, 1, tmp, MPFR_RNDN); mpfr_sqrt (tmp, tmp, MPFR_RNDN); mpfr_div (tmp, x, tmp, MPFR_RNDN); mpfr_atan (arcc, tmp, MPFR_RNDN); mpfr_const_pi (tmp, MPFR_RNDN); mpfr_div_2ui (tmp, tmp, 1, MPFR_RNDN); mpfr_sub (arcc, tmp, arcc, MPFR_RNDN); if (MPFR_LIKELY (MPFR_CAN_ROUND (arcc, prec - supplement, MPFR_PREC (acos), rnd_mode))) break; MPFR_ZIV_NEXT (loop, prec); mpfr_set_prec (tmp, prec); mpfr_set_prec (arcc, prec); } MPFR_ZIV_FREE (loop); inexact = mpfr_set (acos, arcc, rnd_mode); mpfr_clear (tmp); mpfr_clear (arcc); MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (acos, inexact, rnd_mode); }
void bvisit(const ATan &x) { apply(result_, *(x.get_arg())); mpfr_atan(result_, result_, rnd_); }
int mpfr_atan2 (mpfr_ptr dest, mpfr_srcptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode) { mpfr_t tmp, pi; int inexact; mpfr_prec_t prec; mpfr_exp_t e; MPFR_SAVE_EXPO_DECL (expo); MPFR_ZIV_DECL (loop); MPFR_LOG_FUNC (("y[%Pu]=%.*Rg x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (y), mpfr_log_prec, y, mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode), ("atan[%Pu]=%.*Rg inexact=%d", mpfr_get_prec (dest), mpfr_log_prec, dest, inexact)); /* Special cases */ if (MPFR_ARE_SINGULAR (x, y)) { /* atan2(0, 0) does not raise the "invalid" floating-point exception, nor does atan2(y, 0) raise the "divide-by-zero" floating-point exception. -- atan2(±0, -0) returns ±pi.313) -- atan2(±0, +0) returns ±0. -- atan2(±0, x) returns ±pi, for x < 0. -- atan2(±0, x) returns ±0, for x > 0. -- atan2(y, ±0) returns -pi/2 for y < 0. -- atan2(y, ±0) returns pi/2 for y > 0. -- atan2(±oo, -oo) returns ±3pi/4. -- atan2(±oo, +oo) returns ±pi/4. -- atan2(±oo, x) returns ±pi/2, for finite x. -- atan2(±y, -oo) returns ±pi, for finite y > 0. -- atan2(±y, +oo) returns ±0, for finite y > 0. */ if (MPFR_IS_NAN (x) || MPFR_IS_NAN (y)) { MPFR_SET_NAN (dest); MPFR_RET_NAN; } if (MPFR_IS_ZERO (y)) { if (MPFR_IS_NEG (x)) /* +/- PI */ { set_pi: if (MPFR_IS_NEG (y)) { inexact = mpfr_const_pi (dest, MPFR_INVERT_RND (rnd_mode)); MPFR_CHANGE_SIGN (dest); return -inexact; } else return mpfr_const_pi (dest, rnd_mode); } else /* +/- 0 */ { set_zero: MPFR_SET_ZERO (dest); MPFR_SET_SAME_SIGN (dest, y); return 0; } } if (MPFR_IS_ZERO (x)) { return pi_div_2ui (dest, 1, MPFR_IS_NEG (y), rnd_mode); } if (MPFR_IS_INF (y)) { if (!MPFR_IS_INF (x)) /* +/- PI/2 */ return pi_div_2ui (dest, 1, MPFR_IS_NEG (y), rnd_mode); else if (MPFR_IS_POS (x)) /* +/- PI/4 */ return pi_div_2ui (dest, 2, MPFR_IS_NEG (y), rnd_mode); else /* +/- 3*PI/4: Ugly since we have to round properly */ { mpfr_t tmp2; MPFR_ZIV_DECL (loop2); mpfr_prec_t prec2 = MPFR_PREC (dest) + 10; MPFR_SAVE_EXPO_MARK (expo); mpfr_init2 (tmp2, prec2); MPFR_ZIV_INIT (loop2, prec2); for (;;) { mpfr_const_pi (tmp2, MPFR_RNDN); mpfr_mul_ui (tmp2, tmp2, 3, MPFR_RNDN); /* Error <= 2 */ mpfr_div_2ui (tmp2, tmp2, 2, MPFR_RNDN); if (mpfr_round_p (MPFR_MANT (tmp2), MPFR_LIMB_SIZE (tmp2), MPFR_PREC (tmp2) - 2, MPFR_PREC (dest) + (rnd_mode == MPFR_RNDN))) break; MPFR_ZIV_NEXT (loop2, prec2); mpfr_set_prec (tmp2, prec2); } MPFR_ZIV_FREE (loop2); if (MPFR_IS_NEG (y)) MPFR_CHANGE_SIGN (tmp2); inexact = mpfr_set (dest, tmp2, rnd_mode); mpfr_clear (tmp2); MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (dest, inexact, rnd_mode); } } MPFR_ASSERTD (MPFR_IS_INF (x)); if (MPFR_IS_NEG (x)) goto set_pi; else goto set_zero; } /* When x is a power of two, we call directly atan(y/x) since y/x is exact. */ if (MPFR_UNLIKELY (MPFR_IS_POWER_OF_2 (x))) { int r; mpfr_t yoverx; unsigned int saved_flags = __gmpfr_flags; mpfr_init2 (yoverx, MPFR_PREC (y)); if (MPFR_LIKELY (mpfr_div_2si (yoverx, y, MPFR_GET_EXP (x) - 1, MPFR_RNDN) == 0)) { /* Here the flags have not changed due to mpfr_div_2si. */ r = mpfr_atan (dest, yoverx, rnd_mode); mpfr_clear (yoverx); return r; } else { /* Division is inexact because of a small exponent range */ mpfr_clear (yoverx); __gmpfr_flags = saved_flags; } } MPFR_SAVE_EXPO_MARK (expo); /* Set up initial prec */ prec = MPFR_PREC (dest) + 3 + MPFR_INT_CEIL_LOG2 (MPFR_PREC (dest)); mpfr_init2 (tmp, prec); MPFR_ZIV_INIT (loop, prec); if (MPFR_IS_POS (x)) /* use atan2(y,x) = atan(y/x) */ for (;;) { int div_inex; MPFR_BLOCK_DECL (flags); MPFR_BLOCK (flags, div_inex = mpfr_div (tmp, y, x, MPFR_RNDN)); if (div_inex == 0) { /* Result is exact. */ inexact = mpfr_atan (dest, tmp, rnd_mode); goto end; } /* Error <= ulp (tmp) except in case of underflow or overflow. */ /* If the division underflowed, since |atan(z)/z| < 1, we have an underflow. */ if (MPFR_UNDERFLOW (flags)) { int sign; /* In the case MPFR_RNDN with 2^(emin-2) < |y/x| < 2^(emin-1): The smallest significand value S > 1 of |y/x| is: * 1 / (1 - 2^(-px)) if py <= px, * (1 - 2^(-px) + 2^(-py)) / (1 - 2^(-px)) if py >= px. Therefore S - 1 > 2^(-pz), where pz = max(px,py). We have: atan(|y/x|) > atan(z), where z = 2^(emin-2) * (1 + 2^(-pz)). > z - z^3 / 3. > 2^(emin-2) * (1 + 2^(-pz) - 2^(2 emin - 5)) Assuming pz <= -2 emin + 5, we can round away from zero (this is what mpfr_underflow always does on MPFR_RNDN). In the case MPFR_RNDN with |y/x| <= 2^(emin-2), we round toward zero, as |atan(z)/z| < 1. */ MPFR_ASSERTN (MPFR_PREC_MAX <= 2 * (mpfr_uexp_t) - MPFR_EMIN_MIN + 5); if (rnd_mode == MPFR_RNDN && MPFR_IS_ZERO (tmp)) rnd_mode = MPFR_RNDZ; sign = MPFR_SIGN (tmp); mpfr_clear (tmp); MPFR_SAVE_EXPO_FREE (expo); return mpfr_underflow (dest, rnd_mode, sign); } mpfr_atan (tmp, tmp, MPFR_RNDN); /* Error <= 2*ulp (tmp) since abs(D(arctan)) <= 1 */ /* TODO: check that the error bound is correct in case of overflow. */ /* FIXME: Error <= ulp(tmp) ? */ if (MPFR_LIKELY (MPFR_CAN_ROUND (tmp, prec - 2, MPFR_PREC (dest), rnd_mode))) break; MPFR_ZIV_NEXT (loop, prec); mpfr_set_prec (tmp, prec); } else /* x < 0 */ /* Use sign(y)*(PI - atan (|y/x|)) */ { mpfr_init2 (pi, prec); for (;;) { mpfr_div (tmp, y, x, MPFR_RNDN); /* Error <= ulp (tmp) */ /* If tmp is 0, we have |y/x| <= 2^(-emin-2), thus atan|y/x| < 2^(-emin-2). */ MPFR_SET_POS (tmp); /* no error */ mpfr_atan (tmp, tmp, MPFR_RNDN); /* Error <= 2*ulp (tmp) since abs(D(arctan)) <= 1 */ mpfr_const_pi (pi, MPFR_RNDN); /* Error <= ulp(pi) /2 */ e = MPFR_NOTZERO(tmp) ? MPFR_GET_EXP (tmp) : __gmpfr_emin - 1; mpfr_sub (tmp, pi, tmp, MPFR_RNDN); /* see above */ if (MPFR_IS_NEG (y)) MPFR_CHANGE_SIGN (tmp); /* Error(tmp) <= (1/2+2^(EXP(pi)-EXP(tmp)-1)+2^(e-EXP(tmp)+1))*ulp <= 2^(MAX (MAX (EXP(PI)-EXP(tmp)-1, e-EXP(tmp)+1), -1)+2)*ulp(tmp) */ e = MAX (MAX (MPFR_GET_EXP (pi)-MPFR_GET_EXP (tmp) - 1, e - MPFR_GET_EXP (tmp) + 1), -1) + 2; if (MPFR_LIKELY (MPFR_CAN_ROUND (tmp, prec - e, MPFR_PREC (dest), rnd_mode))) break; MPFR_ZIV_NEXT (loop, prec); mpfr_set_prec (tmp, prec); mpfr_set_prec (pi, prec); } mpfr_clear (pi); } inexact = mpfr_set (dest, tmp, rnd_mode); end: MPFR_ZIV_FREE (loop); mpfr_clear (tmp); MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (dest, inexact, rnd_mode); }
int mpfr_asin (mpfr_ptr asin, mpfr_srcptr x, mp_rnd_t rnd_mode) { mpfr_t xp; mpfr_t arcs; int signe, suplement; mpfr_t tmp; int Prec; int prec_asin; int good = 0; int realprec; int estimated_delta; int compared; /* Trivial cases */ if (MPFR_IS_NAN(x) || MPFR_IS_INF(x)) { MPFR_SET_NAN(asin); MPFR_RET_NAN; } /* Set x_p=|x| */ signe = MPFR_SIGN(x); mpfr_init2 (xp, MPFR_PREC(x)); mpfr_set (xp, x, rnd_mode); if (signe == -1) MPFR_CHANGE_SIGN(xp); compared = mpfr_cmp_ui (xp, 1); if (compared > 0) /* asin(x) = NaN for |x| > 1 */ { MPFR_SET_NAN(asin); mpfr_clear (xp); MPFR_RET_NAN; } if (compared == 0) /* x = 1 or x = -1 */ { if (signe > 0) /* asin(+1) = Pi/2 */ mpfr_const_pi (asin, rnd_mode); else /* asin(-1) = -Pi/2 */ { if (rnd_mode == GMP_RNDU) rnd_mode = GMP_RNDD; else if (rnd_mode == GMP_RNDD) rnd_mode = GMP_RNDU; mpfr_const_pi (asin, rnd_mode); mpfr_neg (asin, asin, rnd_mode); } MPFR_EXP(asin)--; mpfr_clear (xp); return 1; /* inexact */ } if (MPFR_IS_ZERO(x)) /* x = 0 */ { mpfr_set_ui (asin, 0, GMP_RNDN); mpfr_clear(xp); return 0; /* exact result */ } prec_asin = MPFR_PREC(asin); mpfr_ui_sub (xp, 1, xp, GMP_RNDD); suplement = 2 - MPFR_EXP(xp); #ifdef DEBUG printf("suplement=%d\n", suplement); #endif realprec = prec_asin + 10; while (!good) { estimated_delta = 1 + suplement; Prec = realprec+estimated_delta; /* Initialisation */ mpfr_init2 (tmp, Prec); mpfr_init2 (arcs, Prec); #ifdef DEBUG printf("Prec=%d\n", Prec); printf(" x="); mpfr_out_str (stdout, 2, 0, x, GMP_RNDN); printf ("\n"); #endif mpfr_mul (tmp, x, x, GMP_RNDN); #ifdef DEBUG printf(" x^2="); mpfr_out_str (stdout, 2, 0, tmp, GMP_RNDN); printf ("\n"); #endif mpfr_ui_sub (tmp, 1, tmp, GMP_RNDN); #ifdef DEBUG printf(" 1-x^2="); mpfr_out_str (stdout, 2, 0, tmp, GMP_RNDN); printf ("\n"); printf("10: 1-x^2="); mpfr_out_str (stdout, 10, 0, tmp, GMP_RNDN); printf ("\n"); #endif mpfr_sqrt (tmp, tmp, GMP_RNDN); #ifdef DEBUG printf(" sqrt(1-x^2)="); mpfr_out_str (stdout, 2, 0, tmp, GMP_RNDN); printf ("\n"); printf("10: sqrt(1-x^2)="); mpfr_out_str (stdout, 10, 0, tmp, GMP_RNDN); printf ("\n"); #endif mpfr_div (tmp, x, tmp, GMP_RNDN); #ifdef DEBUG printf("x/sqrt(1-x^2)="); mpfr_out_str (stdout, 2, 0, tmp, GMP_RNDN); printf ("\n"); #endif mpfr_atan (arcs, tmp, GMP_RNDN); #ifdef DEBUG printf("atan(x/..x^2)="); mpfr_out_str (stdout, 2, 0, arcs, GMP_RNDN); printf ("\n"); #endif if (mpfr_can_round (arcs, realprec, GMP_RNDN, rnd_mode, MPFR_PREC(asin))) { mpfr_set (asin, arcs, rnd_mode); #ifdef DEBUG printf("asin ="); mpfr_out_str (stdout, 2, prec_asin, asin, GMP_RNDN); printf ("\n"); #endif good = 1; } else { realprec += _mpfr_ceil_log2 ((double) realprec); #ifdef DEBUG printf("RETRY\n"); #endif } mpfr_clear (tmp); mpfr_clear (arcs); } mpfr_clear (xp); return 1; /* inexact result */ }
int mpc_atan (mpc_ptr rop, mpc_srcptr op, mpc_rnd_t rnd) { int s_re; int s_im; int inex_re; int inex_im; int inex; inex_re = 0; inex_im = 0; s_re = mpfr_signbit (mpc_realref (op)); s_im = mpfr_signbit (mpc_imagref (op)); /* special values */ if (mpfr_nan_p (mpc_realref (op)) || mpfr_nan_p (mpc_imagref (op))) { if (mpfr_nan_p (mpc_realref (op))) { mpfr_set_nan (mpc_realref (rop)); if (mpfr_zero_p (mpc_imagref (op)) || mpfr_inf_p (mpc_imagref (op))) { mpfr_set_ui (mpc_imagref (rop), 0, GMP_RNDN); if (s_im) mpc_conj (rop, rop, MPC_RNDNN); } else mpfr_set_nan (mpc_imagref (rop)); } else { if (mpfr_inf_p (mpc_realref (op))) { inex_re = set_pi_over_2 (mpc_realref (rop), -s_re, MPC_RND_RE (rnd)); mpfr_set_ui (mpc_imagref (rop), 0, GMP_RNDN); } else { mpfr_set_nan (mpc_realref (rop)); mpfr_set_nan (mpc_imagref (rop)); } } return MPC_INEX (inex_re, 0); } if (mpfr_inf_p (mpc_realref (op)) || mpfr_inf_p (mpc_imagref (op))) { inex_re = set_pi_over_2 (mpc_realref (rop), -s_re, MPC_RND_RE (rnd)); mpfr_set_ui (mpc_imagref (rop), 0, GMP_RNDN); if (s_im) mpc_conj (rop, rop, GMP_RNDN); return MPC_INEX (inex_re, 0); } /* pure real argument */ if (mpfr_zero_p (mpc_imagref (op))) { inex_re = mpfr_atan (mpc_realref (rop), mpc_realref (op), MPC_RND_RE (rnd)); mpfr_set_ui (mpc_imagref (rop), 0, GMP_RNDN); if (s_im) mpc_conj (rop, rop, GMP_RNDN); return MPC_INEX (inex_re, 0); } /* pure imaginary argument */ if (mpfr_zero_p (mpc_realref (op))) { int cmp_1; if (s_im) cmp_1 = -mpfr_cmp_si (mpc_imagref (op), -1); else cmp_1 = mpfr_cmp_ui (mpc_imagref (op), +1); if (cmp_1 < 0) { /* atan(+0+iy) = +0 +i*atanh(y), if |y| < 1 atan(-0+iy) = -0 +i*atanh(y), if |y| < 1 */ mpfr_set_ui (mpc_realref (rop), 0, GMP_RNDN); if (s_re) mpfr_neg (mpc_realref (rop), mpc_realref (rop), GMP_RNDN); inex_im = mpfr_atanh (mpc_imagref (rop), mpc_imagref (op), MPC_RND_IM (rnd)); } else if (cmp_1 == 0) { /* atan(+/-0+i) = NaN +i*inf atan(+/-0-i) = NaN -i*inf */ mpfr_set_nan (mpc_realref (rop)); mpfr_set_inf (mpc_imagref (rop), s_im ? -1 : +1); } else { /* atan(+0+iy) = +pi/2 +i*atanh(1/y), if |y| > 1 atan(-0+iy) = -pi/2 +i*atanh(1/y), if |y| > 1 */ mpfr_rnd_t rnd_im, rnd_away; mpfr_t y; mpfr_prec_t p, p_im; int ok; rnd_im = MPC_RND_IM (rnd); mpfr_init (y); p_im = mpfr_get_prec (mpc_imagref (rop)); p = p_im; /* a = o(1/y) with error(a) < 1 ulp(a) b = o(atanh(a)) with error(b) < (1+2^{1+Exp(a)-Exp(b)}) ulp(b) As |atanh (1/y)| > |1/y| we have Exp(a)-Exp(b) <=0 so, at most, 2 bits of precision are lost. We round atanh(1/y) away from 0. */ do { p += mpc_ceil_log2 (p) + 2; mpfr_set_prec (y, p); rnd_away = s_im == 0 ? GMP_RNDU : GMP_RNDD; inex_im = mpfr_ui_div (y, 1, mpc_imagref (op), rnd_away); /* FIXME: should we consider the case with unreasonably huge precision prec(y)>3*exp_min, where atanh(1/Im(op)) could be representable while 1/Im(op) underflows ? This corresponds to |y| = 0.5*2^emin, in which case the result may be wrong. */ /* atanh cannot underflow: |atanh(x)| > |x| for |x| < 1 */ inex_im |= mpfr_atanh (y, y, rnd_away); ok = inex_im == 0 || mpfr_can_round (y, p - 2, rnd_away, GMP_RNDZ, p_im + (rnd_im == GMP_RNDN)); } while (ok == 0); inex_re = set_pi_over_2 (mpc_realref (rop), -s_re, MPC_RND_RE (rnd)); inex_im = mpfr_set (mpc_imagref (rop), y, rnd_im); mpfr_clear (y); } return MPC_INEX (inex_re, inex_im); } /* regular number argument */ { mpfr_t a, b, x, y; mpfr_prec_t prec, p; mpfr_exp_t err, expo; int ok = 0; mpfr_t minus_op_re; mpfr_exp_t op_re_exp, op_im_exp; mpfr_rnd_t rnd1, rnd2; mpfr_inits2 (MPFR_PREC_MIN, a, b, x, y, (mpfr_ptr) 0); /* real part: Re(arctan(x+i*y)) = [arctan2(x,1-y) - arctan2(-x,1+y)]/2 */ minus_op_re[0] = mpc_realref (op)[0]; MPFR_CHANGE_SIGN (minus_op_re); op_re_exp = mpfr_get_exp (mpc_realref (op)); op_im_exp = mpfr_get_exp (mpc_imagref (op)); prec = mpfr_get_prec (mpc_realref (rop)); /* result precision */ /* a = o(1-y) error(a) < 1 ulp(a) b = o(atan2(x,a)) error(b) < [1+2^{3+Exp(x)-Exp(a)-Exp(b)}] ulp(b) = kb ulp(b) c = o(1+y) error(c) < 1 ulp(c) d = o(atan2(-x,c)) error(d) < [1+2^{3+Exp(x)-Exp(c)-Exp(d)}] ulp(d) = kd ulp(d) e = o(b - d) error(e) < [1 + kb*2^{Exp(b}-Exp(e)} + kd*2^{Exp(d)-Exp(e)}] ulp(e) error(e) < [1 + 2^{4+Exp(x)-Exp(a)-Exp(e)} + 2^{4+Exp(x)-Exp(c)-Exp(e)}] ulp(e) because |atan(u)| < |u| < [1 + 2^{5+Exp(x)-min(Exp(a),Exp(c)) -Exp(e)}] ulp(e) f = e/2 exact */ /* p: working precision */ p = (op_im_exp > 0 || prec > SAFE_ABS (mpfr_prec_t, op_im_exp)) ? prec : (prec - op_im_exp); rnd1 = mpfr_sgn (mpc_realref (op)) > 0 ? GMP_RNDD : GMP_RNDU; rnd2 = mpfr_sgn (mpc_realref (op)) < 0 ? GMP_RNDU : GMP_RNDD; do { p += mpc_ceil_log2 (p) + 2; mpfr_set_prec (a, p); mpfr_set_prec (b, p); mpfr_set_prec (x, p); /* x = upper bound for atan (x/(1-y)). Since atan is increasing, we need an upper bound on x/(1-y), i.e., a lower bound on 1-y for x positive, and an upper bound on 1-y for x negative */ mpfr_ui_sub (a, 1, mpc_imagref (op), rnd1); if (mpfr_sgn (a) == 0) /* y is near 1, thus 1+y is near 2, and expo will be 1 or 2 below */ { MPC_ASSERT (mpfr_cmp_ui (mpc_imagref(op), 1) == 0); /* check for intermediate underflow */ err = 2; /* ensures err will be expo below */ } else err = mpfr_get_exp (a); /* err = Exp(a) with the notations above */ mpfr_atan2 (x, mpc_realref (op), a, GMP_RNDU); /* b = lower bound for atan (-x/(1+y)): for x negative, we need a lower bound on -x/(1+y), i.e., an upper bound on 1+y */ mpfr_add_ui (a, mpc_imagref(op), 1, rnd2); /* if a is exactly zero, i.e., Im(op) = -1, then the error on a is 0, and we can simply ignore the terms involving Exp(a) in the error */ if (mpfr_sgn (a) == 0) { MPC_ASSERT (mpfr_cmp_si (mpc_imagref(op), -1) == 0); /* check for intermediate underflow */ expo = err; /* will leave err unchanged below */ } else expo = mpfr_get_exp (a); /* expo = Exp(c) with the notations above */ mpfr_atan2 (b, minus_op_re, a, GMP_RNDD); err = err < expo ? err : expo; /* err = min(Exp(a),Exp(c)) */ mpfr_sub (x, x, b, GMP_RNDU); err = 5 + op_re_exp - err - mpfr_get_exp (x); /* error is bounded by [1 + 2^err] ulp(e) */ err = err < 0 ? 1 : err + 1; mpfr_div_2ui (x, x, 1, GMP_RNDU); /* Note: using RND2=RNDD guarantees that if x is exactly representable on prec + ... bits, mpfr_can_round will return 0 */ ok = mpfr_can_round (x, p - err, GMP_RNDU, GMP_RNDD, prec + (MPC_RND_RE (rnd) == GMP_RNDN)); } while (ok == 0); /* Imaginary part Im(atan(x+I*y)) = 1/4 * [log(x^2+(1+y)^2) - log (x^2 +(1-y)^2)] */ prec = mpfr_get_prec (mpc_imagref (rop)); /* result precision */ /* a = o(1+y) error(a) < 1 ulp(a) b = o(a^2) error(b) < 5 ulp(b) c = o(x^2) error(c) < 1 ulp(c) d = o(b+c) error(d) < 7 ulp(d) e = o(log(d)) error(e) < [1 + 7*2^{2-Exp(e)}] ulp(e) = ke ulp(e) f = o(1-y) error(f) < 1 ulp(f) g = o(f^2) error(g) < 5 ulp(g) h = o(c+f) error(h) < 7 ulp(h) i = o(log(h)) error(i) < [1 + 7*2^{2-Exp(i)}] ulp(i) = ki ulp(i) j = o(e-i) error(j) < [1 + ke*2^{Exp(e)-Exp(j)} + ki*2^{Exp(i)-Exp(j)}] ulp(j) error(j) < [1 + 2^{Exp(e)-Exp(j)} + 2^{Exp(i)-Exp(j)} + 7*2^{3-Exp(j)}] ulp(j) < [1 + 2^{max(Exp(e),Exp(i))-Exp(j)+1} + 7*2^{3-Exp(j)}] ulp(j) k = j/4 exact */ err = 2; p = prec; /* working precision */ do { p += mpc_ceil_log2 (p) + err; mpfr_set_prec (a, p); mpfr_set_prec (b, p); mpfr_set_prec (y, p); /* a = upper bound for log(x^2 + (1+y)^2) */ ROUND_AWAY (mpfr_add_ui (a, mpc_imagref (op), 1, MPFR_RNDA), a); mpfr_sqr (a, a, GMP_RNDU); mpfr_sqr (y, mpc_realref (op), GMP_RNDU); mpfr_add (a, a, y, GMP_RNDU); mpfr_log (a, a, GMP_RNDU); /* b = lower bound for log(x^2 + (1-y)^2) */ mpfr_ui_sub (b, 1, mpc_imagref (op), GMP_RNDZ); /* round to zero */ mpfr_sqr (b, b, GMP_RNDZ); /* we could write mpfr_sqr (y, mpc_realref (op), GMP_RNDZ) but it is more efficient to reuse the value of y (x^2) above and subtract one ulp */ mpfr_nextbelow (y); mpfr_add (b, b, y, GMP_RNDZ); mpfr_log (b, b, GMP_RNDZ); mpfr_sub (y, a, b, GMP_RNDU); if (mpfr_zero_p (y)) /* FIXME: happens when x and y have very different magnitudes; could be handled more efficiently */ ok = 0; else { expo = MPC_MAX (mpfr_get_exp (a), mpfr_get_exp (b)); expo = expo - mpfr_get_exp (y) + 1; err = 3 - mpfr_get_exp (y); /* error(j) <= [1 + 2^expo + 7*2^err] ulp(j) */ if (expo <= err) /* error(j) <= [1 + 2^{err+1}] ulp(j) */ err = (err < 0) ? 1 : err + 2; else err = (expo < 0) ? 1 : expo + 2; mpfr_div_2ui (y, y, 2, GMP_RNDN); MPC_ASSERT (!mpfr_zero_p (y)); /* FIXME: underflow. Since the main term of the Taylor series in y=0 is 1/(x^2+1) * y, this means that y is very small and/or x very large; but then the mpfr_zero_p (y) above should be true. This needs a proof, or better yet, special code. */ ok = mpfr_can_round (y, p - err, GMP_RNDU, GMP_RNDD, prec + (MPC_RND_IM (rnd) == GMP_RNDN)); } } while (ok == 0); inex = mpc_set_fr_fr (rop, x, y, rnd); mpfr_clears (a, b, x, y, (mpfr_ptr) 0); return inex; } }
void bvisit(const ACot &x) { apply(result_, *(x.get_arg())); mpfr_ui_div(result_, 1, result_, rnd_); mpfr_atan(result_, result_, rnd_); }
FixAtan2ByCORDIC::FixAtan2ByCORDIC(Target* target_, int wIn_, int wOut_, map<string, double> inputDelays_) : FixAtan2(target_, wIn_, wOut_, inputDelays_) { int stage; srcFileName="FixAtan2ByCORDIC"; setCopyrightString ( "Matei Istoan, Florent de Dinechin (2012-...)" ); useNumericStd_Unsigned(); ostringstream name; name << "FixAtan2ByCORDIC_" << wIn_ << "_" << wOut_ << "_uid" << getNewUId(); setNameWithFreq( name.str() ); mpfr_t zatan; mpfr_init2(zatan, 10*wOut); computeGuardBits(); //Defining the various parameters according to method ///////////// VHDL GENERATION ///////////////////////////////////////////////////////////////////////////// // // First range reduction // ///////////////////////////////////////////////////////////////////////////// buildQuadrantRangeReduction(); // No scaling RR: just a copy vhdl << tab << declare("XRS", wIn-1) << " <= XR;" << endl; vhdl << tab << declare("YRS", wIn-1) << " <= YR;" << endl; int sizeZ=wOut-2+gA; // w-2 because two bits come from arg red //////////////////////////////////////////////////////////////////////////// // // CORDIC iterations // //////////////////////////////////////////////////////////////////////////// // Fixed-point considerations: // Y -> 0 and X -> K.sqrt(x1^2+y1^2) // Max value attained by X is sqrt(2)*K which is smaller than 2 int zMSB=-1; // -1 because these two bits have weight 0 and -1, but we must keep the sign int zLSB = zMSB-sizeZ+1; int sizeX = wIn+gXY; int sizeY = sizeX; vhdl << tab << declare("X1", sizeX) << " <= '0' & XRS & " << zg(sizeX-(wIn-1)-1) << ";" <<endl; vhdl << tab << declare("Y1", sizeY) << " <= '0' & YRS & " << zg(sizeY-(wIn-1)-1) << ";" <<endl; stage=1; manageCriticalPath( getTarget()->adderDelay(sizeX)); vhdl << tab << "--- Iteration " << stage << " : sign is known positive ---" << endl; vhdl << tab << declare(join("YShift", stage), sizeX) << " <= " << rangeAssign(sizeX-1, sizeX-stage, "'0'") << " & Y" << stage << range(sizeX-1, stage) << ";" << endl; vhdl << tab << declare(join("X", stage+1), sizeX) << " <= " << join("X", stage) << " + " << join("YShift", stage) << " ;" << endl; vhdl << tab << declare(join("XShift", stage), sizeY) << " <= " << zg(stage) << " & X" << stage << range(sizeY-1, stage) << ";" <<endl; vhdl << tab << declare(join("Y", stage+1), sizeY) << " <= " << join("Y", stage) << " - " << join("XShift", stage) << " ;" << endl; //create the constant signal for the arctan mpfr_set_d(zatan, 1.0, GMP_RNDN); mpfr_div_2si(zatan, zatan, stage, GMP_RNDN); mpfr_atan(zatan, zatan, GMP_RNDN); mpfr_div(zatan, zatan, constPi, GMP_RNDN); mpfr_t roundbit; mpfr_init2(roundbit, 30); // should be enough for anybody mpfr_set_d(roundbit, 1.0, GMP_RNDN); mpfr_div_2si(roundbit, roundbit, wOut, GMP_RNDN); // roundbit is in position 2^-wOut REPORT(DEBUG, "stage=" << stage << " atancst=" << printMPFR(zatan)); mpfr_add(zatan, zatan, roundbit, GMP_RNDN); vhdl << tab << declare("Z2", sizeZ) << " <= " << unsignedFixPointNumber(zatan, zMSB, zLSB) << "; -- initial atan, plus round bit" <<endl; for(stage=2; stage<=maxIterations; stage++, sizeY--){ // Invariant: sizeX-sizeY = stage-2 vhdl << tab << "--- Iteration " << stage << " ---" << endl; manageCriticalPath( getTarget()->localWireDelay(sizeX+1) + getTarget()->adderDelay(max(sizeX,sizeZ)) ); vhdl << tab << declare(join("sgnY", stage)) << " <= " << join("Y", stage) << of(sizeY-1) << ";" << endl; if(-2*stage+1 >= -wIn+1-gXY) { vhdl << tab << declare(join("YShift", stage), sizeX) << " <= " << rangeAssign(sizeX-1, sizeX -(sizeX-sizeY+stage), join("sgnY", stage)) << " & Y" << stage << range(sizeY-1, stage) << ";" << endl; vhdl << tab << declare(join("X", stage+1), sizeX) << " <= " << join("X", stage) << " - " << join("YShift", stage) << " when " << join("sgnY", stage) << "=\'1\' else " << join("X", stage) << " + " << join("YShift", stage) << " ;" << endl; } else { // autant pisser dans un violon vhdl << tab << declare(join("X", stage+1), sizeX) << " <= " << join("X", stage) << " ;" << endl; } vhdl << tab << declare(join("XShift", stage), sizeY) << " <= " << zg(2) << " & X" << stage << range(sizeX-1, sizeX - sizeY + 2) << ";" <<endl; vhdl << tab << declare(join("YY", stage+1), sizeY) << " <= " << join("Y", stage) << " + " << join("XShift", stage) << " when " << join("sgnY", stage) << "=\'1\' else " << join("Y", stage) << " - " << join("XShift", stage) << " ;" << endl; vhdl << tab << declare(join("Y", stage+1), sizeY-1) << " <= " << join("YY", stage+1) << range(sizeY-2, 0) << ";" <<endl; //create the constant signal for the arctan mpfr_set_d(zatan, 1.0, GMP_RNDN); mpfr_div_2si(zatan, zatan, stage, GMP_RNDN); mpfr_atan(zatan, zatan, GMP_RNDN); mpfr_div(zatan, zatan, constPi, GMP_RNDN); REPORT(DEBUG, "stage=" << stage << " atancst=" << printMPFR(zatan)); // rounding here in unsignedFixPointNumber() vhdl << tab << declare(join("atan2PowStage", stage), sizeZ) << " <= " << unsignedFixPointNumber(zatan, zMSB, zLSB) << ";" <<endl; vhdl << tab << declare(join("Z", stage+1), sizeZ) << " <= " << join("Z", stage) << " + " << join("atan2PowStage", stage) << " when " << join("sgnY", stage) << "=\'0\' else " << join("Z", stage) << " - " << join("atan2PowStage", stage) << " ;" << endl; } //end for loop // Give the time to finish the last rotation // manageCriticalPath( getTarget()->localWireDelay(w+1) + getTarget()->adderDelay(w+1) // actual CP delay // - (getTarget()->localWireDelay(sizeZ+1) + getTarget()->adderDelay(sizeZ+1))); // CP delay that was already added manageCriticalPath( getTarget()->localWireDelay(wOut+1) + getTarget()->adderDelay(2) ); vhdl << tab << declare("finalZ", wOut) << " <= Z" << stage << of(sizeZ-1) << " & Z" << stage << range(sizeZ-1, sizeZ-wOut+1) << "; -- sign-extended and rounded" << endl; buildQuadrantReconstruction(); };
CGAL::Gmpfr atan(const CGAL::Gmpfr &x) { CGAL::Gmpfr result(0, gmp_result_precision(x)); mpfr_atan(result.fr(), x.fr(), gmp_rounding_mode(CGAL::Gmpfr::get_default_rndmode())); return result; }