/// @brief cos keyword implementation /// void program::rpn_cos(void) { MIN_ARGUMENTS(1); if (_stack->get_type(0) == cmd_number) { floating_t* left = &((number*)_stack->get_obj(0))->_value; CHECK_MPFR(mpfr_cos(left->mpfr, left->mpfr, floating_t::s_mpfr_rnd)); } else if (_stack->get_type(0) == cmd_complex) { // cos(x+iy) = cos(x)cosh(y) - isin(x)sinh(y) stack::copy_and_push_back(*_stack, _stack->size() - 1, _calc_stack); floating_t* tmp = &((number*)_calc_stack.allocate_back(number::calc_size(), cmd_number))->_value; floating_t* x = ((complex*)_calc_stack.get_obj(1))->re(); floating_t* y = ((complex*)_calc_stack.get_obj(1))->im(); floating_t* re = ((complex*)_stack->get_obj(0))->re(); floating_t* im = ((complex*)_stack->get_obj(0))->im(); CHECK_MPFR(mpfr_cos(re->mpfr, x->mpfr, floating_t::s_mpfr_rnd)); CHECK_MPFR(mpfr_cosh(tmp->mpfr, y->mpfr, floating_t::s_mpfr_rnd)); CHECK_MPFR(mpfr_mul(re->mpfr, re->mpfr, tmp->mpfr, floating_t::s_mpfr_rnd)); CHECK_MPFR(mpfr_sin(im->mpfr, x->mpfr, floating_t::s_mpfr_rnd)); CHECK_MPFR(mpfr_sinh(tmp->mpfr, y->mpfr, floating_t::s_mpfr_rnd)); CHECK_MPFR(mpfr_mul(im->mpfr, im->mpfr, tmp->mpfr, floating_t::s_mpfr_rnd)); CHECK_MPFR(mpfr_neg(im->mpfr, im->mpfr, floating_t::s_mpfr_rnd)); _calc_stack.pop_back(2); } else ERR_CONTEXT(ret_bad_operand_type); }
real cos(const real & a) { real x; mpfr_cos(x.r, a.r, MPFR_RNDN); return x; }
static PyObject * GMPy_Complex_Rect(PyObject *x, PyObject *y, CTXT_Object *context) { MPFR_Object *tempx, *tempy; MPC_Object *result; CHECK_CONTEXT(context); tempx = GMPy_MPFR_From_Real(x, 1, context); tempy = GMPy_MPFR_From_Real(y, 1, context); result = GMPy_MPC_New(0, 0, context); if (!tempx || !tempy || !result) { Py_XDECREF((PyObject*)tempx); Py_XDECREF((PyObject*)tempy); Py_XDECREF((PyObject*)result); return NULL; } mpfr_cos(mpc_realref(result->c), tempy->f, GET_REAL_ROUND(context)); mpfr_mul(mpc_realref(result->c), mpc_realref(result->c), tempx->f, GET_REAL_ROUND(context)); mpfr_sin(mpc_imagref(result->c), tempy->f, GET_IMAG_ROUND(context)); mpfr_mul(mpc_imagref(result->c), mpc_imagref(result->c), tempx->f, GET_IMAG_ROUND(context)); Py_DECREF((PyObject*)tempx); Py_DECREF((PyObject*)tempy); GMPY_MPC_CLEANUP(result, context, "rect()"); return (PyObject*)result; }
static int mpc_sin_cos_real (mpc_ptr rop_sin, mpc_ptr rop_cos, mpc_srcptr op, mpc_rnd_t rnd_sin, mpc_rnd_t rnd_cos) /* assumes that op is real */ { int inex_sin_re = 0, inex_cos_re = 0; /* Until further notice, assume computations exact; in particular, by definition, for not computed values. */ mpfr_t s, c; int inex_s, inex_c; int sign_im_op = mpfr_signbit (MPC_IM (op)); /* sin(x +-0*i) = sin(x) +-0*i*sign(cos(x)) */ /* cos(x +-i*0) = cos(x) -+i*0*sign(sin(x)) */ if (rop_sin != 0) mpfr_init2 (s, MPC_PREC_RE (rop_sin)); else mpfr_init2 (s, 2); /* We need only the sign. */ if (rop_cos != NULL) mpfr_init2 (c, MPC_PREC_RE (rop_cos)); else mpfr_init2 (c, 2); inex_s = mpfr_sin (s, MPC_RE (op), MPC_RND_RE (rnd_sin)); inex_c = mpfr_cos (c, MPC_RE (op), MPC_RND_RE (rnd_cos)); /* We cannot use mpfr_sin_cos since we may need two distinct rounding modes and the exact return values. If we need only the sign, an arbitrary rounding mode will work. */ if (rop_sin != NULL) { mpfr_set (MPC_RE (rop_sin), s, GMP_RNDN); /* exact */ inex_sin_re = inex_s; mpfr_set_ui (MPC_IM (rop_sin), 0ul, GMP_RNDN); if ( ( sign_im_op && !mpfr_signbit (c)) || (!sign_im_op && mpfr_signbit (c))) MPFR_CHANGE_SIGN (MPC_IM (rop_sin)); /* FIXME: simpler implementation with mpfr-3: mpfr_set_zero (MPC_IM (rop_sin), ( ( mpfr_signbit (MPC_IM(op)) && !mpfr_signbit(c)) || (!mpfr_signbit (MPC_IM(op)) && mpfr_signbit(c)) ? -1 : 1); there is no need to use the variable sign_im_op then, needed now in the case rop_sin == op */ } if (rop_cos != NULL) { mpfr_set (MPC_RE (rop_cos), c, GMP_RNDN); /* exact */ inex_cos_re = inex_c; mpfr_set_ui (MPC_IM (rop_cos), 0ul, GMP_RNDN); if ( ( sign_im_op && mpfr_signbit (s)) || (!sign_im_op && !mpfr_signbit (s))) MPFR_CHANGE_SIGN (MPC_IM (rop_cos)); /* FIXME: see previous MPFR_CHANGE_SIGN */ } mpfr_clear (s); mpfr_clear (c); return MPC_INEX12 (MPC_INEX (inex_sin_re, 0), MPC_INEX (inex_cos_re, 0)); }
decimal r_cos(const decimal& a,bool round) { #ifdef USE_CGAL CGAL::Gmpfr m; CGAL::Gmpfr n=to_gmpfr(a); mpfr_cos(m.fr(),n.fr(),MPFR_RNDN); return r_round_preference(decimal(m),round); #else return r_round_preference(cos(a),round); #endif }
static void bug20091030 (void) { mpfr_t x, y; mpfr_init2 (x, 5); mpfr_init2 (y, 2); mpfr_set_str (x, "-0.11001E3", 2, MPFR_RNDN); mpfr_cos (y, x, MPFR_RNDN); mpfr_clear (x); mpfr_clear (y); }
static void check_flags (void) { mpfr_t x; mpfr_exp_t old_emin, old_emax; old_emin = mpfr_get_emin (); old_emax = mpfr_get_emax (); mpfr_init (x); /* Check the functions not the macros ! */ (mpfr_clear_flags)(); mpfr_set_double_range (); mpfr_set_ui (x, 1, MPFR_RNDN); (mpfr_clear_overflow)(); mpfr_mul_2exp (x, x, 1024, MPFR_RNDN); if (!(mpfr_overflow_p)()) ERROR("ERROR: No overflow detected!\n"); (mpfr_clear_underflow)(); mpfr_set_ui (x, 1, MPFR_RNDN); mpfr_div_2exp (x, x, 1025, MPFR_RNDN); if (!(mpfr_underflow_p)()) ERROR("ERROR: No underflow detected!\n"); (mpfr_clear_nanflag)(); MPFR_SET_NAN(x); mpfr_add (x, x, x, MPFR_RNDN); if (!(mpfr_nanflag_p)()) ERROR("ERROR: No NaN flag!\n"); (mpfr_clear_inexflag)(); mpfr_set_ui(x, 2, MPFR_RNDN); mpfr_cos(x, x, MPFR_RNDN); if (!(mpfr_inexflag_p)()) ERROR("ERROR: No inexact flag!\n"); (mpfr_clear_erangeflag) (); mpfr_set_ui (x, 1, MPFR_RNDN); mpfr_mul_2exp (x, x, 1024, MPFR_RNDN); mpfr_get_ui (x, MPFR_RNDN); if (!(mpfr_erangeflag_p)()) ERROR ("ERROR: No erange flag!\n"); mpfr_clear (x); set_emin (old_emin); set_emax (old_emax); }
static int mpc_sin_cos_real (mpc_ptr rop_sin, mpc_ptr rop_cos, mpc_srcptr op, mpc_rnd_t rnd_sin, mpc_rnd_t rnd_cos) /* assumes that op is real */ { int inex_sin_re = 0, inex_cos_re = 0; /* Until further notice, assume computations exact; in particular, by definition, for not computed values. */ mpfr_t s, c; int inex_s, inex_c; int sign_im = mpfr_signbit (mpc_imagref (op)); /* sin(x +-0*i) = sin(x) +-0*i*sign(cos(x)) */ /* cos(x +-i*0) = cos(x) -+i*0*sign(sin(x)) */ if (rop_sin != 0) mpfr_init2 (s, MPC_PREC_RE (rop_sin)); else mpfr_init2 (s, 2); /* We need only the sign. */ if (rop_cos != NULL) mpfr_init2 (c, MPC_PREC_RE (rop_cos)); else mpfr_init2 (c, 2); inex_s = mpfr_sin (s, mpc_realref (op), MPC_RND_RE (rnd_sin)); inex_c = mpfr_cos (c, mpc_realref (op), MPC_RND_RE (rnd_cos)); /* We cannot use mpfr_sin_cos since we may need two distinct rounding modes and the exact return values. If we need only the sign, an arbitrary rounding mode will work. */ if (rop_sin != NULL) { mpfr_set (mpc_realref (rop_sin), s, MPFR_RNDN); /* exact */ inex_sin_re = inex_s; mpfr_set_zero (mpc_imagref (rop_sin), ( ( sign_im && !mpfr_signbit(c)) || (!sign_im && mpfr_signbit(c)) ? -1 : 1)); } if (rop_cos != NULL) { mpfr_set (mpc_realref (rop_cos), c, MPFR_RNDN); /* exact */ inex_cos_re = inex_c; mpfr_set_zero (mpc_imagref (rop_cos), ( ( sign_im && mpfr_signbit(s)) || (!sign_im && !mpfr_signbit(s)) ? -1 : 1)); } mpfr_clear (s); mpfr_clear (c); return MPC_INEX12 (MPC_INEX (inex_sin_re, 0), MPC_INEX (inex_cos_re, 0)); }
void fmpq_poly_sample_D1(fmpq_poly_t f, int n, mpfr_prec_t prec, gmp_randstate_t state) { mpfr_t u1; mpfr_init2(u1, prec); mpfr_t u2; mpfr_init2(u2, prec); mpfr_t z1; mpfr_init2(z1, prec); mpfr_t z2; mpfr_init2(z2, prec); mpfr_t pi2; mpfr_init2(pi2, prec); mpfr_const_pi(pi2, MPFR_RNDN); mpfr_mul_si(pi2, pi2, 2, MPFR_RNDN); mpf_t tmp_f; mpq_t tmp_q; mpf_init(tmp_f); mpq_init(tmp_q); assert(n%2==0); for(long i=0; i<n; i+=2) { mpfr_urandomb(u1, state); mpfr_urandomb(u2, state); mpfr_log(u1, u1, MPFR_RNDN); mpfr_mul_si(u1, u1, -2, MPFR_RNDN); mpfr_sqrt(u1, u1, MPFR_RNDN); mpfr_mul(u2, pi2, u2, MPFR_RNDN); mpfr_cos(z1, u2, MPFR_RNDN); mpfr_mul(z1, z1, u1, MPFR_RNDN); //z1 = sqrt(-2*log(u1)) * cos(2*pi*u2) mpfr_sin(z2, u2, MPFR_RNDN); mpfr_mul(z2, z2, u1, MPFR_RNDN); //z1 = sqrt(-2*log(u1)) * sin(2*pi*U2) mpfr_get_f(tmp_f, z1, MPFR_RNDN); mpq_set_f(tmp_q, tmp_f); fmpq_poly_set_coeff_mpq(f, i, tmp_q); mpfr_get_f(tmp_f, z2, MPFR_RNDN); mpq_set_f(tmp_q, tmp_f); fmpq_poly_set_coeff_mpq(f, i+1, tmp_q); } mpf_clear(tmp_f); mpq_clear(tmp_q); mpfr_clear(pi2); mpfr_clear(u1); mpfr_clear(u2); mpfr_clear(z1); mpfr_clear(z2); }
static void pure_imaginary_argument (void) { /* cosh(+0 +i*y) = cos y +i*0*sin y */ /* cosh(-0 +i*y) = cos y -i*0*sin y */ mpc_t u; mpc_t z; mpc_t cosh_z; mpc_init2 (z, 2); mpc_init2 (u, 100); mpc_init2 (cosh_z, 100); /* cosh(+0 +i) = cos(1) + i*0 */ mpc_set_ui_ui (z, 0, 1, MPC_RNDNN); mpfr_cos (MPC_RE (u), MPC_IM (z), GMP_RNDN); mpfr_set_ui (MPC_IM (u), 0, GMP_RNDN); mpc_cosh (cosh_z, z, MPC_RNDNN); if (mpc_cmp (cosh_z, u) != 0 || mpfr_signbit (MPC_IM (cosh_z))) TEST_FAILED ("mpc_cosh", z, cosh_z, u, MPC_RNDNN); /* cosh(+0 -i) = cos(1) - i*0 */ mpc_conj (z, z, MPC_RNDNN); mpc_conj (u, u, MPC_RNDNN); mpc_cosh (cosh_z, z, MPC_RNDNN); if (mpc_cmp (cosh_z, u) != 0 || !mpfr_signbit (MPC_IM (cosh_z))) TEST_FAILED ("mpc_cosh", z, cosh_z, u, MPC_RNDNN); /* cosh(-0 +i) = cos(1) - i*0 */ mpc_neg (z, z, MPC_RNDNN); mpc_cosh (cosh_z, z, MPC_RNDNN); if (mpc_cmp (cosh_z, u) != 0 || !mpfr_signbit (MPC_IM (cosh_z))) TEST_FAILED ("mpc_cosh", z, cosh_z, u, MPC_RNDNN); /* cosh(-0 -i) = cos(1) + i*0 */ mpc_conj (z, z, MPC_RNDNN); mpc_conj (u, u, MPC_RNDNN); mpc_cosh (cosh_z, z, MPC_RNDNN); if (mpc_cmp (cosh_z, u) != 0 || mpfr_signbit (MPC_IM (cosh_z))) TEST_FAILED ("mpc_cosh", z, cosh_z, u, MPC_RNDNN); mpc_clear (cosh_z); mpc_clear (z); mpc_clear (u); }
static int test_cos (mpfr_ptr a, mpfr_srcptr b, mpfr_rnd_t rnd_mode) { int res; int ok = rnd_mode == MPFR_RNDN && mpfr_number_p (b) && mpfr_get_prec (a)>=53; if (ok) { mpfr_print_raw (b); } res = mpfr_cos (a, b, rnd_mode); if (ok) { printf (" "); mpfr_print_raw (a); printf ("\n"); } return res; }
//------------------------------------------------------------------------------ // Name: //------------------------------------------------------------------------------ knumber_base *knumber_float::cos() { #ifdef KNUMBER_USE_MPFR mpfr_t mpfr; mpfr_init_set_f(mpfr, mpf_, rounding_mode); mpfr_cos(mpfr, mpfr, rounding_mode); mpfr_get_f(mpf_, mpfr, rounding_mode); mpfr_clear(mpfr); return this; #else const double x = mpf_get_d(mpf_); if(isinf(x)) { delete this; return new knumber_error(knumber_error::ERROR_POS_INFINITY); } else { return execute_libc_func< ::cos>(x); } #endif }
REAL _cos(REAL a, REAL, QByteArray &) { mpfr_t tmp1; mpfr_init2(tmp1, NUMBITS); mpfr_t result; mpfr_init2(result, NUMBITS); try { // mpfr_init_set_f(tmp1, a.get_mpf_t(), MPFR_RNDN); mpfr_set_str(tmp1, getString(a).data(), 10, MPFR_RNDN); mpfr_cos(result, tmp1, MPFR_RNDN); mpfr_get_f(a.get_mpf_t(), result, MPFR_RNDN); } catch(...) { mpfr_clear(tmp1); mpfr_clear(result); return ZERO; } mpfr_clear(tmp1); mpfr_clear(result); return a; }
/* Bug reported by Laurent Fousse for the 2.4 branch. No problem in the trunk. https://sympa.inria.fr/sympa/arc/mpfr/2009-11/msg00044.html */ static void bug20091122 (void) { mpfr_t x, y, z, yref, zref; mpfr_prec_t p = 3; mpfr_rnd_t r = MPFR_RNDN; mpfr_init2 (x, 5); mpfr_init2 (y, p); mpfr_init2 (z, p); mpfr_init2 (yref, p); mpfr_init2 (zref, p); mpfr_set_str (x, "0.11111E49", 2, MPFR_RNDN); mpfr_sin_cos (yref, zref, x, r); mpfr_sin (y, x, r); mpfr_cos (z, x, r); if (! mpfr_equal_p (y, yref)) { printf ("mpfr_sin_cos and mpfr_sin disagree (bug20091122)\n"); printf ("yref = "); mpfr_dump (yref); printf ("y = "); mpfr_dump (y); exit (1); } if (! mpfr_equal_p (z, zref)) { printf ("mpfr_sin_cos and mpfr_cos disagree (bug20091122)\n"); printf ("zref = "); mpfr_dump (zref); printf ("z = "); mpfr_dump (z); exit (1); } mpfr_clear (x); mpfr_clear (y); mpfr_clear (z); mpfr_clear (yref); mpfr_clear (zref); }
/// @brief tan keyword implementation /// void program::rpn_tan(void) { MIN_ARGUMENTS(1); if (_stack->get_type(0) == cmd_number) { floating_t* left = &((number*)_stack->get_obj(0))->_value; CHECK_MPFR(mpfr_tan(left->mpfr, left->mpfr, floating_t::s_mpfr_rnd)); } else if (_stack->get_type(0) == cmd_complex) { // tan(x+iy) = (sin(2x)+isinh(2y)) / cosh(2y)+cos(2x) stack::copy_and_push_back(*_stack, _stack->size() - 1, _calc_stack); floating_t* tmp = &((number*)_calc_stack.allocate_back(number::calc_size(), cmd_number))->_value; floating_t* x = ((complex*)_calc_stack.get_obj(1))->re(); floating_t* y = ((complex*)_calc_stack.get_obj(1))->im(); floating_t* re = ((complex*)_stack->get_obj(0))->re(); floating_t* im = ((complex*)_stack->get_obj(0))->im(); // x->2x CHECK_MPFR(mpfr_mul_si(x->mpfr, x->mpfr, 2, floating_t::s_mpfr_rnd)); // y->2y CHECK_MPFR(mpfr_mul_si(y->mpfr, y->mpfr, 2, floating_t::s_mpfr_rnd)); // sin(2x)+sinh(2y) CHECK_MPFR(mpfr_sin(re->mpfr, x->mpfr, floating_t::s_mpfr_rnd)); CHECK_MPFR(mpfr_sinh(im->mpfr, y->mpfr, floating_t::s_mpfr_rnd)); // cosh(2y)+cos(2x) CHECK_MPFR(mpfr_cosh(tmp->mpfr, y->mpfr, floating_t::s_mpfr_rnd)); CHECK_MPFR(mpfr_cos(x->mpfr, x->mpfr, floating_t::s_mpfr_rnd)); CHECK_MPFR(mpfr_add(tmp->mpfr, tmp->mpfr, x->mpfr, floating_t::s_mpfr_rnd)); // sin(2x)+sinh(2y) / (cosh(2y)+cos(2x)) CHECK_MPFR(mpfr_div(re->mpfr, re->mpfr, tmp->mpfr, floating_t::s_mpfr_rnd)); CHECK_MPFR(mpfr_div(im->mpfr, im->mpfr, tmp->mpfr, floating_t::s_mpfr_rnd)); _calc_stack.pop_back(2); } else ERR_CONTEXT(ret_bad_operand_type); }
int fmpq_poly_oz_sqrt_approx_pade(fmpq_poly_t f_sqrt, const fmpq_poly_t f, const long n, const int p, const mpfr_prec_t prec, const mpfr_prec_t bound, oz_flag_t flags, const fmpq_poly_t init) { fmpq_poly_t y; fmpq_poly_init(y); fmpq_poly_t y_next; fmpq_poly_init(y_next); fmpq_poly_t z; fmpq_poly_init(z); fmpq_poly_t z_next; fmpq_poly_init(z_next); mpfr_t norm; mpfr_init2(norm, prec); mpfr_t prev_norm; mpfr_init2(prev_norm, prec); mpfr_t log_f; mpfr_init2(log_f, prec); if (init) { // z = y/x fmpq_poly_set(y, init); _fmpq_poly_oz_invert_approx(z, f, n, prec); fmpq_poly_oz_mul(z, z, y, n); } else { fmpq_poly_set(y, f); fmpq_poly_set_coeff_si(z, 0, 1); } fmpq_t *xi = (fmpq_t*)calloc(p, sizeof(fmpq_t)); fmpq_t *a2 = (fmpq_t*)calloc(p, sizeof(fmpq_t)); fmpq_t *c = (fmpq_t*)calloc(p, sizeof(fmpq_t)); fmpq_poly_t *t_ = (fmpq_poly_t*)calloc(p, sizeof(fmpq_poly_t)); fmpq_poly_t *s_ = (fmpq_poly_t*)calloc(p, sizeof(fmpq_poly_t)); mpfr_t pi; mpfr_init2(pi, 4*prec); mpfr_const_pi(pi, MPFR_RNDN); #pragma omp parallel for for(int i=0; i<p; i++) { mpfr_t xi_r; mpfr_init2(xi_r, 4*prec); mpfr_t a2_r; mpfr_init2(a2_r, 4*prec); /* ζ_i = 1/2 * (1 + cos( (2·i -1)·π/(2·p) )) */ mpfr_set_si(xi_r, 2*i+1, MPFR_RNDN); mpfr_mul(xi_r, xi_r, pi, MPFR_RNDN); mpfr_div_si(xi_r, xi_r, 2*p, MPFR_RNDN); mpfr_cos(xi_r, xi_r, MPFR_RNDN); mpfr_add_si(xi_r, xi_r, 1, MPFR_RNDN); mpfr_div_si(xi_r, xi_r, 2, MPFR_RNDN); /* α_i^2 = 1/ζ_i -1 */ mpfr_set_si(a2_r, 1, MPFR_RNDN); mpfr_div(a2_r, a2_r, xi_r, MPFR_RNDN); mpfr_sub_si(a2_r, a2_r, 1, MPFR_RNDN); fmpq_init(xi[i]); fmpq_init(a2[i]); fmpq_set_mpfr(xi[i], xi_r, MPFR_RNDN); fmpq_set_mpfr(a2[i], a2_r, MPFR_RNDN); fmpq_init(c[i]); fmpq_poly_init(t_[i]); fmpq_poly_init(s_[i]); mpfr_clear(xi_r); mpfr_clear(a2_r); } mpfr_clear(pi); uint64_t t = oz_walltime(0); int r = 0; int cont = 1; for(long k=0; cont; k++) { if (k == 0 || mpfr_cmp_ui(prev_norm, 1) > 0) _fmpq_poly_oz_sqrt_approx_scale(y, z, n, prec); /* T = sum([1/xi[i] * ~(Z*Y + a2[i]) for i in range(p)]) */ #pragma omp parallel for for(int i=0; i<p; i++) { fmpq_poly_oz_mul(t_[i], z, y, n); fmpq_poly_get_coeff_fmpq(c[i], t_[i], 0); fmpq_add(c[i], c[i], a2[i]); fmpq_poly_set_coeff_fmpq(t_[i], 0, c[i]); fmpq_poly_scalar_mul_fmpq(t_[i], t_[i], xi[i]); _fmpq_poly_oz_invert_approx(s_[i], t_[i], n, prec); } for(int i=1; i<p; i++) fmpq_poly_add(s_[0], s_[0], s_[i]); #pragma omp parallel sections { #pragma omp section { fmpq_poly_oz_mul(y_next, y, s_[0], n); fmpq_poly_scalar_div_si(y_next, y_next, p); fmpq_poly_set(y, y_next); } #pragma omp section { fmpq_poly_oz_mul(z_next, z, s_[0], n); fmpq_poly_scalar_div_si(z_next, z_next, p); fmpq_poly_set(z, z_next); } } cont = !_fmpq_poly_oz_sqrt_approx_break(norm, y, f, n, bound, prec); if(flags & OZ_VERBOSE) { mpfr_log2(log_f, norm, MPFR_RNDN); mpfr_fprintf(stderr, "Computing sqrt(Σ):: k: %4d, Δ=|sqrt(Σ)^2-Σ|: %7.2Rf", k, log_f); fprintf(stderr, " <? %4ld, ", -bound); fprintf(stderr, "t: %8.2fs\n", oz_seconds(oz_walltime(t))); fflush(0); } if (cont) { if (k>0 && mpfr_cmp_ui_2exp(norm, 1, bound) >= 0) { /* something went really wrong */ r = -1; break; } if (k>0 && mpfr_cmp(norm, prev_norm) >= 0) { /* we don't converge any more */ r = 1; break; } mpfr_set(prev_norm, norm, MPFR_RNDN); } } for(int i=0; i<p; i++) { fmpq_clear(xi[i]); fmpq_clear(a2[i]); fmpq_clear(c[i]); fmpq_poly_clear(t_[i]); fmpq_poly_clear(s_[i]); } free(xi); free(a2); free(c); free(t_); free(s_); mpfr_clear(log_f); fmpq_poly_set(f_sqrt, y); mpfr_clear(norm); mpfr_clear(prev_norm); fmpq_poly_clear(y_next); fmpq_poly_clear(y); fmpq_poly_clear(z_next); fmpq_poly_clear(z); return r; }
static void overflowed_cos0 (void) { mpfr_t x, y; int emax, i, inex, rnd, err = 0; mpfr_exp_t old_emax; old_emax = mpfr_get_emax (); mpfr_init2 (x, 8); mpfr_init2 (y, 8); for (emax = -1; emax <= 0; emax++) { mpfr_set_ui_2exp (y, 1, emax, MPFR_RNDN); mpfr_nextbelow (y); set_emax (emax); /* 1 is not representable. */ /* and if emax < 0, 1 - eps is not representable either. */ for (i = -1; i <= 1; i++) RND_LOOP (rnd) { mpfr_set_si_2exp (x, i, -512 * ABS (i), MPFR_RNDN); mpfr_clear_flags (); inex = mpfr_cos (x, x, (mpfr_rnd_t) rnd); if ((i == 0 || emax < 0 || rnd == MPFR_RNDN || rnd == MPFR_RNDU) && ! mpfr_overflow_p ()) { printf ("Error in overflowed_cos0 (i = %d, rnd = %s):\n" " The overflow flag is not set.\n", i, mpfr_print_rnd_mode ((mpfr_rnd_t) rnd)); err = 1; } if (rnd == MPFR_RNDZ || rnd == MPFR_RNDD) { if (inex >= 0) { printf ("Error in overflowed_cos0 (i = %d, rnd = %s):\n" " The inexact value must be negative.\n", i, mpfr_print_rnd_mode ((mpfr_rnd_t) rnd)); err = 1; } if (! mpfr_equal_p (x, y)) { printf ("Error in overflowed_cos0 (i = %d, rnd = %s):\n" " Got ", i, mpfr_print_rnd_mode ((mpfr_rnd_t) rnd)); mpfr_print_binary (x); printf (" instead of 0.11111111E%d.\n", emax); err = 1; } } else { if (inex <= 0) { printf ("Error in overflowed_cos0 (i = %d, rnd = %s):\n" " The inexact value must be positive.\n", i, mpfr_print_rnd_mode ((mpfr_rnd_t) rnd)); err = 1; } if (! (mpfr_inf_p (x) && MPFR_SIGN (x) > 0)) { printf ("Error in overflowed_cos0 (i = %d, rnd = %s):\n" " Got ", i, mpfr_print_rnd_mode ((mpfr_rnd_t) rnd)); mpfr_print_binary (x); printf (" instead of +Inf.\n"); err = 1; } } } set_emax (old_emax); } if (err) exit (1); mpfr_clear (x); mpfr_clear (y); }
int main (int argc, char *argv[]) { int n, prec, st, st2, N, i; mpfr_t x, y, z; if (argc != 2 && argc != 3) { fprintf(stderr, "Usage: timing digits \n"); exit(1); } printf ("Using MPFR-%s with GMP-%s\n", mpfr_version, gmp_version); n = atoi(argv[1]); prec = (int) ( n * log(10.0) / log(2.0) + 1.0 ); printf("[precision is %u bits]\n", prec); mpfr_init2(x, prec); mpfr_init2(y, prec); mpfr_init2(z, prec); mpfr_set_d(x, 3.0, GMP_RNDN); mpfr_sqrt(x, x, GMP_RNDN); mpfr_sub_ui (x, x, 1, GMP_RNDN); mpfr_set_d(y, 5.0, GMP_RNDN); mpfr_sqrt(y, y, GMP_RNDN); mpfr_log (z, x, GMP_RNDN); N=1; st = cputime(); do { for (i=0;i<N;i++) mpfr_mul(z, x, y, GMP_RNDN); N=2*N; st2=cputime(); } while (st2-st<1000); printf("x*y took %f ms (%d eval in %d ms)\n", (double)(st2-st)/(N-1),N-1,st2-st); N=1; st = cputime(); do { for (i=0;i<N;i++) mpfr_mul(z, x, x, GMP_RNDN); N=2*N; st2=cputime(); } while (st2-st<1000); printf("x*x took %f ms (%d eval in %d ms)\n", (double)(st2-st)/(N-1),N-1,st2-st); N=1; st = cputime(); do { for (i=0;i<N;i++) mpfr_div(z, x, y, GMP_RNDN); N=2*N; st2=cputime(); } while (st2-st<1000); printf("x/y took %f ms (%d eval in %d ms)\n", (double)(st2-st)/(N-1),N-1,st2-st); N=1; st = cputime(); do { for (i=0;i<N;i++) mpfr_sqrt(z, x, GMP_RNDN); N=2*N; st2=cputime(); } while (st2-st<1000); printf("sqrt(x) took %f ms (%d eval in %d ms)\n", (double)(st2-st)/(N-1),N-1,st2-st); N=1; st = cputime(); do { for (i=0;i<N;i++) mpfr_exp(z, x, GMP_RNDN); N=2*N; st2=cputime(); } while (st2-st<1000); printf("exp(x) took %f ms (%d eval in %d ms)\n", (double)(st2-st)/(N-1),N-1,st2-st); N=1; st = cputime(); do { for (i=0;i<N;i++) mpfr_log(z, x, GMP_RNDN); N=2*N; st2=cputime(); } while (st2-st<1000); printf("log(x) took %f ms (%d eval in %d ms)\n", (double)(st2-st)/(N-1),N-1,st2-st); N=1; st = cputime(); do { for (i=0;i<N;i++) mpfr_sin(z, x, GMP_RNDN); N=2*N; st2=cputime(); } while (st2-st<1000); printf("sin(x) took %f ms (%d eval in %d ms)\n", (double)(st2-st)/(N-1),N-1,st2-st); N=1; st = cputime(); do { for (i=0;i<N;i++) mpfr_cos(z, x, GMP_RNDN); N=2*N; st2=cputime(); } while (st2-st<1000); printf("cos(x) took %f ms (%d eval in %d ms)\n", (double)(st2-st)/(N-1),N-1,st2-st); N=1; st = cputime(); do { for (i=0;i<N;i++) mpfr_acos(z, x, GMP_RNDN); N=2*N; st2=cputime(); } while (st2-st<1000); printf("arccos(x) took %f ms (%d eval in %d ms)\n", (double)(st2-st)/(N-1),N-1,st2-st); N=1; st = cputime(); do { for (i=0;i<N;i++) mpfr_atan(z, x, GMP_RNDN); N=2*N; st2=cputime(); } while (st2-st<1000); printf("arctan(x) took %f ms (%d eval in %d ms)\n", (double)(st2-st)/(N-1),N-1,st2-st); mpfr_clear(x); mpfr_clear(y); mpfr_clear(z); return 0; }
int main() { long iter; flint_rand_t state; printf("cos...."); fflush(stdout); flint_randinit(state); for (iter = 0; iter < 100000; iter++) { arb_t a, b; fmpq_t q; mpfr_t t; long prec0, prec; prec0 = 400; if (iter % 100 == 0) prec0 = 8000; prec = 2 + n_randint(state, prec0); arb_init(a); arb_init(b); fmpq_init(q); mpfr_init2(t, prec0 + 100); arb_randtest(a, state, 1 + n_randint(state, prec0), 6); arb_randtest(b, state, 1 + n_randint(state, prec0), 6); arb_get_rand_fmpq(q, state, a, 1 + n_randint(state, prec0)); fmpq_get_mpfr(t, q, MPFR_RNDN); mpfr_cos(t, t, MPFR_RNDN); arb_cos(b, a, prec); if (!arb_contains_mpfr(b, t)) { printf("FAIL: containment\n\n"); printf("a = "); arb_print(a); printf("\n\n"); printf("b = "); arb_print(b); printf("\n\n"); abort(); } arb_cos(a, a, prec); if (!arb_equal(a, b)) { printf("FAIL: aliasing\n\n"); abort(); } arb_clear(a); arb_clear(b); fmpq_clear(q); mpfr_clear(t); } /* check large arguments */ for (iter = 0; iter < 1000000; iter++) { arb_t a, b, c, d; long prec0, prec1, prec2; if (iter % 10 == 0) prec0 = 10000; else prec0 = 1000; prec1 = 2 + n_randint(state, prec0); prec2 = 2 + n_randint(state, prec0); arb_init(a); arb_init(b); arb_init(c); arb_init(d); arb_randtest_special(a, state, 1 + n_randint(state, prec0), prec0); arb_randtest_special(b, state, 1 + n_randint(state, prec0), 100); arb_randtest_special(c, state, 1 + n_randint(state, prec0), 100); arb_randtest_special(d, state, 1 + n_randint(state, prec0), 100); arb_cos(b, a, prec1); arb_cos(c, a, prec2); if (!arb_overlaps(b, c)) { printf("FAIL: overlap\n\n"); printf("a = "); arb_print(a); printf("\n\n"); printf("b = "); arb_print(b); printf("\n\n"); printf("c = "); arb_print(c); printf("\n\n"); abort(); } /* check cos(2a) = 2cos(a)^2-1 */ arb_mul_2exp_si(c, a, 1); arb_cos(c, c, prec1); arb_mul(b, b, b, prec1); arb_mul_2exp_si(b, b, 1); arb_sub_ui(b, b, 1, prec1); if (!arb_overlaps(b, c)) { printf("FAIL: functional equation\n\n"); printf("a = "); arb_print(a); printf("\n\n"); printf("b = "); arb_print(b); printf("\n\n"); printf("c = "); arb_print(c); printf("\n\n"); abort(); } arb_clear(a); arb_clear(b); arb_clear(c); arb_clear(d); } flint_randclear(state); flint_cleanup(); printf("PASS\n"); return EXIT_SUCCESS; }
int main (int argc, char *argv[]) { mpfr_t x, c, s, c2, s2; tests_start_mpfr (); check_regression (); check_nans (); /* worst case from PhD thesis of Vincent Lefe`vre: x=8980155785351021/2^54 */ check53 ("4.984987858808754279e-1", "4.781075595393330379e-1", MPFR_RNDN); check53 ("4.984987858808754279e-1", "4.781075595393329824e-1", MPFR_RNDD); check53 ("4.984987858808754279e-1", "4.781075595393329824e-1", MPFR_RNDZ); check53 ("4.984987858808754279e-1", "4.781075595393330379e-1", MPFR_RNDU); check53 ("1.00031274099908640274", "8.416399183372403892e-1", MPFR_RNDN); check53 ("1.00229256850978698523", "8.427074524447979442e-1", MPFR_RNDZ); check53 ("1.00288304857059840103", "8.430252033025980029e-1", MPFR_RNDZ); check53 ("1.00591265847407274059", "8.446508805292128885e-1", MPFR_RNDN); /* Other worst cases showing a bug introduced on 2005-01-29 in rev 3248 */ check53b ("1.0111001111010111010111111000010011010001110001111011e-21", "1.0111001111010111010111111000010011010001101001110001e-21", MPFR_RNDU); check53b ("1.1011101111111010000001010111000010000111100100101101", "1.1111100100101100001111100000110011110011010001010101e-1", MPFR_RNDU); mpfr_init2 (x, 2); mpfr_set_str (x, "0.5", 10, MPFR_RNDN); test_sin (x, x, MPFR_RNDD); if (mpfr_cmp_ui_2exp (x, 3, -3)) /* x != 0.375 = 3/8 */ { printf ("mpfr_sin(0.5, MPFR_RNDD) failed with precision=2\n"); exit (1); } /* bug found by Kevin Ryde */ mpfr_const_pi (x, MPFR_RNDN); mpfr_mul_ui (x, x, 3L, MPFR_RNDN); mpfr_div_ui (x, x, 2L, MPFR_RNDN); test_sin (x, x, MPFR_RNDN); if (mpfr_cmp_ui (x, 0) >= 0) { printf ("Error: wrong sign for sin(3*Pi/2)\n"); exit (1); } /* Can fail on an assert */ mpfr_set_prec (x, 53); mpfr_set_str (x, "77291789194529019661184401408", 10, MPFR_RNDN); mpfr_init2 (c, 4); mpfr_init2 (s, 42); mpfr_init2 (c2, 4); mpfr_init2 (s2, 42); test_sin (s, x, MPFR_RNDN); mpfr_cos (c, x, MPFR_RNDN); mpfr_sin_cos (s2, c2, x, MPFR_RNDN); if (mpfr_cmp (c2, c)) { printf("cos differs for x=77291789194529019661184401408"); exit (1); } if (mpfr_cmp (s2, s)) { printf("sin differs for x=77291789194529019661184401408"); exit (1); } mpfr_set_str_binary (x, "1.1001001000011111101101010100010001000010110100010011"); test_sin (x, x, MPFR_RNDZ); if (mpfr_cmp_str (x, "1.1111111111111111111111111111111111111111111111111111e-1", 2, MPFR_RNDN)) { printf ("Error for x= 1.1001001000011111101101010100010001000010110100010011\nGot "); mpfr_dump (x); exit (1); } mpfr_set_prec (s, 9); mpfr_set_prec (x, 190); mpfr_const_pi (x, MPFR_RNDN); mpfr_sin (s, x, MPFR_RNDZ); if (mpfr_cmp_str (s, "0.100000101e-196", 2, MPFR_RNDN)) { printf ("Error for x ~= pi\n"); mpfr_dump (s); exit (1); } mpfr_clear (s2); mpfr_clear (c2); mpfr_clear (s); mpfr_clear (c); mpfr_clear (x); test_generic (2, 100, 15); test_generic (MPFR_SINCOS_THRESHOLD-1, MPFR_SINCOS_THRESHOLD+1, 2); test_sign (); check_tiny (); data_check ("data/sin", mpfr_sin, "mpfr_sin"); bad_cases (mpfr_sin, mpfr_asin, "mpfr_sin", 256, -40, 0, 4, 128, 800, 50); tests_end_mpfr (); return 0; }
/* (y, z) <- (sin(x), cos(x)), return value is 0 iff both results are exact ie, iff x = 0 */ int mpfr_sin_cos (mpfr_ptr y, mpfr_ptr z, mpfr_srcptr x, mp_rnd_t rnd_mode) { mp_prec_t prec, m; int neg, reduce; mpfr_t c, xr; mpfr_srcptr xx; mp_exp_t err, expx; MPFR_ZIV_DECL (loop); if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) { if (MPFR_IS_NAN(x) || MPFR_IS_INF(x)) { MPFR_SET_NAN (y); MPFR_SET_NAN (z); MPFR_RET_NAN; } else /* x is zero */ { MPFR_ASSERTD (MPFR_IS_ZERO (x)); MPFR_SET_ZERO (y); MPFR_SET_SAME_SIGN (y, x); /* y = 0, thus exact, but z is inexact in case of underflow or overflow */ return mpfr_set_ui (z, 1, rnd_mode); } } MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd_mode), ("sin[%#R]=%R cos[%#R]=%R", y, y, z, z)); prec = MAX (MPFR_PREC (y), MPFR_PREC (z)); m = prec + MPFR_INT_CEIL_LOG2 (prec) + 13; expx = MPFR_GET_EXP (x); mpfr_init (c); mpfr_init (xr); MPFR_ZIV_INIT (loop, m); for (;;) { /* the following is copied from sin.c */ if (expx >= 2) /* reduce the argument */ { reduce = 1; mpfr_set_prec (c, expx + m - 1); mpfr_set_prec (xr, m); mpfr_const_pi (c, GMP_RNDN); mpfr_mul_2ui (c, c, 1, GMP_RNDN); mpfr_remainder (xr, x, c, GMP_RNDN); mpfr_div_2ui (c, c, 1, GMP_RNDN); if (MPFR_SIGN (xr) > 0) mpfr_sub (c, c, xr, GMP_RNDZ); else mpfr_add (c, c, xr, GMP_RNDZ); if (MPFR_IS_ZERO(xr) || MPFR_EXP(xr) < (mp_exp_t) 3 - (mp_exp_t) m || MPFR_EXP(c) < (mp_exp_t) 3 - (mp_exp_t) m) goto next_step; xx = xr; } else /* the input argument is already reduced */ { reduce = 0; xx = x; } neg = MPFR_IS_NEG (xx); /* gives sign of sin(x) */ mpfr_set_prec (c, m); mpfr_cos (c, xx, GMP_RNDZ); /* If no argument reduction was performed, the error is at most ulp(c), otherwise it is at most ulp(c) + 2^(2-m). Since |c| < 1, we have ulp(c) <= 2^(-m), thus the error is bounded by 2^(3-m) in that later case. */ if (reduce == 0) err = m; else err = MPFR_GET_EXP (c) + (mp_exp_t) (m - 3); if (!mpfr_can_round (c, err, GMP_RNDN, rnd_mode, MPFR_PREC (z) + (rnd_mode == GMP_RNDN))) goto next_step; mpfr_set (z, c, rnd_mode); mpfr_sqr (c, c, GMP_RNDU); mpfr_ui_sub (c, 1, c, GMP_RNDN); err = 2 + (- MPFR_GET_EXP (c)) / 2; mpfr_sqrt (c, c, GMP_RNDN); if (neg) MPFR_CHANGE_SIGN (c); /* the absolute error on c is at most 2^(err-m), which we must put in the form 2^(EXP(c)-err). If there was an argument reduction, we need to add 2^(2-m); since err >= 2, the error is bounded by 2^(err+1-m) in that case. */ err = MPFR_GET_EXP (c) + (mp_exp_t) m - (err + reduce); if (mpfr_can_round (c, err, GMP_RNDN, rnd_mode, MPFR_PREC (y) + (rnd_mode == GMP_RNDN))) break; /* check for huge cancellation */ if (err < (mp_exp_t) MPFR_PREC (y)) m += MPFR_PREC (y) - err; /* Check if near 1 */ if (MPFR_GET_EXP (c) == 1 && MPFR_MANT (c)[MPFR_LIMB_SIZE (c)-1] == MPFR_LIMB_HIGHBIT) m += m; next_step: MPFR_ZIV_NEXT (loop, m); mpfr_set_prec (c, m); } MPFR_ZIV_FREE (loop); mpfr_set (y, c, rnd_mode); mpfr_clear (c); mpfr_clear (xr); MPFR_RET (1); /* Always inexact */ }
int mpc_exp (mpc_ptr rop, mpc_srcptr op, mpc_rnd_t rnd) { mpfr_t x, y, z; mpfr_prec_t prec; int ok = 0; int inex_re, inex_im; int saved_underflow, saved_overflow; /* special values */ if (mpfr_nan_p (mpc_realref (op)) || mpfr_nan_p (mpc_imagref (op))) /* NaNs exp(nan +i*y) = nan -i*0 if y = -0, nan +i*0 if y = +0, nan +i*nan otherwise exp(x+i*nan) = +/-0 +/-i*0 if x=-inf, +/-inf +i*nan if x=+inf, nan +i*nan otherwise */ { if (mpfr_zero_p (mpc_imagref (op))) return mpc_set (rop, op, MPC_RNDNN); if (mpfr_inf_p (mpc_realref (op))) { if (mpfr_signbit (mpc_realref (op))) return mpc_set_ui_ui (rop, 0, 0, MPC_RNDNN); else { mpfr_set_inf (mpc_realref (rop), +1); mpfr_set_nan (mpc_imagref (rop)); return MPC_INEX(0, 0); /* Inf/NaN are exact */ } } mpfr_set_nan (mpc_realref (rop)); mpfr_set_nan (mpc_imagref (rop)); return MPC_INEX(0, 0); /* NaN is exact */ } if (mpfr_zero_p (mpc_imagref(op))) /* special case when the input is real exp(x-i*0) = exp(x) -i*0, even if x is NaN exp(x+i*0) = exp(x) +i*0, even if x is NaN */ { inex_re = mpfr_exp (mpc_realref(rop), mpc_realref(op), MPC_RND_RE(rnd)); inex_im = mpfr_set (mpc_imagref(rop), mpc_imagref(op), MPC_RND_IM(rnd)); return MPC_INEX(inex_re, inex_im); } if (mpfr_zero_p (mpc_realref (op))) /* special case when the input is imaginary */ { inex_re = mpfr_cos (mpc_realref (rop), mpc_imagref (op), MPC_RND_RE(rnd)); inex_im = mpfr_sin (mpc_imagref (rop), mpc_imagref (op), MPC_RND_IM(rnd)); return MPC_INEX(inex_re, inex_im); } if (mpfr_inf_p (mpc_realref (op))) /* real part is an infinity, exp(-inf +i*y) = 0*(cos y +i*sin y) exp(+inf +i*y) = +/-inf +i*nan if y = +/-inf +inf*(cos y +i*sin y) if 0 < |y| < inf */ { mpfr_t n; mpfr_init2 (n, 2); if (mpfr_signbit (mpc_realref (op))) mpfr_set_ui (n, 0, GMP_RNDN); else mpfr_set_inf (n, +1); if (mpfr_inf_p (mpc_imagref (op))) { inex_re = mpfr_set (mpc_realref (rop), n, GMP_RNDN); if (mpfr_signbit (mpc_realref (op))) inex_im = mpfr_set (mpc_imagref (rop), n, GMP_RNDN); else { mpfr_set_nan (mpc_imagref (rop)); inex_im = 0; /* NaN is exact */ } } else { mpfr_t c, s; mpfr_init2 (c, 2); mpfr_init2 (s, 2); mpfr_sin_cos (s, c, mpc_imagref (op), GMP_RNDN); inex_re = mpfr_copysign (mpc_realref (rop), n, c, GMP_RNDN); inex_im = mpfr_copysign (mpc_imagref (rop), n, s, GMP_RNDN); mpfr_clear (s); mpfr_clear (c); } mpfr_clear (n); return MPC_INEX(inex_re, inex_im); } if (mpfr_inf_p (mpc_imagref (op))) /* real part is finite non-zero number, imaginary part is an infinity */ { mpfr_set_nan (mpc_realref (rop)); mpfr_set_nan (mpc_imagref (rop)); return MPC_INEX(0, 0); /* NaN is exact */ } /* from now on, both parts of op are regular numbers */ prec = MPC_MAX_PREC(rop) + MPC_MAX (MPC_MAX (-mpfr_get_exp (mpc_realref (op)), 0), -mpfr_get_exp (mpc_imagref (op))); /* When op is close to 0, then exp is close to 1+Re(op), while cos is close to 1-Im(op); to decide on the ternary value of exp*cos, we need a high enough precision so that none of exp or cos is computed as 1. */ mpfr_init2 (x, 2); mpfr_init2 (y, 2); mpfr_init2 (z, 2); /* save the underflow or overflow flags from MPFR */ saved_underflow = mpfr_underflow_p (); saved_overflow = mpfr_overflow_p (); do { prec += mpc_ceil_log2 (prec) + 5; mpfr_set_prec (x, prec); mpfr_set_prec (y, prec); mpfr_set_prec (z, prec); /* FIXME: x may overflow so x.y does overflow too, while Re(exp(op)) could be represented in the precision of rop. */ mpfr_clear_overflow (); mpfr_clear_underflow (); mpfr_exp (x, mpc_realref(op), GMP_RNDN); /* error <= 0.5ulp */ mpfr_sin_cos (z, y, mpc_imagref(op), GMP_RNDN); /* errors <= 0.5ulp */ mpfr_mul (y, y, x, GMP_RNDN); /* error <= 2ulp */ ok = mpfr_overflow_p () || mpfr_zero_p (x) || mpfr_can_round (y, prec - 2, GMP_RNDN, GMP_RNDZ, MPC_PREC_RE(rop) + (MPC_RND_RE(rnd) == GMP_RNDN)); if (ok) /* compute imaginary part */ { mpfr_mul (z, z, x, GMP_RNDN); ok = mpfr_overflow_p () || mpfr_zero_p (x) || mpfr_can_round (z, prec - 2, GMP_RNDN, GMP_RNDZ, MPC_PREC_IM(rop) + (MPC_RND_IM(rnd) == GMP_RNDN)); } } while (ok == 0); inex_re = mpfr_set (mpc_realref(rop), y, MPC_RND_RE(rnd)); inex_im = mpfr_set (mpc_imagref(rop), z, MPC_RND_IM(rnd)); if (mpfr_overflow_p ()) { /* overflow in real exponential, inex is sign of infinite result */ inex_re = mpfr_sgn (y); inex_im = mpfr_sgn (z); } else if (mpfr_underflow_p ()) { /* underflow in real exponential, inex is opposite of sign of 0 result */ inex_re = (mpfr_signbit (y) ? +1 : -1); inex_im = (mpfr_signbit (z) ? +1 : -1); } mpfr_clear (x); mpfr_clear (y); mpfr_clear (z); /* restore underflow and overflow flags from MPFR */ if (saved_underflow) mpfr_set_underflow (); if (saved_overflow) mpfr_set_overflow (); return MPC_INEX(inex_re, inex_im); }
int mpfr_sin (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode) { mpfr_t c, xr; mpfr_srcptr xx; mpfr_exp_t expx, err; mpfr_prec_t precy, m; int inexact, sign, reduce; MPFR_ZIV_DECL (loop); MPFR_SAVE_EXPO_DECL (expo); MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd_mode), ("y[%#R]=%R inexact=%d", y, y, inexact)); if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) { if (MPFR_IS_NAN (x) || MPFR_IS_INF (x)) { MPFR_SET_NAN (y); MPFR_RET_NAN; } else /* x is zero */ { MPFR_ASSERTD (MPFR_IS_ZERO (x)); MPFR_SET_ZERO (y); MPFR_SET_SAME_SIGN (y, x); MPFR_RET (0); } } /* sin(x) = x - x^3/6 + ... so the error is < 2^(3*EXP(x)-2) */ MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, x, -2 * MPFR_GET_EXP (x), 2, 0, rnd_mode, {}); MPFR_SAVE_EXPO_MARK (expo); /* Compute initial precision */ precy = MPFR_PREC (y); if (precy >= MPFR_SINCOS_THRESHOLD) return mpfr_sin_fast (y, x, rnd_mode); m = precy + MPFR_INT_CEIL_LOG2 (precy) + 13; expx = MPFR_GET_EXP (x); mpfr_init (c); mpfr_init (xr); MPFR_ZIV_INIT (loop, m); for (;;) { /* first perform argument reduction modulo 2*Pi (if needed), also helps to determine the sign of sin(x) */ if (expx >= 2) /* If Pi < x < 4, we need to reduce too, to determine the sign of sin(x). For 2 <= |x| < Pi, we could avoid the reduction. */ { reduce = 1; /* As expx + m - 1 will silently be converted into mpfr_prec_t in the mpfr_set_prec call, the assert below may be useful to avoid undefined behavior. */ MPFR_ASSERTN (expx + m - 1 <= MPFR_PREC_MAX); mpfr_set_prec (c, expx + m - 1); mpfr_set_prec (xr, m); mpfr_const_pi (c, MPFR_RNDN); mpfr_mul_2ui (c, c, 1, MPFR_RNDN); mpfr_remainder (xr, x, c, MPFR_RNDN); /* The analysis is similar to that of cos.c: |xr - x - 2kPi| <= 2^(2-m). Thus we can decide the sign of sin(x) if xr is at distance at least 2^(2-m) of both 0 and +/-Pi. */ mpfr_div_2ui (c, c, 1, MPFR_RNDN); /* Since c approximates Pi with an error <= 2^(2-expx-m) <= 2^(-m), it suffices to check that c - |xr| >= 2^(2-m). */ if (MPFR_SIGN (xr) > 0) mpfr_sub (c, c, xr, MPFR_RNDZ); else mpfr_add (c, c, xr, MPFR_RNDZ); if (MPFR_IS_ZERO(xr) || MPFR_EXP(xr) < (mpfr_exp_t) 3 - (mpfr_exp_t) m || MPFR_EXP(c) < (mpfr_exp_t) 3 - (mpfr_exp_t) m) goto ziv_next; /* |xr - x - 2kPi| <= 2^(2-m), thus |sin(xr) - sin(x)| <= 2^(2-m) */ xx = xr; } else /* the input argument is already reduced */ { reduce = 0; xx = x; } sign = MPFR_SIGN(xx); /* now that the argument is reduced, precision m is enough */ mpfr_set_prec (c, m); mpfr_cos (c, xx, MPFR_RNDZ); /* can't be exact */ mpfr_nexttoinf (c); /* now c = cos(x) rounded away */ mpfr_mul (c, c, c, MPFR_RNDU); /* away */ mpfr_ui_sub (c, 1, c, MPFR_RNDZ); mpfr_sqrt (c, c, MPFR_RNDZ); if (MPFR_IS_NEG_SIGN(sign)) MPFR_CHANGE_SIGN(c); /* Warning: c may be 0! */ if (MPFR_UNLIKELY (MPFR_IS_ZERO (c))) { /* Huge cancellation: increase prec a lot! */ m = MAX (m, MPFR_PREC (x)); m = 2 * m; } else { /* the absolute error on c is at most 2^(3-m-EXP(c)), plus 2^(2-m) if there was an argument reduction. Since EXP(c) <= 1, 3-m-EXP(c) >= 2-m, thus the error is at most 2^(3-m-EXP(c)) in case of argument reduction. */ err = 2 * MPFR_GET_EXP (c) + (mpfr_exp_t) m - 3 - (reduce != 0); if (MPFR_CAN_ROUND (c, err, precy, rnd_mode)) break; /* check for huge cancellation (Near 0) */ if (err < (mpfr_exp_t) MPFR_PREC (y)) m += MPFR_PREC (y) - err; /* Check if near 1 */ if (MPFR_GET_EXP (c) == 1) m += m; } ziv_next: /* Else generic increase */ MPFR_ZIV_NEXT (loop, m); } MPFR_ZIV_FREE (loop); inexact = mpfr_set (y, c, rnd_mode); /* inexact cannot be 0, since this would mean that c was representable within the target precision, but in that case mpfr_can_round will fail */ mpfr_clear (c); mpfr_clear (xr); MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inexact, rnd_mode); }
/* (y, z) <- (sin(x), cos(x)), return value is 0 iff both results are exact */ int mpfr_sin_cos (mpfr_ptr y, mpfr_ptr z, mpfr_srcptr x, mp_rnd_t rnd_mode) { int prec, m, ok, e, inexact, neg; mpfr_t c, k; if (MPFR_IS_NAN(x) || MPFR_IS_INF(x)) { MPFR_SET_NAN(y); MPFR_SET_NAN(z); MPFR_RET_NAN; } if (MPFR_IS_ZERO(x)) { MPFR_CLEAR_FLAGS(y); MPFR_SET_ZERO(y); MPFR_SET_SAME_SIGN(y, x); mpfr_set_ui (z, 1, GMP_RNDN); MPFR_RET(0); } prec = MAX(MPFR_PREC(y), MPFR_PREC(z)); m = prec + _mpfr_ceil_log2 ((double) prec) + ABS(MPFR_EXP(x)) + 13; mpfr_init2 (c, m); mpfr_init2 (k, m); /* first determine sign */ mpfr_const_pi (c, GMP_RNDN); mpfr_mul_2ui (c, c, 1, GMP_RNDN); /* 2*Pi */ mpfr_div (k, x, c, GMP_RNDN); /* x/(2*Pi) */ mpfr_floor (k, k); /* floor(x/(2*Pi)) */ mpfr_mul (c, k, c, GMP_RNDN); mpfr_sub (k, x, c, GMP_RNDN); /* 0 <= k < 2*Pi */ mpfr_const_pi (c, GMP_RNDN); /* cached */ neg = mpfr_cmp (k, c) > 0; mpfr_clear (k); do { mpfr_cos (c, x, GMP_RNDZ); if ((ok = mpfr_can_round (c, m, GMP_RNDZ, rnd_mode, MPFR_PREC(z)))) { inexact = mpfr_set (z, c, rnd_mode); mpfr_mul (c, c, c, GMP_RNDU); mpfr_ui_sub (c, 1, c, GMP_RNDN); e = 2 + (-MPFR_EXP(c)) / 2; mpfr_sqrt (c, c, GMP_RNDN); if (neg) mpfr_neg (c, c, GMP_RNDN); /* the absolute error on c is at most 2^(e-m) = 2^(EXP(c)-err) */ e = MPFR_EXP(c) + m - e; ok = (e >= 0) && mpfr_can_round (c, e, GMP_RNDN, rnd_mode, MPFR_PREC(y)); } if (ok == 0) { m += _mpfr_ceil_log2 ((double) m); mpfr_set_prec (c, m); } } while (ok == 0); inexact = mpfr_set (y, c, rnd_mode) || inexact; mpfr_clear (c); return inexact; /* inexact */ }
static void consistency (void) { mpfr_t x, s1, s2, c1, c2; mpfr_exp_t emin, emax; mpfr_rnd_t rnd; unsigned int flags_sin, flags_cos, flags, flags_before, flags_ref; int inex_sin, is, inex_cos, ic, inex, inex_ref; int i; emin = mpfr_get_emin (); emax = mpfr_get_emax (); for (i = 0; i <= 10000; i++) { mpfr_init2 (x, MPFR_PREC_MIN + (randlimb () % 8)); mpfr_inits2 (MPFR_PREC_MIN + (randlimb () % 8), s1, s2, c1, c2, (mpfr_ptr) 0); if (i < 8 * MPFR_RND_MAX) { int j = i / MPFR_RND_MAX; if (j & 1) mpfr_set_emin (MPFR_EMIN_MIN); mpfr_set_si (x, (j & 2) ? 1 : -1, MPFR_RNDN); mpfr_set_exp (x, mpfr_get_emin ()); rnd = (mpfr_rnd_t) (i % MPFR_RND_MAX); flags_before = 0; if (j & 4) mpfr_set_emax (-17); } else { tests_default_random (x, 256, -5, 50, 0); rnd = RND_RAND (); flags_before = (randlimb () & 1) ? (unsigned int) (MPFR_FLAGS_ALL ^ MPFR_FLAGS_ERANGE) : (unsigned int) 0; } __gmpfr_flags = flags_before; inex_sin = mpfr_sin (s1, x, rnd); is = inex_sin < 0 ? 2 : inex_sin > 0 ? 1 : 0; flags_sin = __gmpfr_flags; __gmpfr_flags = flags_before; inex_cos = mpfr_cos (c1, x, rnd); ic = inex_cos < 0 ? 2 : inex_cos > 0 ? 1 : 0; flags_cos = __gmpfr_flags; __gmpfr_flags = flags_before; inex = mpfr_sin_cos (s2, c2, x, rnd); flags = __gmpfr_flags; inex_ref = is + 4 * ic; flags_ref = flags_sin | flags_cos; if (!(mpfr_equal_p (s1, s2) && mpfr_equal_p (c1, c2)) || inex != inex_ref || flags != flags_ref) { printf ("mpfr_sin_cos and mpfr_sin/mpfr_cos disagree on %s," " i = %d\nx = ", mpfr_print_rnd_mode (rnd), i); mpfr_dump (x); printf ("s1 = "); mpfr_dump (s1); printf ("s2 = "); mpfr_dump (s2); printf ("c1 = "); mpfr_dump (c1); printf ("c2 = "); mpfr_dump (c2); printf ("inex_sin = %d (s = %d), inex_cos = %d (c = %d), " "inex = %d (expected %d)\n", inex_sin, is, inex_cos, ic, inex, inex_ref); printf ("flags_sin = 0x%x, flags_cos = 0x%x, " "flags = 0x%x (expected 0x%x)\n", flags_sin, flags_cos, flags, flags_ref); exit (1); } mpfr_clears (x, s1, s2, c1, c2, (mpfr_ptr) 0); mpfr_set_emin (emin); mpfr_set_emax (emax); } }
void mexFunction( int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[] ) { double *prec,*eoutr,*eouti; int mrows,ncols; char *input_buf; char *w1,*w2; int buflen,status; mpfr_t xr,xi,yr,yi,zr,zi,temp,temp1,temp2,temp3,temp4; mp_exp_t expptr; /* Check for proper number of arguments. */ if(nrhs!=5) { mexErrMsgTxt("5 inputs required."); } else if(nlhs>4) { mexErrMsgTxt("Too many output arguments"); } /* The input must be a noncomplex scalar double.*/ mrows = mxGetM(prhs[0]); ncols = mxGetN(prhs[0]); if( !mxIsDouble(prhs[0]) || mxIsComplex(prhs[0]) || !(mrows==1 && ncols==1) ) { mexErrMsgTxt("Input must be a noncomplex scalar double."); } /* Set precision and initialize mpfr variables */ prec = mxGetPr(prhs[0]); mpfr_set_default_prec(*prec); mpfr_init(xr); mpfr_init(xi); mpfr_init(yr); mpfr_init(yi); mpfr_init(zr); mpfr_init(zi); mpfr_init(temp); mpfr_init(temp1); mpfr_init(temp2); mpfr_init(temp3); mpfr_init(temp4); /* Read the input strings into mpfr x real */ buflen = (mxGetM(prhs[1]) * mxGetN(prhs[1])) + 1; input_buf=mxCalloc(buflen, sizeof(char)); status = mxGetString(prhs[1], input_buf, buflen); mpfr_set_str(xr,input_buf,10,GMP_RNDN); /* Read the input strings into mpfr x imag */ buflen = (mxGetM(prhs[2]) * mxGetN(prhs[2])) + 1; input_buf=mxCalloc(buflen, sizeof(char)); status = mxGetString(prhs[2], input_buf, buflen); mpfr_set_str(xi,input_buf,10,GMP_RNDN); /* Read the input strings into mpfr y real */ buflen = (mxGetM(prhs[3]) * mxGetN(prhs[3])) + 1; input_buf=mxCalloc(buflen, sizeof(char)); status = mxGetString(prhs[3], input_buf, buflen); mpfr_set_str(yr,input_buf,10,GMP_RNDN); /* Read the input strings into mpfr y imag */ buflen = (mxGetM(prhs[4]) * mxGetN(prhs[4])) + 1; input_buf=mxCalloc(buflen, sizeof(char)); status = mxGetString(prhs[4], input_buf, buflen); mpfr_set_str(yi,input_buf,10,GMP_RNDN); /* Mathematical operation */ /* ln(magnitude) */ mpfr_mul(temp,xr,xr,GMP_RNDN); mpfr_mul(temp1,xi,xi,GMP_RNDN); mpfr_add(temp,temp,temp1,GMP_RNDN); mpfr_sqrt(temp,temp,GMP_RNDN); mpfr_log(temp,temp,GMP_RNDN); /* angle */ mpfr_atan2(temp1,xi,xr,GMP_RNDN); /* real exp */ mpfr_mul(temp3,temp,yr,GMP_RNDN); mpfr_mul(temp2,temp1,yi,GMP_RNDN); mpfr_sub(temp3,temp3,temp2,GMP_RNDN); mpfr_exp(temp3,temp3,GMP_RNDN); /* cos sin argument */ mpfr_mul(temp2,temp1,yr,GMP_RNDN); mpfr_mul(temp4,temp,yi,GMP_RNDN); mpfr_add(temp2,temp2,temp4,GMP_RNDN); mpfr_cos(zr,temp2,GMP_RNDN); mpfr_mul(zr,zr,temp3,GMP_RNDN); mpfr_sin(zi,temp2,GMP_RNDN); mpfr_mul(zi,zi,temp3,GMP_RNDN); /* Retrieve results */ mxFree(input_buf); input_buf=mpfr_get_str (NULL, &expptr, 10, 0, zr, GMP_RNDN); w1=malloc(strlen(input_buf)+20); w2=malloc(strlen(input_buf)+20); if (strncmp(input_buf, "-", 1)==0){ strcpy(w2,&input_buf[1]); sprintf(w1,"-.%se%i",w2,expptr); } else { strcpy(w2,&input_buf[0]); sprintf(w1,"+.%se%i",w2,expptr); } plhs[0] = mxCreateString(w1); /* plhs[1] = mxCreateDoubleMatrix(mrows,ncols, mxREAL); */ /* eoutr=mxGetPr(plhs[1]); */ /* *eoutr=expptr; */ mpfr_free_str(input_buf); input_buf=mpfr_get_str (NULL, &expptr, 10, 0, zi, GMP_RNDN); free(w1); free(w2); w1=malloc(strlen(input_buf)+20); w2=malloc(strlen(input_buf)+20); if (strncmp(input_buf, "-", 1)==0){ strcpy(w2,&input_buf[1]); sprintf(w1,"-.%se%i",w2,expptr); } else { strcpy(w2,&input_buf[0]); sprintf(w1,"+.%se%i",w2,expptr); } plhs[1] = mxCreateString(w1); /* plhs[3] = mxCreateDoubleMatrix(mrows,ncols, mxREAL); */ /* eouti=mxGetPr(plhs[3]); */ /* *eouti=expptr; */ mpfr_clear(xr); mpfr_clear(xi); mpfr_clear(yr); mpfr_clear(yi); mpfr_clear(zr); mpfr_clear(zi); mpfr_clear(temp); mpfr_clear(temp1); mpfr_clear(temp2); mpfr_clear(temp3); mpfr_clear(temp4); mpfr_free_str(input_buf); free(w1); free(w2); }
int main (int argc, char *argv[]) { mpfr_t x, y; int inex; tests_start_mpfr (); special_overflow (); check_nans (); mpfr_init (x); mpfr_init (y); mpfr_set_prec (x, 53); mpfr_set_prec (y, 2); mpfr_set_str (x, "9.81333845856942e-1", 10, MPFR_RNDN); test_cos (y, x, MPFR_RNDN); mpfr_set_prec (x, 30); mpfr_set_prec (y, 30); mpfr_set_str_binary (x, "1.00001010001101110010100010101e-1"); test_cos (y, x, MPFR_RNDU); mpfr_set_str_binary (x, "1.10111100010101011110101010100e-1"); if (mpfr_cmp (y, x)) { printf ("Error for prec=30, rnd=MPFR_RNDU\n"); printf ("expected "); mpfr_print_binary (x); puts (""); printf (" got "); mpfr_print_binary (y); puts (""); exit (1); } mpfr_set_prec (x, 59); mpfr_set_prec (y, 59); mpfr_set_str_binary (x, "1.01101011101111010011111110111111111011011101100111100011e-3"); test_cos (y, x, MPFR_RNDU); mpfr_set_str_binary (x, "1.1111011111110010001001001011100111101110100010000010010011e-1"); if (mpfr_cmp (y, x)) { printf ("Error for prec=59, rnd=MPFR_RNDU\n"); printf ("expected "); mpfr_print_binary (x); puts (""); printf (" got "); mpfr_print_binary (y); puts (""); exit (1); } mpfr_set_prec (x, 5); mpfr_set_prec (y, 5); mpfr_set_str_binary (x, "1.1100e-2"); test_cos (y, x, MPFR_RNDD); mpfr_set_str_binary (x, "1.1100e-1"); if (mpfr_cmp (y, x)) { printf ("Error for x=1.1100e-2, rnd=MPFR_RNDD\n"); printf ("expected 1.1100e-1, got "); mpfr_print_binary (y); puts (""); exit (1); } mpfr_set_prec (x, 32); mpfr_set_prec (y, 32); mpfr_set_str_binary (x, "0.10001000001001011000100001E-6"); mpfr_set_str_binary (y, "0.1111111111111101101111001100001"); test_cos (x, x, MPFR_RNDN); if (mpfr_cmp (x, y)) { printf ("Error for prec=32 (1)\n"); exit (1); } mpfr_set_str_binary (x, "-0.1101011110111100111010011001011E-1"); mpfr_set_str_binary (y, "0.11101001100110111011011010100011"); test_cos (x, x, MPFR_RNDN); if (mpfr_cmp (x, y)) { printf ("Error for prec=32 (2)\n"); exit (1); } /* huge argument reduction */ mpfr_set_str_binary (x, "0.10000010000001101011101111001011E40"); mpfr_set_str_binary (y, "0.10011000001111010000101011001011E-1"); test_cos (x, x, MPFR_RNDN); if (mpfr_cmp (x, y)) { printf ("Error for prec=32 (3)\n"); exit (1); } mpfr_set_prec (x, 3); mpfr_set_prec (y, 3); mpfr_set_str_binary (x, "0.110E60"); inex = mpfr_cos (y, x, MPFR_RNDD); MPFR_ASSERTN(inex < 0); /* worst case from PhD thesis of Vincent Lefe`vre: x=8980155785351021/2^54 */ check53 ("4.984987858808754279e-1", "8.783012931285841817e-1", MPFR_RNDN); check53 ("4.984987858808754279e-1", "8.783012931285840707e-1", MPFR_RNDD); check53 ("4.984987858808754279e-1", "8.783012931285840707e-1", MPFR_RNDZ); check53 ("4.984987858808754279e-1", "8.783012931285841817e-1", MPFR_RNDU); check53 ("1.00031274099908640274", "0.540039116973283217504", MPFR_RNDN); check53 ("1.00229256850978698523", "0.538371757797526551137", MPFR_RNDZ); check53 ("1.00288304857059840103", "0.537874062022526966409", MPFR_RNDZ); check53 ("1.00591265847407274059", "0.53531755997839769456", MPFR_RNDN); check53 ("1.00591265847407274059", "0.53531755997839769456", MPFR_RNDN); overflowed_cos0 (); test_generic (2, 100, 15); /* check inexact flag */ mpfr_set_prec (x, 3); mpfr_set_prec (y, 13); mpfr_set_str_binary (x, "-0.100E196"); inex = mpfr_cos (y, x, MPFR_RNDU); mpfr_set_prec (x, 13); mpfr_set_str_binary (x, "0.1111111100101"); MPFR_ASSERTN (inex > 0 && mpfr_equal_p (x, y)); mpfr_clear (x); mpfr_clear (y); bug20091030 (); data_check ("data/cos", mpfr_cos, "mpfr_cos"); bad_cases (mpfr_cos, mpfr_acos, "mpfr_cos", 256, -40, 0, 4, 128, 800, 50); tests_end_mpfr (); return 0; }
void bvisit(const Cos &x) { apply(result_, *(x.get_arg())); mpfr_cos(result_, result_, rnd_); }
void _arith_cos_minpoly(fmpz * coeffs, slong d, ulong n) { slong i, j; fmpz * alpha; fmpz_t half; mpfr_t t, u; mp_bitcnt_t prec; slong exp; if (n <= MAX_32BIT) { for (i = 0; i <= d; i++) fmpz_set_si(coeffs + i, lookup_table[n - 1][i]); return; } /* Direct formula for odd primes > 3 */ if (n_is_prime(n)) { slong s = (n - 1) / 2; switch (s % 4) { case 0: fmpz_set_si(coeffs, WORD(1)); fmpz_set_si(coeffs + 1, -s); break; case 1: fmpz_set_si(coeffs, WORD(1)); fmpz_set_si(coeffs + 1, s + 1); break; case 2: fmpz_set_si(coeffs, WORD(-1)); fmpz_set_si(coeffs + 1, s); break; case 3: fmpz_set_si(coeffs, WORD(-1)); fmpz_set_si(coeffs + 1, -s - 1); break; } for (i = 2; i <= s; i++) { slong b = (s - i) % 2; fmpz_mul2_uiui(coeffs + i, coeffs + i - 2, s+i-b, s+2-b-i); fmpz_divexact2_uiui(coeffs + i, coeffs + i, i, i-1); fmpz_neg(coeffs + i, coeffs + i); } return; } prec = magnitude_bound(d) + 5 + FLINT_BIT_COUNT(d); alpha = _fmpz_vec_init(d); fmpz_init(half); mpfr_init2(t, prec); mpfr_init2(u, prec); fmpz_one(half); fmpz_mul_2exp(half, half, prec - 1); mpfr_const_pi(t, prec); mpfr_div_ui(t, t, n, MPFR_RNDN); for (i = j = 0; j < d; i++) { if (n_gcd(n, i) == 1) { mpfr_mul_ui(u, t, 2 * i, MPFR_RNDN); mpfr_cos(u, u, MPFR_RNDN); mpfr_neg(u, u, MPFR_RNDN); exp = mpfr_get_z_2exp(_fmpz_promote(alpha + j), u); _fmpz_demote_val(alpha + j); fmpz_mul_or_div_2exp(alpha + j, alpha + j, exp + prec); j++; } } balanced_product(coeffs, alpha, d, prec); /* Scale and round */ for (i = 0; i < d + 1; i++) { slong r = d; if ((n & (n - 1)) == 0) r--; fmpz_mul_2exp(coeffs + i, coeffs + i, r); fmpz_add(coeffs + i, coeffs + i, half); fmpz_fdiv_q_2exp(coeffs + i, coeffs + i, prec); } fmpz_clear(half); mpfr_clear(t); mpfr_clear(u); _fmpz_vec_clear(alpha, d); }
MpfrFloat MpfrFloat::cos(const MpfrFloat& value) { MpfrFloat retval(MpfrFloat::kNoInitialization); mpfr_cos(retval.mData->mFloat, value.mData->mFloat, GMP_RNDN); return retval; }