Example #1
0
/*************************************************************************
 * Read a motif database
 *************************************************************************/
static MOTIF_DB_T* read_motifs(int id, char* motif_source, char* bg_source, 
    ARRAY_T** bg, double pseudocount, RBTREE_T *selected, ALPH_T alph) {
  // vars
  int read_motifs;
  MOTIF_DB_T* motifdb;
  MREAD_T *mread;
  MOTIF_T *motif;
  ARRAYLST_T *motifs;
  // open the motif file for reading
  mread = mread_create(motif_source, OPEN_MFILE);
  mread_set_pseudocount(mread, pseudocount);
  // determine background to use
  if (*bg != NULL) mread_set_background(mread, *bg);
  else mread_set_bg_source(mread, bg_source);
  // load motifs
  read_motifs = 0;
  if (rbtree_size(selected) > 0) {
    motifs = arraylst_create();
    while(mread_has_motif(mread)) {
      motif = mread_next_motif(mread);
      read_motifs++;
      if (rbtree_find(selected, get_motif_id(motif))) {
        arraylst_add(motif, motifs);
      } else {
        DEBUG_FMT(NORMAL_VERBOSE, "Discarding motif %s in %s.\n", 
            get_motif_id(motif), motif_source);
        destroy_motif(motif);
      }
    }
  } else {
    motifs = mread_load(mread, NULL);
    read_motifs = arraylst_size(motifs);
  }
  arraylst_fit(motifs);
  if (read_motifs > 0) {
    // check the alphabet
    if (mread_get_alphabet(mread) != alph) {
      die("Expected %s alphabet motifs\n", alph_name(alph));
    }
    // get the background
    if (*bg == NULL) *bg = mread_get_background(mread);
  } else {
    fprintf(stderr, "Warning: Motif file %s contains no motifs.\n", motif_source);
  }
  // clean up motif reader
  mread_destroy(mread);
  // create motif db
  motifdb = mm_malloc(sizeof(MOTIF_DB_T));
  memset(motifdb, 0, sizeof(MOTIF_DB_T));
  motifdb->id = id;
  motifdb->source = strdup(motif_source);
  motifdb->motifs = motifs;
  return motifdb; 
}
Example #2
0
File: ramen.c Project: CPFL/gmeme
void ramen_load_motifs() {
  BOOLEAN_T read_file = FALSE;
  MREAD_T *mread;
  ARRAYLST_T* read_motifs;
  int num_motifs_before_rc;
  int i;
  int j;

  memset(&motifs, 0, sizeof(ramen_motifs_t));
	read_motifs = arraylst_create();
  for (i = 0; i < args.number_motif_files; i++) {
      mread = mread_create(args.motif_filenames[i], OPEN_MFILE);
      if (args.bg_format == FILE_BG) {
		mread_set_bg_source(mread, args.bg_filename);
      } else {
		mread_set_background(mread, motifs.bg_freqs);
      }
      mread_set_pseudocount(mread, args.pseudocount);

      mread_load(mread, read_motifs);
      if (!(motifs.bg_freqs)) motifs.bg_freqs = mread_get_background(mread);

      mread_destroy(mread);
  }

  // reverse complement the originals adding to the original read in list
  num_motifs_before_rc = arraylst_size(read_motifs);
  add_reverse_complements(read_motifs);        
  motifs.num = arraylst_size(read_motifs);
  //Allocate array for the motifs
  motif_list_to_array(read_motifs, &(motifs.motifs), &(motifs.num));
  //free the list of motifs
  free_motifs(read_motifs);
  

  // check reverse complements.
  assert(motifs.num / 2 == num_motifs_before_rc);
  // reset motif count to before rev comp
  motifs.num = num_motifs_before_rc;

  //Now, we need to convert the motifs into odds matrices if we're doing that kind of scoring
  for (i=0;i<2*motifs.num;i++) {
	  convert_to_odds_matrix(motif_at(motifs.motifs, i), motifs.bg_freqs);
  }
}
Example #3
0
/*************************************************************************
 * Entry point for pmp_bf
 *************************************************************************/
int main(int argc, char *argv[]) {

  char* bg_filename = NULL;
  char* motif_name = "motif"; // Use this motif name in the output.
  STRING_LIST_T* selected_motifs = NULL;
  double fg_rate = 1.0;
  double bg_rate = 1.0;
  double purine_pyrimidine = 1.0; // r
  double transition_transversion = 0.5; // R
  double pseudocount = 0.1;
  GAP_SUPPORT_T gap_support = SKIP_GAPS;
  MODEL_TYPE_T model_type = F81_MODEL;
  BOOLEAN_T use_halpern_bruno = FALSE;
  char* ustar_label = NULL;	// TLB; create uniform star tree
  int i;

  program_name = "pmp_bf";

  /**********************************************
   * COMMAND LINE PROCESSING
   **********************************************/

  // Define command line options. (FIXME: Repeated code)
  // FIXME: Note that if you add or remove options you
  // must change n_options.
  int n_options = 12;
  cmdoption const pmp_options[] = {
    {"hb", NO_VALUE},
    {"ustar", REQUIRED_VALUE},
    {"model", REQUIRED_VALUE},
    {"pur-pyr", REQUIRED_VALUE},
    {"transition-transversion", REQUIRED_VALUE},
    {"bg", REQUIRED_VALUE},
    {"fg", REQUIRED_VALUE},
    {"motif", REQUIRED_VALUE},
    {"motif-name", REQUIRED_VALUE},
    {"bgfile", REQUIRED_VALUE},
    {"pseudocount", REQUIRED_VALUE},
    {"verbosity", REQUIRED_VALUE}
  };

  int option_index = 0;

  // Define the usage message.
  char      usage[1000] = "";
  strcat(usage, "USAGE: pmp [options] <tree file> <MEME file>\n");
  strcat(usage, "\n");
  strcat(usage, "   Options:\n");

  // Evolutionary model parameters.
  strcat(usage, "     --hb\n");
  strcat(usage, "     --model single|average|jc|k2|f81|f84|hky|tn");
  strcat(usage, " (default=f81)\n");
  strcat(usage, "     --pur-pyr <float> (default=1.0)\n");
  strcat(usage, "     --transition-transversion <float> (default=0.5)\n");
  strcat(usage, "     --bg <float> (default=1.0)\n");
  strcat(usage, "     --fg <float> (default=1.0)\n");

  // Motif parameters.
  strcat(usage, "     --motif <id> (default=all)\n");
  strcat(usage, "     --motif-name <string> (default from motif file)\n");

  // Miscellaneous parameters
  strcat(usage, "     --bgfile <background> (default from motif file)\n");
  strcat(usage, "     --pseudocount <float> (default=0.1)\n");
  strcat(usage, "     --ustar <label>\n");	// TLB; create uniform star tree
  strcat(usage, "     --verbosity [1|2|3|4] (default 2)\n");
  strcat(usage, "\n    Prints the FP and FN rate at each of 10000 score values.\n");
  strcat(usage, "\n    Output format: [<motif_id> score <score> FPR <fpr> TPR <tpr>]+\n");

  // Parse the command line.
  if (simple_setopt(argc, argv, n_options, pmp_options) != NO_ERROR) {
    die("Error processing command line options: option name too long.\n");
  }

  while (TRUE) { 
    int c = 0;
    char* option_name = NULL;
    char* option_value = NULL;
    const char * message = NULL;

    // Read the next option, and break if we're done.
    c = simple_getopt(&option_name, &option_value, &option_index);
    if (c == 0) {
      break;
    } else if (c < 0) {
      (void) simple_getopterror(&message);
      die("Error processing command line options (%s)\n", message);
    }
    
    if (strcmp(option_name, "model") == 0) {
      if (strcmp(option_value, "jc") == 0) {
        model_type = JC_MODEL;
      } else if (strcmp(option_value, "k2") == 0) {
        model_type = K2_MODEL;
      } else if (strcmp(option_value, "f81") == 0) {
        model_type = F81_MODEL;
      } else if (strcmp(option_value, "f84") == 0) {
        model_type = F84_MODEL;
      } else if (strcmp(option_value, "hky") == 0) {
        model_type = HKY_MODEL;
      } else if (strcmp(option_value, "tn") == 0) {
        model_type = TAMURA_NEI_MODEL;
      } else if (strcmp(option_value, "single") == 0) {
        model_type = SINGLE_MODEL;
      } else if (strcmp(option_value, "average") == 0) {
        model_type = AVERAGE_MODEL;
      } else {
        die("Unknown model: %s\n", option_value);
      }
    } else if (strcmp(option_name, "hb") == 0){
        use_halpern_bruno = TRUE;
    } else if (strcmp(option_name, "ustar") == 0){	// TLB; create uniform star tree
        ustar_label = option_value;
    } else if (strcmp(option_name, "pur-pyr") == 0){
        purine_pyrimidine = atof(option_value);
    } else if (strcmp(option_name, "transition-transversion") == 0){
        transition_transversion = atof(option_value);
    } else if (strcmp(option_name, "bg") == 0){
      bg_rate = atof(option_value);
    } else if (strcmp(option_name, "fg") == 0){
      fg_rate = atof(option_value);
    } else if (strcmp(option_name, "motif") == 0){
        if (selected_motifs == NULL) {
          selected_motifs = new_string_list();
        }
       add_string(option_value, selected_motifs);
    } else if (strcmp(option_name, "motif-name") == 0){
        motif_name = option_value;
    } else if (strcmp(option_name, "bgfile") == 0){
      bg_filename = option_value;
    } else if (strcmp(option_name, "pseudocount") == 0){
        pseudocount = atof(option_value);
    } else if (strcmp(option_name, "verbosity") == 0){
        verbosity = atoi(option_value);
    }
  }

  // Must have tree and motif file names
  if (argc != option_index + 2) {
    fprintf(stderr, "%s", usage);
    exit(EXIT_FAILURE);
  } 

  /**********************************************
   * Read the phylogenetic tree.
   **********************************************/
  char* tree_filename = NULL;
  TREE_T* tree = NULL;
  tree_filename = argv[option_index];
  option_index++;
  tree = read_tree_from_file(tree_filename);

  // get the species names
  STRING_LIST_T* alignment_species = make_leaf_list(tree);
  char *root_label = get_label(tree);	// in case target in center
  if (strlen(root_label)>0) add_string(root_label, alignment_species);
  //write_string_list(" ", alignment_species, stderr);

  // TLB; Convert the tree to a uniform star tree with
  // the target sequence at its center.
  if (ustar_label != NULL) {
    tree = convert_to_uniform_star_tree(tree, ustar_label);
    if (tree == NULL) 
      die("Tree or alignment missing target %s\n", ustar_label);
    if (verbosity >= NORMAL_VERBOSE) {
      fprintf(stderr, 
	"Target %s placed at center of uniform (d=%.3f) star tree:\n", 
          ustar_label, get_total_length(tree) / get_num_children(tree) 
      );
      write_tree(tree, stderr);
    }
  }

  /**********************************************
   * Read the motifs.
   **********************************************/
  char* meme_filename = argv[option_index];
  option_index++;
  int num_motifs = 0; 

  MREAD_T *mread;
  ALPH_T alph;
  ARRAYLST_T *motifs;
  ARRAY_T *bg_freqs;

  mread = mread_create(meme_filename, OPEN_MFILE);
  mread_set_bg_source(mread, bg_filename);
  mread_set_pseudocount(mread, pseudocount);
  // read motifs
  motifs = mread_load(mread, NULL);
  alph = mread_get_alphabet(mread);
  bg_freqs = mread_get_background(mread);
  // check
  if (arraylst_size(motifs) == 0) die("No motifs in %s.", meme_filename);

  

  // TLB; need to resize bg_freqs array to ALPH_SIZE items
  // or copy array breaks in HB mode.  This throws away
  // the freqs for the ambiguous characters;
  int asize = alph_size(alph, ALPH_SIZE);
  resize_array(bg_freqs, asize);

  /**************************************************************
  * Compute probability distributions for each of the selected motifs.
  **************************************************************/
  int motif_index;
  for (motif_index = 0; motif_index < arraylst_size(motifs); motif_index++) {

    MOTIF_T* motif = (MOTIF_T*)arraylst_get(motif_index, motifs);
    char* motif_id = get_motif_id(motif);
    char* bare_motif_id = motif_id;

    // We may have specified on the command line that
    // only certain motifs were to be used.
    if (selected_motifs != NULL) {
      if (*bare_motif_id == '+' || *bare_motif_id == '-') {
        // The selected  motif id won't included a strand indicator.
        bare_motif_id++;
      }
      if (have_string(bare_motif_id, selected_motifs) == FALSE) {
        continue;
      }
    }

    if (verbosity >= NORMAL_VERBOSE) {
      fprintf(
        stderr, 
        "Using motif %s of width %d.\n",
        motif_id, get_motif_length(motif)
      );
    }

    // Build an array of evolutionary models for each position in the motif.
    EVOMODEL_T** models = make_motif_models(
      motif, 
      bg_freqs,
      model_type,
      fg_rate, 
      bg_rate, 
      purine_pyrimidine, 
      transition_transversion, 
      use_halpern_bruno
    );

    // Get the frequencies under the background model (row 0) 
    // and position-dependent scores (rows 1..w)
    // for each possible alignment column.
    MATRIX_T* pssm_matrix = build_alignment_pssm_matrix(
      alph,
      alignment_species,
      get_motif_length(motif) + 1, 
      models, 
      tree, 
      gap_support
    );
    ARRAY_T* alignment_col_freqs = allocate_array(get_num_cols(pssm_matrix)); 
    copy_array(get_matrix_row(0, pssm_matrix), alignment_col_freqs);
    remove_matrix_row(0, pssm_matrix);		// throw away first row
    //print_col_frequencies(alph, alignment_col_freqs);

    //
    // Get the position-dependent null model alignment column frequencies
    //
    int w = get_motif_length(motif);
    int ncols = get_num_cols(pssm_matrix); 
    MATRIX_T* pos_dep_bkg = allocate_matrix(w, ncols);
    for (i=0; i<w; i++) {
      // get the evo model corresponding to this column of the motif
      // and store it as the first evolutionary model.
      myfree(models[0]);
      // Use motif PSFM for equilibrium freqs. for model.
      ARRAY_T* site_specific_freqs = allocate_array(asize);
      int j = 0;
      for(j = 0; j < asize; j++) {
	double value = get_matrix_cell(i, j, get_motif_freqs(motif));
	set_array_item(j, value, site_specific_freqs);
      }
      if (use_halpern_bruno == FALSE) {
	models[0] = make_model(
	  model_type,
	  fg_rate,
	  transition_transversion,
	  purine_pyrimidine,
	  site_specific_freqs,
          NULL
	);
      } else {
        models[0] = make_model(
	  model_type,
	  fg_rate,
	  transition_transversion,
	  purine_pyrimidine,
	  bg_freqs,
	  site_specific_freqs
	);
      }
      // get the alignment column frequencies using this model
      MATRIX_T* tmp_pssm_matrix = build_alignment_pssm_matrix(
        alph,
	alignment_species,
	2,				// only interested in freqs under bkg
	models, 
	tree, 
	gap_support
      );
      // assemble the position-dependent background alignment column freqs.
      set_matrix_row(i, get_matrix_row(0, tmp_pssm_matrix), pos_dep_bkg);
      // chuck the pssm (not his real name)
      free_matrix(tmp_pssm_matrix);
    }

    //
    // Compute and print the score distribution under the background model
    // and under the (position-dependent) motif model.
    //
    int range = 10000;	// 10^4 gives same result as 10^5, but 10^3 differs

    // under background model
    PSSM_T* pssm = build_matrix_pssm(alph, pssm_matrix, alignment_col_freqs, range);

    // under position-dependent background (motif) model
    PSSM_T* pssm_pos_dep = build_matrix_pssm(alph, pssm_matrix, alignment_col_freqs, range);
    get_pv_lookup_pos_dep(
      pssm_pos_dep, 
      pos_dep_bkg, 
      NULL // no priors used
    );

    // print FP and FN distributions
    int num_items = get_pssm_pv_length(pssm_pos_dep);
    for (i=0; i<num_items; i++) {
      double pvf = get_pssm_pv(i, pssm);
      double pvt = get_pssm_pv(i, pssm_pos_dep);
      double fpr = pvf;
      double fnr = 1 - pvt;
      if (fpr >= 0.99999 || fnr == 0) continue;
      printf("%s score %d FPR %.3g FNR %.3g\n", motif_id, i, fpr, fnr);
    }

    // free stuff
    free_pssm(pssm);
    free_pssm(pssm_pos_dep);
    if (models != NULL) {
      int model_index;
      int num_models = get_motif_length(motif) + 1;
      for (model_index = 0; model_index < num_models; model_index++) {
        free_model(models[model_index]);
      }
      myfree(models);
    }

  } // motif

  arraylst_destroy(destroy_motif, motifs);

  /**********************************************
   * Clean up.
   **********************************************/
  // TLB may have encountered a memory corruption bug here
  // CEG has not been able to reproduce it. valgrind says all is well.
  free_array(bg_freqs);
  free_tree(TRUE, tree);
  free_string_list(selected_motifs);

  return(0);
} // main
Example #4
0
File: ama.c Project: a1aks/Haystack
/*************************************************************************
 * Entry point for ama
 *************************************************************************/
int main(int argc, char *argv[]) {
  int max_seq_length = MAX_SEQ;
  STRING_LIST_T* selected_motifs = NULL;
  double pseudocount = 0.01;
  int output_format = CISML_FORMAT;
  program_name = "ama";
  int scoring = AVG_ODDS;
  BOOLEAN_T pvalues = FALSE;
  BOOLEAN_T normalize_scores = FALSE;
  BOOLEAN_T combine_duplicates = FALSE;
  int num_gc_bins = 1;
  int sdbg_order = -1;				// don't use sequence background
  BOOLEAN_T scan_both_strands = TRUE;
  ARRAY_T* pos_bg_freqs = NULL;
  ARRAY_T* rev_bg_freqs = NULL;
  clock_t c0, c1; /* measuring cpu_time */
  CISML_T *cisml;
  char * out_dir = NULL;
  BOOLEAN_T clobber = FALSE;
  int i;
  int last = 0;
  ALPH_T alph = INVALID_ALPH;

  /**********************************************
   * COMMAND LINE PROCESSING
   **********************************************/

  const int num_options = 16;
  cmdoption const motif_scan_options[] = {
    { "max-seq-length", REQUIRED_VALUE },
    { "motif", REQUIRED_VALUE },
    { "motif-pseudo", REQUIRED_VALUE },
    { "rma", NO_VALUE },
    { "pvalues", NO_VALUE },
    { "sdbg", REQUIRED_VALUE },
    { "norc", NO_VALUE },
    { "cs", NO_VALUE },
    { "o-format", REQUIRED_VALUE },
    { "o", REQUIRED_VALUE },
    { "oc", REQUIRED_VALUE },
    { "scoring", REQUIRED_VALUE },
    { "verbosity", REQUIRED_VALUE },
    { "gcbins", REQUIRED_VALUE },
    { "last", REQUIRED_VALUE },
    { "version", NO_VALUE }
  };

  int option_index = 0;

  // Define the usage message.
  char usage[] = "USAGE: ama [options] <motif file> <sequence file> [<background file>]\n"
    "\n"
    "   Options:\n"
    "     --sdbg <order>\t\t\tUse Markov background model of\n"
    "       \t\t\t\t\torder <order> derived from the sequence\n"
    "       \t\t\t\t\tto compute its likelihood ratios.\n"
    "       \t\t\t\t\tOverrides --pvalues, --gcbins and --rma;\n"
    "       \t\t\t\t\t<background file> is required unless\n"
    "       \t\t\t\t\t--sdbg is given.\n"
    "     --motif <id>\t\t\tUse only the motif identified by <id>.\n"
    "       \t\t\t\t\tThis option may be repeated.\n"
    "     --motif-pseudo <float>\t\tThe value <float> times the background\n"
    "       \t\t\t\t\tfrequency is added to the count of each\n"
    "       \t\t\t\t\tletter when creating the likelihood \n"
    "       \t\t\t\t\tratio matrix (default: %g).\n"
    "     --norc\t\t\t\tDisables the scanning of the reverse\n"
    "       \t\t\t\t\tcomplement strand.\n"
    "     --scoring [avg-odds|max-odds]\tIndicates whether the average or \n"
    "       \t\t\t\t\tthe maximum odds should be calculated\n"
    "       \t\t\t\t\t(default: avg-odds)\n"
    "     --rma\t\t\t\tScale motif scores to the range 0-1.\n"
    "       \t\t\t\t\t(Relative Motif Affinity).\n"
    "       \t\t\t\t\tMotif scores are scaled by the maximum\n"
    "       \t\t\t\t\tscore achievable by that PWM. (default:\n"
    "       \t\t\t\t\tmotif scores are not normalized)\n"
    "     --pvalues\t\t\t\tPrint p-value of avg-odds score in cisml\n"
    "       \t\t\t\t\toutput. Ignored for max-odds scoring.\n"
    "       \t\t\t\t\t(default: p-values are not printed)\n"
    "     --gcbins <bins>\t\t\tCompensate p-values for GC content of\n"
    "       \t\t\t\t\teach sequence using given number of \n"
    "       \t\t\t\t\tGC range bins. Recommended bins: 41.\n"
    "       \t\t\t\t\t(default: p-values are based on\n"
    "       \t\t\t\t\tfrequencies in background file)\n"
    "     --cs\t\t\t\tEnable combining sequences with same\n"
    "       \t\t\t\t\tidentifier by taking the average score\n"
    "       \t\t\t\t\tand the Sidac corrected p-value.\n"
    "     --o-format [gff|cisml]\t\tOutput file format (default: cisml)\n"
    "       \t\t\t\t\tignored if --o or --oc option used\n"
    "     --o <directory>\t\t\tOutput all available formats to\n"
    "       \t\t\t\t\t<directory>; give up if <directory>\n"
    "       \t\t\t\t\texists\n"
    "     --oc <directory>\t\t\tOutput all available formats to\n"
    "       \t\t\t\t\t<directory>; if <directory> exists\n"
    "       \t\t\t\t\toverwrite contents\n"
    "     --verbosity [1|2|3|4]\t\tControls amount of screen output\n"
    "       \t\t\t\t\t(default: %d)\n"
    "     --max-seq-length <int>\t\tSet the maximum length allowed for \n"
    "       \t\t\t\t\tinput sequences. (default: %d)\n"
    "     --last <int>\t\t\tUse only scores of (up to) last <n>\n"
    "       \t\t\t\t\tsequence positions to compute AMA.\n"
    "     --version   \t\t\tPrint version and exit.\n"
    "\n";

  // Parse the command line.
  if (simple_setopt(argc, argv, num_options, motif_scan_options) != NO_ERROR) {
    die("Error processing command line options: option name too long.\n");
  }
    
    BOOLEAN_T setoutputformat = FALSE;
    BOOLEAN_T setoutputdirectory = FALSE;

  while (TRUE) {
    int c = 0;
    char* option_name = NULL;
    char* option_value = NULL;
    const char * message = NULL;

    // Read the next option, and break if we're done.
    c = simple_getopt(&option_name, &option_value, &option_index);
    if (c == 0) {
      break;
    } else if (c < 0) {
      (void) simple_getopterror(&message);
      die("Error processing command line options (%s).\n", message);
    } else if (strcmp(option_name, "max-seq-length") == 0) {
	max_seq_length = atoi(option_value);
    } else if (strcmp(option_name, "norc") == 0) {
	scan_both_strands = FALSE;
    } else if (strcmp(option_name, "cs") == 0) {
		combine_duplicates = TRUE;
    } else if (strcmp(option_name, "motif") == 0) {
	if (selected_motifs == NULL) {
	  selected_motifs = new_string_list();
	}
	add_string(option_value, selected_motifs);
    } else if (strcmp(option_name, "motif-pseudo") == 0) {
	pseudocount = atof(option_value);
    } else if (strcmp(option_name, "o-format") == 0) {
        if (setoutputdirectory) {
            if (verbosity >= NORMAL_VERBOSE)
                fprintf(stderr, "output directory specified, ignoring --o-format\n");
        } else {
            setoutputformat = TRUE;
            if (strcmp(option_value, "gff") == 0)
                output_format = GFF_FORMAT;
            else if (strcmp(option_value, "cisml") == 0)
                output_format = CISML_FORMAT;
            else {
                if (verbosity >= NORMAL_VERBOSE)
                  fprintf(stderr, "Output format not known. Using standard instead (cisML).\n");
                  output_format = CISML_FORMAT;
            }
        }
    } else if (strcmp(option_name, "o") == 0 || strcmp(option_name, "oc") == 0) {
        setoutputdirectory = TRUE;
        if (setoutputformat) {
            if (verbosity >= NORMAL_VERBOSE)
                fprintf(stderr, "output directory specified, ignoring --o-format\n");
        }
        clobber = strcmp(option_name, "oc") == 0;
        out_dir = (char*) malloc (sizeof(char)*(strlen(option_value)+1));
        strcpy(out_dir, option_value);
        output_format = DIRECTORY_FORMAT;
    } else if (strcmp(option_name, "verbosity") == 0) {
	verbosity = atoi(option_value);
    } else if (strcmp(option_name, "scoring") == 0) {
      if (strcmp(option_value, "max-odds") == 0)
	scoring = MAX_ODDS;
      else if (strcmp(option_value, "avg-odds") == 0)
	scoring = AVG_ODDS;
      else if (strcmp(option_value, "sum-odds") == 0)
	scoring = SUM_ODDS;
	  else
	die("Specified scoring scheme not known.\n", message);
    } else if (strcmp(option_name, "pvalues") == 0) {
      pvalues = TRUE;
    } else if (strcmp(option_name, "rma") == 0) {
      normalize_scores = TRUE;
      fprintf(stderr, "Normalizing motif scores using RMA method.\n");
    } else if (strcmp(option_name, "gcbins") == 0) {
      num_gc_bins = atoi(option_value);
      pvalues = TRUE;
      if (num_gc_bins <= 1) die("Number of bins in --gcbins must be greater than 1.\n", message);
    } else if (strcmp(option_name, "sdbg") == 0) {
      sdbg_order = atoi(option_value);			// >=0 means use sequence bkg
    }
    else if (strcmp(option_name, "last") == 0) {
      int i = 0;
      if (option_value[0] == '-') ++i;
      while (option_value[i] != '\0') {
        if (!isdigit(option_value[i])) {
          die("Specified parameter 'last' contains non-numeric characters.\n");
        }
        ++i;
      }
      last = atoi(option_value);
      if (errno != 0) {
        die("Specified parameter 'last' could not be parsed as a number as:\n%s\n",strerror(errno));
      }
      if (last < 0) {
        die("Specified parameter 'last' had negative value (%d) when only postive or zero values are allowed \n", last);
      }
    }
    else if (strcmp(option_name, "version") == 0) {
      fprintf(stdout, VERSION "\n");
      exit(EXIT_SUCCESS);
    }
  }

  // --sdbg overrides --pvalues and --gcbins and --rma
  int req_args = 3;
  if (sdbg_order >= 0) {
    pvalues = FALSE;
    normalize_scores = FALSE;
    num_gc_bins = 1;
    req_args = 2;
  }

  // Check all required arguments given
  if (sdbg_order >= 0 && argc > option_index + req_args) {
    die("<background file> cannot be given together with --sdbg.\n");
  } else if (argc != option_index + req_args) {
    fprintf(stderr, usage, pseudocount, verbosity, max_seq_length);
    exit(EXIT_FAILURE);
  }

  // Get required arguments. 
  char* motif_filename = argv[option_index];
  option_index++;
  char* fasta_filename = argv[option_index];
  option_index++;
  char* bg_filename;
  if (req_args == 3) {			// required unless --sdbg given
    bg_filename = argv[option_index];
    option_index++;
  } else {
    bg_filename = "--uniform--";	// So PSSMs will use uniform background;
					// we can multiply them out later.
  }

  // measure time
  c0 = clock();

  // Set up hash tables for computing reverse complement if doing --sdbg
  if (sdbg_order >= 0) setup_hash_alph(DNAB);

  // Create cisml data structure for recording results
  cisml = allocate_cisml(program_name, motif_filename, fasta_filename);
  set_cisml_background_file(cisml, bg_filename);

  /**********************************************
   * Read the motifs and background model.
   **********************************************/
  int num_motifs = 0;
  MREAD_T *mread;
  ARRAYLST_T *motifs;
  PSSM_PAIR_T** pssm_pairs;	// note pssm_pairs is an array of pointers

  //this reads any meme file, xml, txt and html
  mread = mread_create(motif_filename, OPEN_MFILE);
  mread_set_bg_source(mread, bg_filename);
  mread_set_pseudocount(mread, pseudocount);

  motifs = mread_load(mread, NULL);
  alph = mread_get_alphabet(mread);
  pos_bg_freqs = mread_get_background(mread);

  mread_destroy(mread);

  num_motifs = arraylst_size(motifs);

  // allocate memory for PSSM pairs
  pssm_pairs = (PSSM_PAIR_T**)mm_malloc(sizeof(PSSM_PAIR_T*) * num_motifs);

  if (verbosity >= NORMAL_VERBOSE) 
    fprintf(stderr, "Number of motifs in file %d.\n", num_motifs);

  // make a CISML pattern to hold scores for each motif
  PATTERN_T** patterns = NULL;
  Resize(patterns, num_motifs, PATTERN_T*);
  int motif_index;
  for (motif_index = 0; motif_index < num_motifs; motif_index++) {
    MOTIF_T* motif = (MOTIF_T*)arraylst_get(motif_index, motifs);
    patterns[motif_index] = allocate_pattern(get_motif_id(motif), "");
    add_cisml_pattern(cisml, patterns[motif_index]);
  }

  // make reverse complement motifs and background frequencies.
  if (scan_both_strands == TRUE) {
    add_reverse_complements(motifs);
    assert(arraylst_size(motifs) == (2 * num_motifs));
    rev_bg_freqs = allocate_array(get_array_length(pos_bg_freqs));
    complement_dna_freqs(pos_bg_freqs, rev_bg_freqs);
  }

  /**************************************************************
   * Convert motif matrices into log-odds matrices.
   * Scale them.
   * Compute the lookup tables for the PDF of scaled log-odds scores.
   **************************************************************/
  int ns = scan_both_strands ? 2 : 1;	// number of strands
  for (motif_index = 0; motif_index < num_motifs; motif_index++) {
    MOTIF_T *motif, *motif_rc;
    motif = (MOTIF_T*)arraylst_get(motif_index*ns, motifs);
    if (scan_both_strands)
      motif_rc = (MOTIF_T*)arraylst_get(motif_index*ns + 1, motifs);
    else
      motif_rc = NULL;
    /*
     *  Note: If scanning both strands, we complement the motif frequencies
     *  but not the background frequencies so the motif looks the same.
     *  However, the given frequencies are used in computing the p-values
     *  since they represent the frequencies on the negative strands.
     *  (If we instead were to complement the input sequence, keeping the
     *  the motif fixed, we would need to use the complemented frequencies
     *  in computing the p-values.  Is that any clearer?)
    */
    double range = 300;		// 100 is not very good; 1000 is great but too slow
    PSSM_T* pos_pssm =
      build_motif_pssm(
        motif, 
        pos_bg_freqs, 
        pos_bg_freqs, 
        NULL, // Priors not used
        0.0L, // alpha not used
        range, 
        num_gc_bins, 
        TRUE
      );
    PSSM_T* neg_pssm = (scan_both_strands ?
      build_motif_pssm(
        motif_rc, 
        rev_bg_freqs, 
        pos_bg_freqs, 
        NULL, // Priors not used
        0.0L, // alpha not used
        range, 
        num_gc_bins, 
        TRUE
      )
      : NULL
    );
    pssm_pairs[motif_index] = create_pssm_pair(pos_pssm, neg_pssm);
  }

  // Open the FASTA file for reading.
  FILE* fasta_file = NULL;
  if (open_file(fasta_filename, "r", FALSE, "FASTA", "sequences", &fasta_file) == 0) {
    die("Couldn't open the file %s.\n", fasta_filename);
  }
  if (verbosity >= NORMAL_VERBOSE) {
    if (last == 0) {
      fprintf(stderr, "Using entire sequence\n");
    } else {
      fprintf(stderr, "Limiting sequence to last %d positions.\n", last);
    }
  }

  /**************************************************************
   * Read in all sequences and score with all motifs
   **************************************************************/
  int seq_loading_num = 0;  // keeps track on the number of sequences read in total
  int seq_counter = 0;		// holds the index to the seq in the pattern
  int unique_seqs = 0;      // keeps track on the number of unique sequences
  BOOLEAN_T need_postprocessing = FALSE;
  SEQ_T* sequence = NULL;
  RBTREE_T* seq_ids = rbtree_create(rbtree_strcasecmp,NULL,free,rbtree_intcpy,free);
  RBNODE_T* seq_node;
  BOOLEAN_T created;
  while (read_one_fasta(alph, fasta_file, max_seq_length, &sequence)) {
    ++seq_loading_num;
	created = FALSE;
    char* seq_name = get_seq_name(sequence);
    int seq_len = get_seq_length(sequence);
    int scan_len;
    if (last != 0) {
      scan_len = last;
    } else {
      scan_len = seq_len;
    }
	  
	// red-black trees are only required if duplicates should be combined
	if (combine_duplicates){
		//lookup seq id and create new entry if required, return sequence index
		char *tmp_id = mm_malloc(strlen(seq_name)+1); // required copy for rb-tree
		strncpy(tmp_id,seq_name,strlen(seq_name)+1);
		seq_node = rbtree_lookup(seq_ids, tmp_id, TRUE, &created);
		if (created) {// assign it a loading number
			rbtree_set(seq_ids, seq_node, &unique_seqs);
			seq_counter = unique_seqs;
			++unique_seqs;
		} else {
			seq_counter = *((int*)rbnode_get(seq_node));
		}
	}
	  
    //
    // Set up sequence-dependent background model and compute
    // log cumulative probability of sequence.
    //
    double *logcumback = NULL;                    // array of log cumulative probs.
    if (sdbg_order >= 0) {
      Resize(logcumback, seq_len+1, double);
      char* raw_seq = get_raw_sequence(sequence);
      BOOLEAN rc = FALSE;
      double *a_cp = get_markov_from_sequence(raw_seq, alph_string(alph), rc, sdbg_order, 0);
      log_cum_back(raw_seq, a_cp, sdbg_order, logcumback);
      myfree(a_cp);
    }

    // Get the GC content of the sequence if binning p-values by GC
    // and store it in the sequence object.
    if (num_gc_bins > 1) {
      ARRAY_T *freqs = get_sequence_freqs(sequence, alph);
      set_total_gc_sequence(sequence,
        get_array_item(1,freqs) + get_array_item(2,freqs));	// f(C) + f(G)
      free_array(freqs);			// clean up
    } else {
      set_total_gc_sequence(sequence, -1);	// flag ignore
    }

    /**************************************************************
     * Process all motifs.
     **************************************************************/
    int ns = scan_both_strands ? 2 : 1;
    for (motif_index = 0; motif_index < num_motifs; motif_index++) {
      PATTERN_T *pattern = patterns[motif_index];
      MOTIF_T* motif = (MOTIF_T*)arraylst_get(ns*motif_index, motifs);
      char* motif_id = (scan_both_strands ? get_motif_st_id(motif) : get_motif_id(motif));
      if (verbosity >= HIGH_VERBOSE) {
        fprintf(stderr, "Using motif %s of width %d.\n", motif_id, get_motif_length(motif));
      }
      if ((selected_motifs == NULL) || (have_string(get_motif_id(motif), selected_motifs) == TRUE)) {
        if (verbosity >= HIGHER_VERBOSE) {
          fprintf(stderr, "Scanning %s sequence with length %d "
              "abbreviated to %d with motif %s with length %d.\n",
              seq_name, seq_len, scan_len, motif_id, get_motif_length(motif));
        }
		SCANNED_SEQUENCE_T* scanned_seq = NULL;

		
		if (!combine_duplicates || get_pattern_num_scanned_sequences(pattern) <= seq_counter){
			// Create a scanned_sequence record and save it in the pattern.
			scanned_seq = allocate_scanned_sequence(seq_name, seq_name, pattern);
			set_scanned_sequence_length(scanned_seq, scan_len);
		} else {
			// get existing sequence record
			scanned_seq = get_pattern_scanned_sequences(pattern)[seq_counter];
			set_scanned_sequence_length(scanned_seq, max(scan_len, get_scanned_sequence_length(scanned_seq)));
		}
		
		// check if scanned component of sequence has sufficient length for the motif
		if (scan_len < get_motif_length(motif)) {
			// set score to zero and p-value to 1 if not set yet
			if(!has_scanned_sequence_score(scanned_seq)){
				set_scanned_sequence_score(scanned_seq, 0.0);
			}
			if(pvalues && !has_scanned_sequence_pvalue(scanned_seq)){
				set_scanned_sequence_pvalue(scanned_seq, 1.0);
			} 
			add_scanned_sequence_scanned_position(scanned_seq); 
			if (get_scanned_sequence_num_scanned_positions(scanned_seq) > 0L) need_postprocessing = TRUE;
			if (verbosity >= HIGH_VERBOSE) fprintf(stderr, "%s too short for motif %s. Score set to 0!\n", seq_name, motif_id);
		} else {  
			// scan the sequence using average/maximum motif affinity
			ama_sequence_scan(alph, sequence, logcumback, pssm_pairs[motif_index], scoring, 
							  pvalues, last, scanned_seq, &need_postprocessing);
		}

      } else {
        if (verbosity >= HIGH_VERBOSE) fprintf(stderr, "Skipping motif %s.\n", motif_id);
      }
    } // All motifs parsed

    free_seq(sequence);
    if (sdbg_order >= 0) myfree(logcumback);

  } // read sequences