void checkprimes (unsigned long p1, unsigned long p2, unsigned long p3) { mpz_t b, f; if (p1 - 1 != p2 - 1 + p3 - 1) { printf ("checkprimes(%lu, %lu, %lu) wrong\n", p1, p2, p3); printf (" %lu - 1 != %lu - 1 + %lu - 1 \n", p1, p2, p3); abort (); } mpz_init (b); mpz_init (f); checkWilson (b, p1); /* b = (p1-1)! */ checkWilson (f, p2); /* f = (p2-1)! */ mpz_divexact (b, b, f); checkWilson (f, p3); /* f = (p3-1)! */ mpz_divexact (b, b, f); /* b = (p1-1)!/((p2-1)!(p3-1)!) */ mpz_bin_uiui (f, p1 - 1, p2 - 1); if (mpz_cmp (f, b) != 0) { printf ("checkprimes(%lu, %lu, %lu) wrong\n", p1, p2, p3); printf (" got "); mpz_out_str (stdout, 10, b); printf("\n"); printf (" want "); mpz_out_str (stdout, 10, f); printf("\n"); abort (); } mpz_clear (b); mpz_clear (f); }
int bern41_acceptable(mpz_t n, UV r, UV s, mpz_t t1, mpz_t t2) { double scmp = ceil(sqrt( (r-1)/3.0 )) * mpz_log2(n); UV d = (UV) (0.5 * (r-1)); UV i = (UV) (0.475 * (r-1)); UV j = i; /* Ensure conditions are correct */ if (d > r-2) d = r-2; if (i > d) i = d; if (j > (r-2-d)) j = r-2-d; mpz_bin_uiui(t2, 2*s, i); mpz_bin_uiui(t1, d, i); mpz_mul(t2, t2, t1); mpz_bin_uiui(t1, 2*s-i, j); mpz_mul(t2, t2, t1); mpz_bin_uiui(t1, r-2-d, j); mpz_mul(t2, t2, t1); return (mpz_log2(t2) >= scmp); }
int main(int argc, char **argv) { unsigned long i, j; int tally; mpz_t n; mpz_init(n); tally = 0; for (i = 1; i <= 100; i++) for (j = 1; j <= i; j++) { mpz_bin_uiui(n, i, j); if (mpz_cmp_ui(n, 1000000) > 0) tally++; } printf("%d\n", tally); return EXIT_SUCCESS; }
void try_mpz_bin_uiui (mpz_srcptr want, unsigned long n, unsigned long k) { mpz_t got; mpz_init (got); mpz_bin_uiui (got, n, k); if (mpz_cmp (got, want) != 0) { printf ("mpz_bin_uiui wrong\n"); printf (" n=%lu\n", n); printf (" k=%lu\n", k); printf (" got="); mpz_out_str (stdout, 10, got); printf ("\n"); printf (" want="); mpz_out_str (stdout, 10, want); printf ("\n"); abort(); } mpz_clear (got); }
int main(void) { /* The number of paths from the origin to (a, b) is given by the binomial * coefficient (a + b over b), which in this case is (40 over 20). * This is equal to 40! / 20! * (40 - 20)! */ mpz_t x; mpz_init(x); mpz_bin_uiui(x, 40, 20); mpz_out_str(stdout, 10, x); mpz_clear(x); return 0; }
static PyObject * GMPy_MPZ_Function_Bincoef(PyObject *self, PyObject *args) { MPZ_Object *result = NULL, *tempx; unsigned long n, k; if (PyTuple_GET_SIZE(args) != 2) { TYPE_ERROR("bincoef() requires two integer arguments"); return NULL; } if (!(result = GMPy_MPZ_New(NULL))) { /* LCOV_EXCL_START */ return NULL; /* LCOV_EXCL_STOP */ } k = c_ulong_From_Integer(PyTuple_GET_ITEM(args, 1)); if (k == (unsigned long)(-1) && PyErr_Occurred()) { Py_DECREF((PyObject*)result); return NULL; } n = c_ulong_From_Integer(PyTuple_GET_ITEM(args, 0)); if (!(n == (unsigned long)(-1) && PyErr_Occurred())) { /* Use mpz_bin_uiui which should be faster. */ mpz_bin_uiui(result->z, n, k); return (PyObject*)result; } if (!(tempx = GMPy_MPZ_From_Integer(PyTuple_GET_ITEM(args, 0), NULL))) { Py_DECREF((PyObject*)result); return NULL; } mpz_bin_ui(result->z, tempx->z, k); Py_DECREF((PyObject*)tempx); return (PyObject*)result; }
/* returns 0 on success */ int gen_consts (int numb, int nail, int limb) { mpz_t x, mask, y, last; unsigned long a, b; unsigned long ofl, ofe; printf ("/* This file is automatically generated by gen-fac.c */\n\n"); printf ("#if GMP_NUMB_BITS != %d\n", numb); printf ("Error , error this data is for %d GMP_NUMB_BITS only\n", numb); printf ("#endif\n"); #if 0 printf ("#if GMP_LIMB_BITS != %d\n", limb); printf ("Error , error this data is for %d GMP_LIMB_BITS only\n", limb); printf ("#endif\n"); #endif printf ("/* This table is 0!,1!,2!,3!,...,n! where n! has <= GMP_NUMB_BITS bits */\n"); printf ("#define ONE_LIMB_FACTORIAL_TABLE CNST_LIMB(0x1),CNST_LIMB(0x1"); mpz_init_set_ui (x, 1); mpz_init (last); for (b = 2;; b++) { mpz_mul_ui (x, x, b); /* so b!=a */ if (mpz_sizeinbase (x, 2) > numb) break; printf ("),CNST_LIMB(0x"); mpz_out_str (stdout, 16, x); } printf (")\n"); printf ("\n/* This table is 0!,1!,2!/2,3!/2,...,n!/2^sn where n!/2^sn is an */\n"); printf ("/* odd integer for each n, and n!/2^sn has <= GMP_NUMB_BITS bits */\n"); printf ("#define ONE_LIMB_ODD_FACTORIAL_TABLE CNST_LIMB(0x1),CNST_LIMB(0x1),CNST_LIMB(0x1"); mpz_set_ui (x, 1); for (b = 3;; b++) { for (a = b; (a & 1) == 0; a >>= 1); mpz_swap (last, x); mpz_mul_ui (x, last, a); if (mpz_sizeinbase (x, 2) > numb) break; printf ("),CNST_LIMB(0x"); mpz_out_str (stdout, 16, x); } printf (")\n"); printf ("#define ODD_FACTORIAL_TABLE_MAX CNST_LIMB(0x"); mpz_out_str (stdout, 16, last); printf (")\n"); ofl = b - 1; printf ("#define ODD_FACTORIAL_TABLE_LIMIT (%lu)\n", ofl); mpz_init2 (mask, numb + 1); mpz_setbit (mask, numb); mpz_sub_ui (mask, mask, 1); printf ("\n/* Previous table, continued, values modulo 2^GMP_NUMB_BITS */\n"); printf ("#define ONE_LIMB_ODD_FACTORIAL_EXTTABLE CNST_LIMB(0x"); mpz_and (x, x, mask); mpz_out_str (stdout, 16, x); mpz_init (y); mpz_bin_uiui (y, b, b/2); b++; for (;; b++) { for (a = b; (a & 1) == 0; a >>= 1); if (a == b) { mpz_divexact_ui (y, y, a/2+1); mpz_mul_ui (y, y, a); } else mpz_mul_2exp (y, y, 1); if (mpz_sizeinbase (y, 2) > numb) break; mpz_mul_ui (x, x, a); mpz_and (x, x, mask); printf ("),CNST_LIMB(0x"); mpz_out_str (stdout, 16, x); } printf (")\n"); ofe = b - 1; printf ("#define ODD_FACTORIAL_EXTTABLE_LIMIT (%lu)\n", ofe); printf ("\n/* This table is 1!!,3!!,...,(2n+1)!! where (2n+1)!! has <= GMP_NUMB_BITS bits */\n"); printf ("#define ONE_LIMB_ODD_DOUBLEFACTORIAL_TABLE CNST_LIMB(0x1"); mpz_set_ui (x, 1); for (b = 3;; b+=2) { mpz_swap (last, x); mpz_mul_ui (x, last, b); if (mpz_sizeinbase (x, 2) > numb) break; printf ("),CNST_LIMB(0x"); mpz_out_str (stdout, 16, x); } printf (")\n"); printf ("#define ODD_DOUBLEFACTORIAL_TABLE_MAX CNST_LIMB(0x"); mpz_out_str (stdout, 16, last); printf (")\n"); printf ("#define ODD_DOUBLEFACTORIAL_TABLE_LIMIT (%lu)\n", b - 2); printf ("\n/* This table x_1, x_2,... contains values s.t. x_n^n has <= GMP_NUMB_BITS bits */\n"); printf ("#define NTH_ROOT_NUMB_MASK_TABLE (GMP_NUMB_MASK"); for (b = 2;b <= 8; b++) { mpz_root (x, mask, b); printf ("),CNST_LIMB(0x"); mpz_out_str (stdout, 16, x); } printf (")\n"); mpz_add_ui (mask, mask, 1); printf ("\n/* This table contains inverses of odd factorials, modulo 2^GMP_NUMB_BITS */\n"); printf ("\n/* It begins with (2!/2)^-1=1 */\n"); printf ("#define ONE_LIMB_ODD_FACTORIAL_INVERSES_TABLE CNST_LIMB(0x1"); mpz_set_ui (x, 1); for (b = 3;b <= ofe - 2; b++) { for (a = b; (a & 1) == 0; a >>= 1); mpz_mul_ui (x, x, a); mpz_invert (y, x, mask); printf ("),CNST_LIMB(0x"); mpz_out_str (stdout, 16, y); } printf (")\n"); ofe = (ofe / 16 + 1) * 16; printf ("\n/* This table contains 2n-popc(2n) for small n */\n"); printf ("\n/* It begins with 2-1=1 (n=1) */\n"); printf ("#define TABLE_2N_MINUS_POPC_2N 1"); for (b = 4; b <= ofe; b += 2) { mpz_set_ui (x, b); printf (",%lu",b - mpz_popcount (x)); } printf ("\n"); printf ("#define TABLE_LIMIT_2N_MINUS_POPC_2N %lu\n", ofe + 1); ofl = (ofl + 1) / 2; printf ("#define ODD_CENTRAL_BINOMIAL_OFFSET (%lu)\n", ofl); printf ("\n/* This table contains binomial(2k,k)/2^t */\n"); printf ("\n/* It begins with ODD_CENTRAL_BINOMIAL_TABLE_MIN */\n"); printf ("#define ONE_LIMB_ODD_CENTRAL_BINOMIAL_TABLE "); for (b = ofl;; b++) { mpz_bin_uiui (x, 2 * b, b); mpz_remove_twos (x); if (mpz_sizeinbase (x, 2) > numb) break; if (b != ofl) printf ("),"); printf("CNST_LIMB(0x"); mpz_out_str (stdout, 16, x); } printf (")\n"); ofe = b - 1; printf ("#define ODD_CENTRAL_BINOMIAL_TABLE_LIMIT (%lu)\n", ofe); printf ("\n/* This table contains the inverses of elements in the previous table. */\n"); printf ("#define ONE_LIMB_ODD_CENTRAL_BINOMIAL_INVERSE_TABLE CNST_LIMB(0x"); for (b = ofl; b <= ofe; b++) { mpz_bin_uiui (x, 2 * b, b); mpz_remove_twos (x); mpz_invert (x, x, mask); mpz_out_str (stdout, 16, x); if (b != ofe) printf ("),CNST_LIMB(0x"); } printf (")\n"); printf ("\n/* This table contains the values t in the formula binomial(2k,k)/2^t */\n"); printf ("#define CENTRAL_BINOMIAL_2FAC_TABLE "); for (b = ofl; b <= ofe; b++) { mpz_bin_uiui (x, 2 * b, b); printf ("%d", mpz_remove_twos (x)); if (b != ofe) printf (","); } printf ("\n"); return 0; }
int is_aks_prime(mpz_t n) { mpz_t *px, *py; int retval; UV i, s, r, a; UV starta = 1; int _verbose = get_verbose_level(); if (mpz_cmp_ui(n, 4) < 0) return (mpz_cmp_ui(n, 1) <= 0) ? 0 : 1; /* Just for performance: check small divisors: 2*3*5*7*11*13*17*19*23 */ if (mpz_gcd_ui(0, n, 223092870UL) != 1 && mpz_cmp_ui(n, 23) > 0) return 0; if (mpz_perfect_power_p(n)) return 0; #if AKS_VARIANT == AKS_VARIANT_V6 /* From the V6 AKS paper */ { mpz_t sqrtn, t; double log2n; UV limit, startr; PRIME_ITERATOR(iter); mpz_init(sqrtn); mpz_sqrt(sqrtn, n); log2n = mpz_log2(n); limit = (UV) floor( log2n * log2n ); if (_verbose>1) gmp_printf("# AKS checking order_r(%Zd) to %"UVuf"\n", n, (unsigned long) limit); /* Using a native r limits us to ~2000 digits in the worst case (r ~ log^5n) * but would typically work for 100,000+ digits (r ~ log^3n). This code is * far too slow to matter either way. Composite r is ok here, but it will * always end up prime, so save time and just check primes. */ retval = 0; /* Start order search at a good spot. Idea from Nemana and Venkaiah. */ startr = (mpz_sizeinbase(n,2)-1) * (mpz_sizeinbase(n,2)-1); startr = (startr < 1002) ? 2 : startr - 100; for (r = 2; /* */; r = prime_iterator_next(&iter)) { if (mpz_divisible_ui_p(n, r) ) /* r divides n. composite. */ { retval = 0; break; } if (mpz_cmp_ui(sqrtn, r) <= 0) /* no r <= sqrtn divides n. prime. */ { retval = 1; break; } if (r < startr) continue; if (mpz_order_ui(r, n, limit) > limit) { retval = 2; break; } } prime_iterator_destroy(&iter); mpz_clear(sqrtn); if (retval != 2) return retval; /* Since r is prime, phi(r) = r-1. */ s = (UV) floor( sqrt(r-1) * log2n ); } #elif AKS_VARIANT == AKS_VARIANT_BORNEMANN /* Bernstein + Voloch */ { UV slim; double c2, x; /* small t = few iters of big poly. big t = many iters of small poly */ double const t = (mpz_sizeinbase(n, 2) <= 64) ? 32 : 40; double const t1 = (1.0/((t+1)*log(t+1)-t*log(t))); double const dlogn = mpz_logn(n); mpz_t tmp; PRIME_ITERATOR(iter); mpz_init(tmp); prime_iterator_setprime(&iter, (UV) (t1*t1 * dlogn*dlogn) ); r = prime_iterator_next(&iter); while (!is_primitive_root_uiprime(n,r)) r = prime_iterator_next(&iter); prime_iterator_destroy(&iter); slim = (UV) (2*t*(r-1)); c2 = dlogn * floor(sqrt(r)); { /* Binary search for first s in [1,slim] where x >= 0 */ UV bi = 1; UV bj = slim; while (bi < bj) { s = bi + (bj-bi)/2; mpz_bin_uiui(tmp, r+s-1, s); x = mpz_logn(tmp) / c2 - 1.0; if (x < 0) bi = s+1; else bj = s; } s = bi-1; } s = (s+3) >> 1; /* Bornemann checks factors up to (s-1)^2, we check to max(r,s) */ /* slim = (s-1)*(s-1); */ slim = (r > s) ? r : s; if (_verbose > 1) printf("# aks trial to %"UVuf"\n", slim); if (_GMP_trial_factor(n, 2, slim) > 1) { mpz_clear(tmp); return 0; } mpz_sqrt(tmp, n); if (mpz_cmp_ui(tmp, slim) <= 0) { mpz_clear(tmp); return 1; } mpz_clear(tmp); } #elif AKS_VARIANT == AKS_VARIANT_BERN21 { /* Bernstein 2003, theorem 2.1 (simplified) */ UV q; double slim, scmp, x; mpz_t t, t2; PRIME_ITERATOR(iter); mpz_init(t); mpz_init(t2); r = s = 0; while (1) { /* todo: Check r|n and r >= sqrt(n) here instead of waiting */ if (mpz_cmp_ui(n, r) <= 0) break; r = prime_iterator_next(&iter); q = largest_factor(r-1); mpz_set_ui(t, r); mpz_powm_ui(t, n, (r-1)/q, t); if (mpz_cmp_ui(t, 1) <= 0) continue; scmp = 2 * floor(sqrt(r)) * mpz_log2(n); slim = 20 * (r-1); /* Check viability */ mpz_bin_uiui(t, q+slim-1, slim); if (mpz_log2(t) < scmp) continue; for (s = 2; s < slim; s++) { mpz_bin_uiui(t, q+s-1, s); if (mpz_log2(t) > scmp) break; } if (s < slim) break; } mpz_clear(t); mpz_clear(t2); prime_iterator_destroy(&iter); if (_GMP_trial_factor(n, 2, s) > 1) return 0; } #elif AKS_VARIANT == AKS_VARIANT_BERN22 { /* Bernstein 2003, theorem 2.2 (simplified) */ UV q; double slim, scmp, x; mpz_t t, t2; PRIME_ITERATOR(iter); mpz_init(t); mpz_init(t2); r = s = 0; while (1) { /* todo: Check r|n and r >= sqrt(n) here instead of waiting */ if (mpz_cmp_ui(n, r) <= 0) break; r = prime_iterator_next(&iter); if (!is_primitive_root_uiprime(n,r)) continue; q = r-1; /* Since r is prime, phi(r) = r-1 */ scmp = 2 * floor(sqrt(r-1)) * mpz_log2(n); slim = 20 * (r-1); /* Check viability */ mpz_bin_uiui(t, q+slim-1, slim); if (mpz_log2(t) < scmp) continue; for (s = 2; s < slim; s++) { mpz_bin_uiui(t, q+s-1, s); if (mpz_log2(t) > scmp) break; } if (s < slim) break; } mpz_clear(t); mpz_clear(t2); prime_iterator_destroy(&iter); if (_GMP_trial_factor(n, 2, s) > 1) return 0; } #elif AKS_VARIANT == AKS_VARIANT_BERN23 { /* Bernstein 2003, theorem 2.3 (simplified) */ UV q, d, limit; double slim, scmp, sbin, x, log2n; mpz_t t, t2; PRIME_ITERATOR(iter); mpz_init(t); mpz_init(t2); log2n = mpz_log2(n); limit = (UV) floor( log2n * log2n ); r = 2; s = 0; while (1) { /* todo: Check r|n and r >= sqrt(n) here instead of waiting */ if (mpz_cmp_ui(n, r) <= 0) break; r++; UV gcd = mpz_gcd_ui(NULL, n, r); if (gcd != 1) { mpz_clear(t); mpz_clear(t2); return 0; } UV v = mpz_order_ui(r, n, limit); if (v >= limit) continue; mpz_set_ui(t2, r); totient(t, t2); q = mpz_get_ui(t); UV phiv = q/v; /* printf("phi(%lu)/v = %lu/%lu = %lu\n", r, q, v, phiv); */ /* This is extremely inefficient. */ /* Choose an s value we'd be happy with */ slim = 20 * (r-1); /* Quick check to see if it could work with s=slim, d=1 */ mpz_bin_uiui(t, q+slim-1, slim); sbin = mpz_log2(t); if (sbin < 2*floor(sqrt(q))*log2n) continue; for (s = 2; s < slim; s++) { mpz_bin_uiui(t, q+s-1, s); sbin = mpz_log2(t); if (sbin < 2*floor(sqrt(q))*log2n) continue; /* d=1 */ /* Check each number dividing phi(r)/v */ for (d = 2; d < phiv; d++) { if ((phiv % d) != 0) continue; scmp = 2 * d * floor(sqrt(q/d)) * log2n; if (sbin < scmp) break; } /* if we did not exit early, this s worked for each d. This s wins. */ if (d >= phiv) break; } if (s < slim) break; } mpz_clear(t); mpz_clear(t2); prime_iterator_destroy(&iter); if (_GMP_trial_factor(n, 2, s) > 1) return 0; } #elif AKS_VARIANT == AKS_VARIANT_BERN41 { double const log2n = mpz_log2(n); /* Tuning: Initial 'r' selection */ double const r0 = 0.008 * log2n * log2n; /* Tuning: Try a larger 'r' if 's' looks very large */ UV const rmult = 8; UV slim; mpz_t tmp, tmp2; PRIME_ITERATOR(iter); mpz_init(tmp); mpz_init(tmp2); /* r has to be at least 3. */ prime_iterator_setprime(&iter, (r0 < 2) ? 2 : (UV) r0); r = prime_iterator_next(&iter); /* r must be a primitive root. For performance, skip if s looks too big. */ while ( !is_primitive_root_uiprime(n, r) || !bern41_acceptable(n, r, rmult*(r-1), tmp, tmp2) ) r = prime_iterator_next(&iter); prime_iterator_destroy(&iter); { /* Binary search for first s in [1,lim] where conditions met */ UV bi = 1; UV bj = rmult * (r-1); while (bi < bj) { s = bi + (bj-bi)/2; if (!bern41_acceptable(n,r,s,tmp,tmp2)) bi = s+1; else bj = s; } s = bj; /* Our S goes from 2 to s+1. */ starta = 2; s = s+1; } /* printf("chose r=%lu s=%lu d = %lu i = %lu j = %lu\n", r, s, d, i, j); */ /* Check divisibility to s(s-1) to cover both gcd conditions */ slim = s * (s-1); if (_verbose > 1) printf("# aks trial to %"UVuf"\n", slim); if (_GMP_trial_factor(n, 2, slim) > 1) { mpz_clear(tmp); mpz_clear(tmp2); return 0; } /* If we checked divisibility to sqrt(n), then it is prime. */ mpz_sqrt(tmp, n); if (mpz_cmp_ui(tmp, slim) <= 0) { mpz_clear(tmp); mpz_clear(tmp2); return 1; } /* Check b^(n-1) = 1 mod n for b in [2..s] */ if (_verbose > 1) printf("# aks checking fermat to %"UVuf"\n", s); mpz_sub_ui(tmp2, n, 1); for (i = 2; i <= s; i++) { mpz_set_ui(tmp, i); mpz_powm(tmp, tmp, tmp2, n); if (mpz_cmp_ui(tmp, 1) != 0) { mpz_clear(tmp); mpz_clear(tmp2); return 0; } } mpz_clear(tmp); mpz_clear(tmp2); } #endif if (_verbose) gmp_printf("# AKS %Zd. r = %"UVuf" s = %"UVuf"\n", n, (unsigned long) r, (unsigned long) s); /* Create the three polynomials we will use */ New(0, px, r, mpz_t); New(0, py, r, mpz_t); if ( !px || !py ) croak("allocation failure\n"); for (i = 0; i < r; i++) { mpz_init(px[i]); mpz_init(py[i]); } retval = 1; for (a = starta; a <= s; a++) { retval = test_anr(a, n, r, px, py); if (!retval) break; if (_verbose>1) { printf("."); fflush(stdout); } } if (_verbose>1) { printf("\n"); fflush(stdout); }; /* Free the polynomials */ for (i = 0; i < r; i++) { mpz_clear(px[i]); mpz_clear(py[i]); } Safefree(px); Safefree(py); return retval; }