Example #1
0
mp_err   make_prime(mp_int *p, int nr)
{
  mp_err  res;

  if(mp_iseven(p)) {
    mp_add_d(p, 1, p);
  }

  do {
    mp_digit   which = prime_tab_size;

    /*  First test for divisibility by a few small primes */
    if((res = mpp_divis_primes(p, &which)) == MP_YES)
      continue;
    else if(res != MP_NO)
      goto CLEANUP;

    /* If that passes, try one iteration of Fermat's test */
    if((res = mpp_fermat(p, 2)) == MP_NO)
      continue;
    else if(res != MP_YES)
      goto CLEANUP;

    /* If that passes, run Rabin-Miller as often as requested */
    if((res = mpp_pprime(p, nr)) == MP_YES)
      break;
    else if(res != MP_NO)
      goto CLEANUP;
      
  } while((res = mp_add_d(p, 2, p)) == MP_OKAY);

 CLEANUP:
  return res;

} /* end make_prime() */
Example #2
0
/*
  Perform the fermat test on each of the primes in a list until
  a) one of them shows a is not prime, or 
  b) the list is exhausted.
  Returns:  MP_YES if it passes tests.
	    MP_NO  if fermat test reveals it is composite
	    Some MP error code if some other error occurs.
 */
mp_err mpp_fermat_list(mp_int *a, const mp_digit *primes, mp_size nPrimes)
{
  mp_err rv = MP_YES;

  while (nPrimes-- > 0 && rv == MP_YES) {
    rv = mpp_fermat(a, *primes++);
  }
  return rv;
}
Example #3
0
mp_err
rsa_is_prime(mp_int *p) {
    int res;

    /* run a Fermat test */
    res = mpp_fermat(p, 2);
    if (res != MP_OKAY) {
	return res;
    }

    /* If that passed, run some Miller-Rabin tests */
    res = mpp_pprime(p, 2);
    return res;
}
Example #4
0
mp_err mpp_make_prime(mp_int *start, mp_size nBits, mp_size strong,
		      unsigned long * nTries)
{
  mp_digit      np;
  mp_err        res;
  int           i	= 0;
  mp_int        trial;
  mp_int        q;
  mp_size       num_tests;
  unsigned char *sieve;
  
  ARGCHK(start != 0, MP_BADARG);
  ARGCHK(nBits > 16, MP_RANGE);

  sieve = malloc(SIEVE_SIZE);
  ARGCHK(sieve != NULL, MP_MEM);

  MP_DIGITS(&trial) = 0;
  MP_DIGITS(&q) = 0;
  MP_CHECKOK( mp_init(&trial) );
  MP_CHECKOK( mp_init(&q)     );
  /* values taken from table 4.4, HandBook of Applied Cryptography */
  if (nBits >= 1300) {
    num_tests = 2;
  } else if (nBits >= 850) {
    num_tests = 3;
  } else if (nBits >= 650) {
    num_tests = 4;
  } else if (nBits >= 550) {
    num_tests = 5;
  } else if (nBits >= 450) {
    num_tests = 6;
  } else if (nBits >= 400) {
    num_tests = 7;
  } else if (nBits >= 350) {
    num_tests = 8;
  } else if (nBits >= 300) {
    num_tests = 9;
  } else if (nBits >= 250) {
    num_tests = 12;
  } else if (nBits >= 200) {
    num_tests = 15;
  } else if (nBits >= 150) {
    num_tests = 18;
  } else if (nBits >= 100) {
    num_tests = 27;
  } else
    num_tests = 50;

  if (strong) 
    --nBits;
  MP_CHECKOK( mpl_set_bit(start, nBits - 1, 1) );
  MP_CHECKOK( mpl_set_bit(start,         0, 1) );
  for (i = mpl_significant_bits(start) - 1; i >= nBits; --i) {
    MP_CHECKOK( mpl_set_bit(start, i, 0) );
  }
  /* start sieveing with prime value of 3. */
  MP_CHECKOK(mpp_sieve(start, prime_tab + 1, prime_tab_size - 1, 
		       sieve, SIEVE_SIZE) );

#ifdef DEBUG_SIEVE
  res = 0;
  for (i = 0; i < SIEVE_SIZE; ++i) {
    if (!sieve[i])
      ++res;
  }
  fprintf(stderr,"sieve found %d potential primes.\n", res);
#define FPUTC(x,y) fputc(x,y)
#else
#define FPUTC(x,y) 
#endif

  res = MP_NO;
  for(i = 0; i < SIEVE_SIZE; ++i) {
    if (sieve[i])	/* this number is composite */
      continue;
    MP_CHECKOK( mp_add_d(start, 2 * i, &trial) );
    FPUTC('.', stderr);
    /* run a Fermat test */
    res = mpp_fermat(&trial, 2);
    if (res != MP_OKAY) {
      if (res == MP_NO)
	continue;	/* was composite */
      goto CLEANUP;
    }
      
    FPUTC('+', stderr);
    /* If that passed, run some Miller-Rabin tests	*/
    res = mpp_pprime(&trial, num_tests);
    if (res != MP_OKAY) {
      if (res == MP_NO)
	continue;	/* was composite */
      goto CLEANUP;
    }
    FPUTC('!', stderr);

    if (!strong) 
      break;	/* success !! */

    /* At this point, we have strong evidence that our candidate
       is itself prime.  If we want a strong prime, we need now
       to test q = 2p + 1 for primality...
     */
    MP_CHECKOK( mp_mul_2(&trial, &q) );
    MP_CHECKOK( mp_add_d(&q, 1, &q)  );

    /* Test q for small prime divisors ... */
    np = prime_tab_size;
    res = mpp_divis_primes(&q, &np);
    if (res == MP_YES) { /* is composite */
      mp_clear(&q);
      continue;
    }
    if (res != MP_NO) 
      goto CLEANUP;

    /* And test with Fermat, as with its parent ... */
    res = mpp_fermat(&q, 2);
    if (res != MP_YES) {
      mp_clear(&q);
      if (res == MP_NO)
	continue;	/* was composite */
      goto CLEANUP;
    }

    /* And test with Miller-Rabin, as with its parent ... */
    res = mpp_pprime(&q, num_tests);
    if (res != MP_YES) {
      mp_clear(&q);
      if (res == MP_NO)
	continue;	/* was composite */
      goto CLEANUP;
    }

    /* If it passed, we've got a winner */
    mp_exch(&q, &trial);
    mp_clear(&q);
    break;

  } /* end of loop through sieved values */
  if (res == MP_YES) 
    mp_exch(&trial, start);
CLEANUP:
  mp_clear(&trial);
  mp_clear(&q);
  if (nTries)
    *nTries += i;
  if (sieve != NULL) {
  	memset(sieve, 0, SIEVE_SIZE);
  	free (sieve);
  }
  return res;
}
Example #5
0
int main(int argc, char *argv[])
{
  unsigned char *raw, *out;
  int		rawlen, bits, outlen, ngen, ix, jx;
  mp_int	testval, q, ntries;
  mp_err	res;
  mp_digit      np;
  clock_t	start, end;

#ifdef MACOS
  argc = ccommand(&argv);
#endif

  /* We'll just use the C library's rand() for now, although this
     won't be good enough for cryptographic purposes */

  if((out = (unsigned char *)getenv("SEED")) == NULL) {
    srand((unsigned int)time(NULL));
  } else {
    srand((unsigned int)atoi((char *)out));
  }

  if(argc < 2) {
    fprintf(stderr, "Usage: %s <bits> [<count> [strong]]\n", argv[0]);
    return 1;
  }
	
  if((bits = abs(atoi(argv[1]))) < CHAR_BIT) {
    fprintf(stderr, "%s: please request at least %d bits.\n",
	    argv[0], CHAR_BIT);
    return 1;
  }

  /* If optional third argument is given, use that as the number of
     primes to generate; otherwise generate one prime only.
   */
  if(argc < 3) {
    ngen = 1;
  } else {
    ngen = abs(atoi(argv[2]));
  }

  /* If fourth argument is given, and is the word "strong", we'll 
     generate strong (Sophie Germain) primes. 
   */
  if(argc > 3 && strcmp(argv[3], "strong") == 0)
    g_strong = 1;

  /* testval - candidate being tested
     ntries  - number tried so far 
     q       - used in finding strong primes 
   */
  if((res = mp_init(&testval)) != MP_OKAY ||
     (res = mp_init(&ntries)) != MP_OKAY ||
     (res = mp_init(&q)) != MP_OKAY) {
    fprintf(stderr, "%s: error: %s\n", argv[0], mp_strerror(res));
    return 1;
  }
  
  if(g_strong) {
    printf("Requested %d strong prime values of at least %d bits.\n", 
	   ngen, bits);
  } else {
    printf("Requested %d prime values of at least %d bits.\n", ngen, bits);
  }

  rawlen = (bits / CHAR_BIT) + ((bits % CHAR_BIT) ? 1 : 0);

  if((raw = calloc(rawlen, sizeof(unsigned char))) == NULL) {
    fprintf(stderr, "%s: out of memory, sorry.\n", argv[0]);
    return 1;
  }

  /* This loop is one for each prime we need to generate */
  for(jx = 0; jx < ngen; jx++) {

    /*	Pack the initializer with random bytes	*/
    for(ix = 0; ix < rawlen; ix++) 
      raw[ix] = (rand() * rand()) & UCHAR_MAX;

    raw[0] |= 0x80;             /* set high-order bit of test value     */
    if(g_strong)
      raw[rawlen - 1] |= 7;     /* set low-order 3 bits of test value   */
    else
      raw[rawlen - 1] |= 1;     /* set low-order bit of test value      */

    /* Make an mp_int out of the initializer */
    mp_read_unsigned_bin(&testval, raw, rawlen);

    /* If we asked for a strong prime, shift down one bit so that when
       we double, we're still within the right range of bits ... this
       is why we OR'd with 7 instead of 1 above (leaves two bits set 
       so that the value remains congruent to 3 (mod 4)).
     */
    if(g_strong) {
      mp_copy(&testval, &q);
      mp_div_2(&testval, &testval);
    }      

    /* Initialize candidate counter */
    mp_zero(&ntries);
    mp_add_d(&ntries, 1, &ntries);

    start = clock(); /* time generation for this prime */
    for(;;) {
      /*
	Test for divisibility by small primes (of which there is a table 
	conveniently stored in mpprime.c)
      */
      np = prime_tab_size;

      if(mpp_divis_primes(&testval, &np) == MP_NO) {

	/* If we're trying for a strong prime, test 2p+1 before
	   running other primality tests */
	if(g_strong) {
	  np = prime_tab_size;
	  if(mpp_divis_primes(&q, &np) == MP_YES)
	    goto NEXT_CANDIDATE;
	}

	/* If that passed, run a Fermat test */
	res = mpp_fermat(&testval, 2);
	switch(res) {
	case MP_NO:     /* composite        */
	  goto NEXT_CANDIDATE;
	case MP_YES:    /* may be prime     */
	  break;
	default:
	  goto CLEANUP; /* some other error */
	}
	
	/* If that passed, run some Miller-Rabin tests	*/
	res = mpp_pprime(&testval, NUM_TESTS);
	switch(res) {
	case MP_NO:     /* composite        */
	  goto NEXT_CANDIDATE;
	case MP_YES:    /* may be prime     */
	  break;
	default:
	  goto CLEANUP; /* some other error */
	}

	/* At this point, we have strong evidence that our candidate
	   is itself prime.  If we want a strong prime, we need now
	   to test q = 2p + 1 for primality...
	 */
 	if(g_strong) {
	  if(res == MP_YES) {
	    fputc('.', stderr);

	    /* If we get here, we've already tested q against small
	       prime divisors, so we can just do the regular primality
	       testing
	     */

	    /* Fermat, as with its parent ... */
	    res = mpp_fermat(&q, 2);
	    switch(res) {
	    case MP_NO:     /* composite        */
	      goto NEXT_CANDIDATE;
	    case MP_YES:    /* may be prime     */
	      break;
	    default:
	      goto CLEANUP; /* some other error */
	    }

	    /* And, with Miller-Rabin, as with its parent ... */
	    res = mpp_pprime(&q, NUM_TESTS);
	    switch(res) {
	    case MP_NO:     /* composite        */
	      goto NEXT_CANDIDATE;
	    case MP_YES:    /* may be prime     */
	      break;
	    default:
	      goto CLEANUP; /* some other error */
	    }
	  
	    /* If it passed, we've got a winner */
	    if(res == MP_YES) {
	      fputc('\n', stderr);
	      mp_copy(&q, &testval);
	      break;
	    }

	  } /* end if(res == MP_YES) */

	} else {
	  /* We get here if g_strong is false */
	  if(res == MP_YES)
	    break;
	}
      } /* end if(not divisible by small primes) */
      
      /*
	If we're testing strong primes, skip to the next odd value
	congruent to 3 (mod 4).  Otherwise, just skip to the next odd
	value
       */
    NEXT_CANDIDATE:
      if(g_strong) {
	mp_add_d(&q, 4, &q);
	mp_div_2(&q, &testval);
      } else
	mp_add_d(&testval, 2, &testval);
      mp_add_d(&ntries, 1, &ntries);
    } /* end of loop to generate a single prime */
    end = clock();
    
    printf("After %d tests, the following value is still probably prime:\n",
	   NUM_TESTS);
    outlen = mp_radix_size(&testval, 10);
    out = calloc(outlen, sizeof(unsigned char));
    mp_toradix(&testval, out, 10);
    printf("10: %s\n", (char *)out);
    mp_toradix(&testval, out, 16);
    printf("16: %s\n\n", (char *)out);
    free(out);
    
    printf("Number of candidates tried: ");
    outlen = mp_radix_size(&ntries, 10);
    out = calloc(outlen, sizeof(unsigned char));
    mp_toradix(&ntries, out, 10);
    printf("%s\n", (char *)out);
    free(out);

    printf("This computation took %ld clock ticks (%.2f seconds)\n",
	   (end - start), ((double)(end - start) / CLOCKS_PER_SEC));
    
    fputc('\n', stdout);
  } /* end of loop to generate all requested primes */
  
 CLEANUP:
  if(res != MP_OKAY) 
    fprintf(stderr, "%s: error: %s\n", argv[0], mp_strerror(res));

  free(raw);
  mp_clear(&testval); mp_clear(&q); mp_clear(&ntries);
  
  return 0;
}
Example #6
0
int main(int argc, char *argv[])
{
  mp_int   a;
  mp_digit np = prime_tab_size; /* from mpprime.h */
  int      res = 0;

  g_prog = argv[0];

  if(argc < 2) {
    fprintf(stderr, "Usage: %s <a>, where <a> is a decimal integer\n"
	    "Use '0x' prefix for a hexadecimal value\n", g_prog);
    return 1;
  }

  /* Read number of tests from environment, if present */
  {
    char *tmp;

    if((tmp = getenv("RM_TESTS")) != NULL) {
      if((g_tests = atoi(tmp)) <= 0)
	g_tests = RM_TESTS;
    }
  }

  mp_init(&a);
  if(argv[1][0] == '0' && argv[1][1] == 'x')
    mp_read_radix(&a, argv[1] + 2, 16);
  else
    mp_read_radix(&a, argv[1], 10);

  if(mp_cmp_d(&a, MINIMUM) <= 0) {
    fprintf(stderr, "%s: please use a value greater than %d\n", 
	    g_prog, MINIMUM);
    mp_clear(&a);
    return 1;
  }

  /* Test for divisibility by small primes */
  if(mpp_divis_primes(&a, &np) != MP_NO) {
    printf("Not prime (divisible by small prime %d)\n", np);
    res = 2;
    goto CLEANUP;
  }

  /* Test with Fermat's test, using 2 as a witness */
  if(mpp_fermat(&a, 2) != MP_YES) {
    printf("Not prime (failed Fermat test)\n");
    res = 2;
    goto CLEANUP;
  }
 
  /* Test with Rabin-Miller probabilistic test */
  if(mpp_pprime(&a, g_tests) == MP_NO) {
      printf("Not prime (failed pseudoprime test)\n");
      res = 2;
      goto CLEANUP;
  }

  printf("Probably prime, 1 in 4^%d chance of false positive\n", g_tests);

CLEANUP:
  mp_clear(&a);
  
  return res;

}