Example #1
0
static int __devinit bfin_flash_probe(struct platform_device *pdev)
{
	int ret;
	struct physmap_flash_data *pdata = pdev->dev.platform_data;
	struct resource *memory = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	struct resource *flash_ambctl = platform_get_resource(pdev, IORESOURCE_MEM, 1);
	struct async_state *state;

	state = kzalloc(sizeof(*state), GFP_KERNEL);
	if (!state)
		return -ENOMEM;

	state->map.name       = DRIVER_NAME;
	state->map.read       = bfin_flash_read;
	state->map.copy_from  = bfin_flash_copy_from;
	state->map.write      = bfin_flash_write;
	state->map.copy_to    = bfin_flash_copy_to;
	state->map.bankwidth  = pdata->width;
	state->map.size       = resource_size(memory);
	state->map.virt       = (void __iomem *)memory->start;
	state->map.phys       = memory->start;
	state->map.map_priv_1 = (unsigned long)state;
	state->enet_flash_pin = platform_get_irq(pdev, 0);
	state->flash_ambctl0  = flash_ambctl->start;
	state->flash_ambctl1  = flash_ambctl->end;

	if (gpio_request(state->enet_flash_pin, DRIVER_NAME)) {
		pr_devinit(KERN_ERR DRIVER_NAME ": Failed to request gpio %d\n", state->enet_flash_pin);
		kfree(state);
		return -EBUSY;
	}
	gpio_direction_output(state->enet_flash_pin, 1);

	pr_devinit(KERN_NOTICE DRIVER_NAME ": probing %d-bit flash bus\n", state->map.bankwidth * 8);
	state->mtd = do_map_probe(memory->name, &state->map);
	if (!state->mtd) {
		gpio_free(state->enet_flash_pin);
		kfree(state);
		return -ENXIO;
	}

	ret = parse_mtd_partitions(state->mtd, part_probe_types, &pdata->parts, 0);
	if (ret > 0) {
		pr_devinit(KERN_NOTICE DRIVER_NAME ": Using commandline partition definition\n");
		mtd_device_register(state->mtd, pdata->parts, ret);
		state->parts = pdata->parts;
	} else if (pdata->nr_parts) {
		pr_devinit(KERN_NOTICE DRIVER_NAME ": Using board partition definition\n");
		mtd_device_register(state->mtd, pdata->parts, pdata->nr_parts);
	} else {
		pr_devinit(KERN_NOTICE DRIVER_NAME ": no partition info available, registering whole flash at once\n");
		mtd_device_register(state->mtd, NULL, 0);
	}

	platform_set_drvdata(pdev, state);

	return 0;
}
Example #2
0
static int __devinit generic_onenand_probe(struct platform_device *pdev)
{
	struct onenand_info *info;
	struct onenand_platform_data *pdata = pdev->dev.platform_data;
	struct resource *res = pdev->resource;
	unsigned long size = resource_size(res);
	int err;

	info = kzalloc(sizeof(struct onenand_info), GFP_KERNEL);
	if (!info)
		return -ENOMEM;

	if (!request_mem_region(res->start, size, dev_name(&pdev->dev))) {
		err = -EBUSY;
		goto out_free_info;
	}

	info->onenand.base = ioremap(res->start, size);
	if (!info->onenand.base) {
		err = -ENOMEM;
		goto out_release_mem_region;
	}

	info->onenand.mmcontrol = pdata ? pdata->mmcontrol : 0;
	info->onenand.irq = platform_get_irq(pdev, 0);

	info->mtd.name = dev_name(&pdev->dev);
	info->mtd.priv = &info->onenand;
	info->mtd.owner = THIS_MODULE;

	if (onenand_scan(&info->mtd, 1)) {
		err = -ENXIO;
		goto out_iounmap;
	}

	err = parse_mtd_partitions(&info->mtd, part_probes, &info->parts, 0);
	if (err > 0)
		mtd_device_register(&info->mtd, info->parts, err);
	else if (err <= 0 && pdata && pdata->parts)
		mtd_device_register(&info->mtd, pdata->parts, pdata->nr_parts);
	else
		err = mtd_device_register(&info->mtd, NULL, 0);

	platform_set_drvdata(pdev, info);

	return 0;

out_iounmap:
	iounmap(info->onenand.base);
out_release_mem_region:
	release_mem_region(res->start, size);
out_free_info:
	kfree(info);

	return err;
}
Example #3
0
static int __init init_sc520cdp(void)
{
	int i, devices_found = 0;

#ifdef REPROGRAM_PAR
	/* reprogram PAR registers so flash appears at the desired addresses */
	sc520cdp_setup_par();
#endif

	for (i = 0; i < NUM_FLASH_BANKS; i++) {
#ifdef CONFIG_DEBUG_PRINTK
		printk(KERN_NOTICE "SC520 CDP flash device: 0x%Lx at 0x%Lx\n",
			(unsigned long long)sc520cdp_map[i].size,
			(unsigned long long)sc520cdp_map[i].phys);
#else
		;
#endif

		sc520cdp_map[i].virt = ioremap_nocache(sc520cdp_map[i].phys, sc520cdp_map[i].size);

		if (!sc520cdp_map[i].virt) {
#ifdef CONFIG_DEBUG_PRINTK
			printk("Failed to ioremap_nocache\n");
#else
			;
#endif
			return -EIO;
		}

		simple_map_init(&sc520cdp_map[i]);

		mymtd[i] = do_map_probe("cfi_probe", &sc520cdp_map[i]);
		if(!mymtd[i])
			mymtd[i] = do_map_probe("jedec_probe", &sc520cdp_map[i]);
		if(!mymtd[i])
			mymtd[i] = do_map_probe("map_rom", &sc520cdp_map[i]);

		if (mymtd[i]) {
			mymtd[i]->owner = THIS_MODULE;
			++devices_found;
		}
		else {
			iounmap(sc520cdp_map[i].virt);
		}
	}
	if(devices_found >= 2) {
		/* Combine the two flash banks into a single MTD device & register it: */
		merged_mtd = mtd_concat_create(mymtd, 2, "SC520CDP Flash Banks #0 and #1");
		if(merged_mtd)
			mtd_device_register(merged_mtd, NULL, 0);
	}
	if(devices_found == 3) /* register the third (DIL-Flash) device */
		mtd_device_register(mymtd[2], NULL, 0);
	return(devices_found ? 0 : -ENXIO);
}
Example #4
0
int mtdram_init_device(struct mtd_info *mtd, void *mapped_address,
		unsigned long size, const char *name)
{
	memset(mtd, 0, sizeof(*mtd));

	/* Setup the MTD structure */
	mtd->name = name;
	mtd->type = MTD_RAM;
	mtd->flags = MTD_CAP_RAM;
	mtd->size = size;
	mtd->writesize = 1;
	mtd->writebufsize = writebuf_size;
	mtd->erasesize = MTDRAM_ERASE_SIZE;
	mtd->priv = mapped_address;

	mtd->owner = THIS_MODULE;
	mtd->_erase = ram_erase;
	mtd->_point = ram_point;
	mtd->_unpoint = ram_unpoint;
	mtd->_read = ram_read;
	mtd->_write = ram_write;

	if (mtd_device_register(mtd, NULL, 0))
		return -EIO;

	return 0;
}
Example #5
0
static int __init init_ts5500_map(void)
{
	int rc = 0;

	ts5500_map.virt = ioremap_nocache(ts5500_map.phys, ts5500_map.size);

	if (!ts5500_map.virt) {
		printk(KERN_ERR "Failed to ioremap_nocache\n");
		rc = -EIO;
		goto err2;
	}

	simple_map_init(&ts5500_map);

	mymtd = do_map_probe("jedec_probe", &ts5500_map);
	if (!mymtd)
		mymtd = do_map_probe("map_rom", &ts5500_map);

	if (!mymtd) {
		rc = -ENXIO;
		goto err1;
	}

	mymtd->owner = THIS_MODULE;
	mtd_device_register(mymtd, ts5500_partitions, NUM_PARTITIONS);

	return 0;

err1:
	iounmap(ts5500_map.virt);
err2:
	return rc;
}
Example #6
0
static int __init init_rpxlite(void)
{
#ifdef CONFIG_DEBUG_PRINTK
	printk(KERN_NOTICE "RPX Lite or CLLF flash device: %x at %x\n", WINDOW_SIZE*4, WINDOW_ADDR);
#else
	;
#endif
	rpxlite_map.virt = ioremap(WINDOW_ADDR, WINDOW_SIZE * 4);

	if (!rpxlite_map.virt) {
#ifdef CONFIG_DEBUG_PRINTK
		printk("Failed to ioremap\n");
#else
		;
#endif
		return -EIO;
	}
	simple_map_init(&rpxlite_map);
	mymtd = do_map_probe("cfi_probe", &rpxlite_map);
	if (mymtd) {
		mymtd->owner = THIS_MODULE;
		mtd_device_register(mymtd, NULL, 0);
		return 0;
	}

	iounmap((void *)rpxlite_map.virt);
	return -ENXIO;
}
Example #7
0
/**
 * powernv_flash_probe
 * @pdev: platform device
 *
 * Returns 0 on success, -ENOMEM, -ENXIO on error
 */
static int powernv_flash_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct powernv_flash *data;
	int ret;

	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
	if (!data) {
		ret = -ENOMEM;
		goto out;
	}
	data->mtd.priv = data;

	ret = of_property_read_u32(dev->of_node, "ibm,opal-id", &(data->id));
	if (ret) {
		dev_err(dev, "no device property 'ibm,opal-id'\n");
		goto out;
	}

	ret = powernv_flash_set_driver_info(dev, &data->mtd);
	if (ret)
		goto out;

	dev_set_drvdata(dev, data);

	/*
	 * The current flash that skiboot exposes is one contiguous flash chip
	 * with an ffs partition at the start, it should prove easier for users
	 * to deal with partitions or not as they see fit
	 */
	ret = mtd_device_register(&data->mtd, NULL, 0);

out:
	return ret;
}
static int __init init_netsc520(void)
{
	printk(KERN_NOTICE "NetSc520 flash device: 0x%Lx at 0x%Lx\n",
			(unsigned long long)netsc520_map.size,
			(unsigned long long)netsc520_map.phys);
	netsc520_map.virt = ioremap_nocache(netsc520_map.phys, netsc520_map.size);

	if (!netsc520_map.virt) {
		printk("Failed to ioremap_nocache\n");
		return -EIO;
	}

	simple_map_init(&netsc520_map);

	mymtd = do_map_probe("cfi_probe", &netsc520_map);
	if(!mymtd)
		mymtd = do_map_probe("map_ram", &netsc520_map);
	if(!mymtd)
		mymtd = do_map_probe("map_rom", &netsc520_map);

	if (!mymtd) {
		iounmap(netsc520_map.virt);
		return -ENXIO;
	}

	mymtd->owner = THIS_MODULE;
	mtd_device_register(mymtd, partition_info, NUM_PARTITIONS);
	return 0;
}
static int rknand_add_partitions(struct rknand_info *nand_info)
{
#ifdef CONFIG_MTD_CMDLINE_PARTS
    int num_partitions = 0; 

	// 从命令行解析分区的信息
    num_partitions = parse_mtd_partitions(&(rknand_mtd), part_probes, &rknand_parts, 0); 
    NAND_DEBUG(NAND_DEBUG_LEVEL0,"num_partitions = %d\n",num_partitions);
    if(num_partitions > 0) { 
    	int i;
    	for (i = 0; i < num_partitions; i++) 
        {
            rknand_parts[i].offset *= 0x200;
            rknand_parts[i].size   *=0x200;
    	}
        rknand_parts[num_partitions - 1].size = rknand_mtd.size - rknand_parts[num_partitions - 1].offset;
        
		g_num_partitions = num_partitions;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 0, 0))
		return mtd_device_register(&rknand_mtd, rknand_parts, num_partitions);
#else
		return add_mtd_partitions(&(rknand_mtd), rknand_parts, num_partitions);
#endif
    } 
#endif 
    g_num_partitions = 0;
	return 0;
}
Example #10
0
static int __init init_dbox2_flash(void)
{
       	printk(KERN_NOTICE "D-Box 2 flash driver (size->0x%X mem->0x%X)\n", WINDOW_SIZE, WINDOW_ADDR);
	dbox2_flash_map.virt = ioremap(WINDOW_ADDR, WINDOW_SIZE);

	if (!dbox2_flash_map.virt) {
		printk("Failed to ioremap\n");
		return -EIO;
	}
	simple_map_init(&dbox2_flash_map);

	// Probe for dual Intel 28F320 or dual AMD
	mymtd = do_map_probe("cfi_probe", &dbox2_flash_map);
	if (!mymtd) {
	    // Probe for single Intel 28F640
	    dbox2_flash_map.bankwidth = 2;

	    mymtd = do_map_probe("cfi_probe", &dbox2_flash_map);
	}

	if (mymtd) {
		mymtd->owner = THIS_MODULE;

                /* Create MTD devices for each partition. */
		mtd_device_register(mymtd, partition_info, NUM_PARTITIONS);

		return 0;
	}

	iounmap((void *)dbox2_flash_map.virt);
	return -ENXIO;
}
Example #11
0
static int __init init_flagadm(void)
{
	printk(KERN_NOTICE "FlagaDM flash device: %x at %x\n",
			FLASH_SIZE, FLASH_PHYS_ADDR);

	flagadm_map.phys = FLASH_PHYS_ADDR;
	flagadm_map.virt = ioremap(FLASH_PHYS_ADDR,
					FLASH_SIZE);

	if (!flagadm_map.virt) {
		printk("Failed to ioremap\n");
		return -EIO;
	}

	simple_map_init(&flagadm_map);

	mymtd = do_map_probe("cfi_probe", &flagadm_map);
	if (mymtd) {
		mymtd->owner = THIS_MODULE;
		mtd_device_register(mymtd, flagadm_parts, PARTITION_COUNT);
		printk(KERN_NOTICE "FlagaDM flash device initialized\n");
		return 0;
	}

	iounmap((void __iomem *)flagadm_map.virt);
	return -ENXIO;
}
int sm_register_device(struct mtd_info *mtd, int smartmedia)
{
	struct nand_chip *chip = mtd->priv;
	int ret;

	chip->options |= NAND_SKIP_BBTSCAN;

	/* Scan for card properties */
	ret = nand_scan_ident(mtd, 1, smartmedia ?
		nand_smartmedia_flash_ids : nand_xd_flash_ids);

	if (ret)
		return ret;

	/* Bad block marker position */
	chip->badblockpos = 0x05;
	chip->badblockbits = 7;
	chip->block_markbad = sm_block_markbad;

	/* ECC layout */
	if (mtd->writesize == SM_SECTOR_SIZE)
		chip->ecc.layout = &nand_oob_sm;
	else if (mtd->writesize == SM_SMALL_PAGE)
		chip->ecc.layout = &nand_oob_sm_small;
	else
		return -ENODEV;

	ret = nand_scan_tail(mtd);

	if (ret)
		return ret;

	return mtd_device_register(mtd, NULL, 0);
}
Example #13
0
static void mtd_concat_add_work(struct work_struct *work)
{
	struct mtd_info *mtd;

	mtd = mtd_concat_create(concat_devs, ARRAY_SIZE(concat_devs), "flash");

	mtd_device_register(mtd, multi_pdata->parts, multi_pdata->nr_parts);
}
Example #14
0
int __init init_alteramap(void)
{
	static const char *rom_probe_types[] = {"cfi_probe", "jedec_probe", 0 };
	const char **type;

 	ndk_amd_map.virt = (unsigned long *)ioremap_nocache(WINDOW_ADDR, WINDOW_SIZE);
/*
	if (!ndk_amd_map.virt) {
		printk("Failed to ioremap\n");
		return -EIO;
	}
*/
	simple_map_init(&ndk_amd_map);

	mymtd = 0;
	type = rom_probe_types;
	for(; !mymtd && *type; type++) {
		mymtd = do_map_probe(*type, &ndk_amd_map);
	}
	if (mymtd) {
		mymtd->owner = THIS_MODULE;

		mtd_parts_nb = parse_mtd_partitions(mymtd, part_probes, 
						    &mtd_parts, 0);

		if (mtd_parts_nb > 0)
		{
			mtd_device_register(mymtd, mtd_parts, mtd_parts_nb);
			return 0;
		}

		if (NUM_PARTITIONS != 0) 
		{
			printk(KERN_NOTICE 
			       "Using Altera NDK partition definition\n");
			mtd_device_register(mymtd, alteramap_partitions, NUM_PARTITIONS);
			return 0;
		}

		return 0;
	}

	iounmap((void *)ndk_amd_map.virt);
	return -ENXIO;
}
Example #15
0
static void mtd_concat_add_work(struct work_struct *work)
{
	struct mtd_info *mtd;

	mtd = mtd_concat_create(concat_devs, ARRAY_SIZE(concat_devs), "flash");

	mtd_device_register(mtd, wzrhpag300h_flash_partitions,
			   ARRAY_SIZE(wzrhpag300h_flash_partitions));
}
Example #16
0
int mtdsf_init_device(struct mtd_info *mtd, unsigned long size, char *name)
{
	int nr_parts, cut_parts = 0;
	char *part_type = NULL;

	mtd->name = name;
	mtd->type = MTD_NORFLASH;
	mtd->flags = MTD_CAP_NORFLASH;
	mtd->size = size;
	mtd->erasesize = MTDSF_ERASE_SIZE;
	mtd->owner = THIS_MODULE;
	mtd->erase = sf_erase;
	mtd->read = sf_read;
	mtd->write = sf_write;
	mtd->writesize = 1;


	boot_partitions[5].offset = size - boot_partitions[5].size;
	boot_partitions[4].offset = boot_partitions[5].offset - boot_partitions[4].size;
	boot_partitions[3].offset = boot_partitions[4].offset - boot_partitions[3].size;
	boot_partitions[2].offset = boot_partitions[3].offset - boot_partitions[2].size;
	if (boot_partitions[2].offset > 0x00280000) {
		boot_partitions[1].offset = boot_partitions[2].offset - boot_partitions[1].size;
		if (boot_partitions[1].offset > 0)
			boot_partitions[0].size = boot_partitions[1].offset;
		else {
			shift_partition_content(1);
			cut_parts = 1;
		}
	} else if (boot_partitions[2].offset > 0) {
		boot_partitions[1].size = boot_partitions[2].offset;
		boot_partitions[1].offset = 0;
		shift_partition_content(1);
		cut_parts = 1;
	} else {
		shift_partition_content(2);
		cut_parts = 2;
	}
	

	nr_parts = parse_mtd_partitions(mtd, part_probes, &parts, 0);
	if (nr_parts > 0) {
		part_type = "command line";
		cut_parts = 0;
	}
	if (nr_parts <= 0) {
		parts = boot_partitions;
		nr_parts = NUM_SF_PARTITIONS;
		part_type = "builtin";
	}
	printk(KERN_INFO "SF Using %s partition table count=%d\n", part_type, nr_parts - cut_parts);
	mtd_device_register(mtd, parts, nr_parts - cut_parts);
	//add_mtd_partitions(mtd, boot_partitions, ARRAY_SIZE(boot_partitions));

	return 0;
}
Example #17
0
static int __devinit vr_nor_init_partitions(struct vr_nor_mtd *p)
{
	struct mtd_partition *parts;
	static const char *part_probes[] = { "cmdlinepart", NULL };

	/* register the flash bank */
	/* partition the flash bank */
	p->nr_parts = parse_mtd_partitions(p->info, part_probes, &parts, 0);
	return mtd_device_register(p->info, parts, p->nr_parts);
}
Example #18
0
File: pci.c Project: AllenDou/linux
static int __devinit
mtd_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
{
	struct mtd_pci_info *info = (struct mtd_pci_info *)id->driver_data;
	struct map_pci_info *map = NULL;
	struct mtd_info *mtd = NULL;
	int err;

	err = pci_enable_device(dev);
	if (err)
		goto out;

	err = pci_request_regions(dev, "pci mtd");
	if (err)
		goto out;

	map = kmalloc(sizeof(*map), GFP_KERNEL);
	err = -ENOMEM;
	if (!map)
		goto release;

	map->map       = mtd_pci_map;
	map->map.name  = pci_name(dev);
	map->dev       = dev;
	map->exit      = info->exit;
	map->translate = info->translate;

	err = info->init(dev, map);
	if (err)
		goto release;

	/* tsk - do_map_probe should take const char * */
	mtd = do_map_probe((char *)info->map_name, &map->map);
	err = -ENODEV;
	if (!mtd)
		goto release;

	mtd->owner = THIS_MODULE;
	mtd_device_register(mtd, NULL, 0);

	pci_set_drvdata(dev, mtd);

	return 0;

release:
	if (map) {
		map->exit(dev, map);
		kfree(map);
	}

	pci_release_regions(dev);
out:
	return err;
}
Example #19
0
/*
 * Initialize chip structure
 */
static int ndfc_chip_init(struct ndfc_controller *ndfc,
			  struct device_node *node)
{
	struct device_node *flash_np;
	struct nand_chip *chip = &ndfc->chip;
	struct mtd_info *mtd = nand_to_mtd(chip);
	int ret;

	chip->IO_ADDR_R = ndfc->ndfcbase + NDFC_DATA;
	chip->IO_ADDR_W = ndfc->ndfcbase + NDFC_DATA;
	chip->cmd_ctrl = ndfc_hwcontrol;
	chip->dev_ready = ndfc_ready;
	chip->select_chip = ndfc_select_chip;
	chip->chip_delay = 50;
	chip->controller = &ndfc->ndfc_control;
	chip->read_buf = ndfc_read_buf;
	chip->write_buf = ndfc_write_buf;
	chip->ecc.correct = nand_correct_data;
	chip->ecc.hwctl = ndfc_enable_hwecc;
	chip->ecc.calculate = ndfc_calculate_ecc;
	chip->ecc.mode = NAND_ECC_HW;
	chip->ecc.size = 256;
	chip->ecc.bytes = 3;
	chip->ecc.strength = 1;
	nand_set_controller_data(chip, ndfc);

	mtd->dev.parent = &ndfc->ofdev->dev;

	flash_np = of_get_next_child(node, NULL);
	if (!flash_np)
		return -ENODEV;
	nand_set_flash_node(chip, flash_np);

	mtd->name = kasprintf(GFP_KERNEL, "%s.%s", dev_name(&ndfc->ofdev->dev),
			      flash_np->name);
	if (!mtd->name) {
		ret = -ENOMEM;
		goto err;
	}

	ret = nand_scan(mtd, 1);
	if (ret)
		goto err;

	ret = mtd_device_register(mtd, NULL, 0);

err:
	of_node_put(flash_np);
	if (ret)
		kfree(mtd->name);
	return ret;
}
Example #20
0
static int __init init_mbx(void)
{
	printk(KERN_NOTICE "Motorola MBX flash device: 0x%x at 0x%x\n", WINDOW_SIZE*4, WINDOW_ADDR);
	mbx_map.virt = ioremap(WINDOW_ADDR, WINDOW_SIZE * 4);

	if (!mbx_map.virt) {
		printk("Failed to ioremap\n");
		return -EIO;
	}
	simple_map_init(&mbx_map);

	mymtd = do_map_probe("jedec_probe", &mbx_map);
	if (mymtd) {
		mymtd->owner = THIS_MODULE;
		mtd_device_register(mymtd, NULL, 0);
		mtd_device_register(mymtd, partition_info, NUM_PARTITIONS);
		return 0;
	}

	iounmap((void *)mbx_map.virt);
	return -ENXIO;
}
Example #21
0
static int __init init_vmax301(void)
{
	int i;
	unsigned long iomapadr;
	// Print out our little header..
#ifdef CONFIG_DEBUG_PRINTK
	printk("Tempustech VMAX 301 MEM:0x%x-0x%x\n",WINDOW_START,
	       WINDOW_START+4*WINDOW_LENGTH);
#else
	;
#endif

	iomapadr = (unsigned long)ioremap(WINDOW_START, WINDOW_LENGTH*4);
	if (!iomapadr) {
#ifdef CONFIG_DEBUG_PRINTK
		printk("Failed to ioremap memory region\n");
#else
		;
#endif
		return -EIO;
	}
	/* Put the address in the map's private data area.
	   We store the actual MTD IO address rather than the
	   address of the first half, because it's used more
	   often.
	*/
	vmax_map[0].map_priv_2 = iomapadr + WINDOW_START;
	vmax_map[1].map_priv_2 = iomapadr + (3*WINDOW_START);

	for (i=0; i<2; i++) {
		vmax_mtd[i] = do_map_probe("cfi_probe", &vmax_map[i]);
		if (!vmax_mtd[i])
			vmax_mtd[i] = do_map_probe("jedec", &vmax_map[i]);
		if (!vmax_mtd[i])
			vmax_mtd[i] = do_map_probe("map_ram", &vmax_map[i]);
		if (!vmax_mtd[i])
			vmax_mtd[i] = do_map_probe("map_rom", &vmax_map[i]);
		if (vmax_mtd[i]) {
			vmax_mtd[i]->owner = THIS_MODULE;
			mtd_device_register(vmax_mtd[i], NULL, 0);
		}
	}

	if (!vmax_mtd[0] && !vmax_mtd[1]) {
		iounmap((void *)iomapadr);
		return -ENXIO;
	}

	return 0;
}
Example #22
0
static int __init uclinux_mtd_init(void)
{
	struct mtd_info *mtd;
	struct map_info *mapp;

	mapp = &uclinux_ram_map;
	if (!mapp->size)
		mapp->size = PAGE_ALIGN(ntohl(*((unsigned long *)(mapp->phys + 8))));
	mapp->bankwidth = 4;

	printk("uclinux[mtd]: RAM probe address=0x%x size=0x%x\n",
	       	(int) mapp->phys, (int) mapp->size);

	/*
	 * The filesystem is guaranteed to be in direct mapped memory. It is
	 * directly following the kernels own bss region. Following the same
	 * mechanism used by architectures setting up traditional initrds we
	 * use phys_to_virt to get the virtual address of its start.
	 */
	mapp->virt = phys_to_virt(mapp->phys);

	if (mapp->virt == 0) {
		printk("uclinux[mtd]: no virtual mapping?\n");
		return(-EIO);
	}

	simple_map_init(mapp);

	mtd = do_map_probe("map_ram", mapp);
	if (!mtd) {
		printk("uclinux[mtd]: failed to find a mapping?\n");
		return(-ENXIO);
	}

	mtd->owner = THIS_MODULE;
	mtd->_point = uclinux_point;
	mtd->priv = mapp;

	uclinux_ram_mtdinfo = mtd;
	mtd_device_register(mtd, uclinux_romfs, NUM_PARTITIONS);

	return(0);
}
Example #23
0
/*
 * Initialize FLASH support
 */
static int __init h720x_mtd_init(void)
{

	char	*part_type = NULL;

	h720x_map.virt = ioremap(h720x_map.phys, h720x_map.size);

	if (!h720x_map.virt) {
		printk(KERN_ERR "H720x-MTD: ioremap failed\n");
		return -EIO;
	}

	simple_map_init(&h720x_map);

	// Probe for flash bankwidth 4
	printk (KERN_INFO "H720x-MTD probing 32bit FLASH\n");
	mymtd = do_map_probe("cfi_probe", &h720x_map);
	if (!mymtd) {
		printk (KERN_INFO "H720x-MTD probing 16bit FLASH\n");
	    // Probe for bankwidth 2
	    h720x_map.bankwidth = 2;
	    mymtd = do_map_probe("cfi_probe", &h720x_map);
	}

	if (mymtd) {
		mymtd->owner = THIS_MODULE;

		nr_mtd_parts = parse_mtd_partitions(mymtd, probes, &mtd_parts, 0);
		if (nr_mtd_parts > 0)
			part_type = "command line";
		if (nr_mtd_parts <= 0) {
			mtd_parts = h720x_partitions;
			nr_mtd_parts = NUM_PARTITIONS;
			part_type = "builtin";
		}
		printk(KERN_INFO "Using %s partition table\n", part_type);
		mtd_device_register(mymtd, mtd_parts, nr_mtd_parts);
		return 0;
	}

	iounmap((void *)h720x_map.virt);
	return -ENXIO;
}
static int __init init_soleng_maps(void)
{
	/* First probe at offset 0 */
	soleng_flash_map.phys = 0;
	soleng_flash_map.virt = (void __iomem *)P2SEGADDR(0);
	soleng_eprom_map.phys = 0x01000000;
	soleng_eprom_map.virt = (void __iomem *)P1SEGADDR(0x01000000);
	simple_map_init(&soleng_eprom_map);
	simple_map_init(&soleng_flash_map);

	printk(KERN_NOTICE "Probing for flash chips at 0x00000000:\n");
	flash_mtd = do_map_probe("cfi_probe", &soleng_flash_map);
	if (!flash_mtd) {
		/* Not there. Try swapping */
		printk(KERN_NOTICE "Probing for flash chips at 0x01000000:\n");
		soleng_flash_map.phys = 0x01000000;
		soleng_flash_map.virt = P2SEGADDR(0x01000000);
		soleng_eprom_map.phys = 0;
		soleng_eprom_map.virt = P1SEGADDR(0);
		flash_mtd = do_map_probe("cfi_probe", &soleng_flash_map);
		if (!flash_mtd) {
			/* Eep. */
			printk(KERN_NOTICE "Flash chips not detected at either possible location.\n");
			return -ENXIO;
		}
	}
	printk(KERN_NOTICE "Solution Engine: Flash at 0x%08lx, EPROM at 0x%08lx\n",
	       soleng_flash_map.phys & 0x1fffffff,
	       soleng_eprom_map.phys & 0x1fffffff);
	flash_mtd->owner = THIS_MODULE;

	eprom_mtd = do_map_probe("map_rom", &soleng_eprom_map);
	if (eprom_mtd) {
		eprom_mtd->owner = THIS_MODULE;
		mtd_device_register(eprom_mtd, NULL, 0);
	}

	mtd_device_parse_register(flash_mtd, probes, NULL,
				  superh_se_partitions, NUM_PARTITIONS);

	return 0;
}
Example #25
0
static int __init init_sbc_gxx(void)
{
  	iomapadr = ioremap(WINDOW_START, WINDOW_LENGTH);
	if (!iomapadr) {
		printk( KERN_ERR"%s: failed to ioremap memory region\n",
			sbc_gxx_map.name );
		return -EIO;
	}

	if (!request_region( PAGE_IO, PAGE_IO_SIZE, "SBC-GXx flash")) {
		printk( KERN_ERR"%s: IO ports 0x%x-0x%x in use\n",
			sbc_gxx_map.name,
			PAGE_IO, PAGE_IO+PAGE_IO_SIZE-1 );
		iounmap(iomapadr);
		return -EAGAIN;
	}


#ifdef CONFIG_DEBUG_PRINTK
	printk( KERN_INFO"%s: IO:0x%x-0x%x MEM:0x%x-0x%x\n",
		sbc_gxx_map.name,
		PAGE_IO, PAGE_IO+PAGE_IO_SIZE-1,
		WINDOW_START, WINDOW_START+WINDOW_LENGTH-1 );
#else
	;
#endif

	/* Probe for chip. */
	all_mtd = do_map_probe( "cfi_probe", &sbc_gxx_map );
	if( !all_mtd ) {
		cleanup_sbc_gxx();
		return -ENXIO;
	}

	all_mtd->owner = THIS_MODULE;

	/* Create MTD devices for each partition. */
	mtd_device_register(all_mtd, partition_info, NUM_PARTITIONS);

	return 0;
}
Example #26
0
int sm_register_device(struct mtd_info *mtd, int smartmedia)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct nand_flash_dev *flash_ids;
	int ret;

	chip->options |= NAND_SKIP_BBTSCAN;

	/* Scan for card properties */
	chip->dummy_controller.ops = &sm_controller_ops;
	flash_ids = smartmedia ? nand_smartmedia_flash_ids : nand_xd_flash_ids;
	ret = nand_scan_with_ids(chip, 1, flash_ids);
	if (ret)
		return ret;

	ret = mtd_device_register(mtd, NULL, 0);
	if (ret)
		nand_cleanup(chip);

	return ret;
}
Example #27
0
File: mtd.c Project: 020gzh/linux
int efx_mtd_add(struct efx_nic *efx, struct efx_mtd_partition *parts,
		size_t n_parts, size_t sizeof_part)
{
	struct efx_mtd_partition *part;
	size_t i;

	for (i = 0; i < n_parts; i++) {
		part = (struct efx_mtd_partition *)((char *)parts +
						    i * sizeof_part);

		part->mtd.writesize = 1;

		part->mtd.owner = THIS_MODULE;
		part->mtd.priv = efx;
		part->mtd.name = part->name;
		part->mtd._erase = efx_mtd_erase;
		part->mtd._read = efx->type->mtd_read;
		part->mtd._write = efx->type->mtd_write;
		part->mtd._sync = efx_mtd_sync;

		efx->type->mtd_rename(part);

		if (mtd_device_register(&part->mtd, NULL, 0))
			goto fail;

		/* Add to list in order - efx_mtd_remove() depends on this */
		list_add_tail(&part->node, &efx->mtd_list);
	}

	return 0;

fail:
	while (i--) {
		part = (struct efx_mtd_partition *)((char *)parts +
						    i * sizeof_part);
		efx_mtd_remove_partition(part);
	}
	/* Failure is unlikely here, but probably means we're out of memory */
	return -ENOMEM;
}
Example #28
0
static int efx_mtd_probe_device(struct efx_nic *efx, struct efx_mtd *efx_mtd)
{
	struct efx_mtd_partition *part;

	efx_mtd->efx = efx;

	efx_mtd_rename_device(efx_mtd);

	efx_for_each_partition(part, efx_mtd) {
		part->mtd.writesize = 1;

		part->mtd.owner = THIS_MODULE;
		part->mtd.priv = efx_mtd;
		part->mtd.name = part->name;
		part->mtd.erase = efx_mtd_erase;
		part->mtd.read = efx_mtd->ops->read;
		part->mtd.write = efx_mtd->ops->write;
		part->mtd.sync = efx_mtd_sync;

		if (mtd_device_register(&part->mtd, NULL, 0))
			goto fail;
	}
Example #29
0
static int __init uclinux_mtd_init(void)
{
	struct mtd_info *mtd;
	struct map_info *mapp;

	mapp = &uclinux_ram_map;
	if (!mapp->size)
		mapp->size = PAGE_ALIGN(ntohl(*((unsigned long *)(mapp->phys + 8))));
	mapp->bankwidth = 4;

	printk("uclinux[mtd]: RAM probe address=0x%x size=0x%x\n",
	       	(int) mapp->phys, (int) mapp->size);

	mapp->virt = ioremap_nocache(mapp->phys, mapp->size);

	if (mapp->virt == 0) {
		printk("uclinux[mtd]: ioremap_nocache() failed\n");
		return(-EIO);
	}

	simple_map_init(mapp);

	mtd = do_map_probe("map_ram", mapp);
	if (!mtd) {
		printk("uclinux[mtd]: failed to find a mapping?\n");
		iounmap(mapp->virt);
		return(-ENXIO);
	}

	mtd->owner = THIS_MODULE;
	mtd->_point = uclinux_point;
	mtd->priv = mapp;

	uclinux_ram_mtdinfo = mtd;
	mtd_device_register(mtd, uclinux_romfs, NUM_PARTITIONS);

	return(0);
}
Example #30
0
/**
 * Module/ driver initialization.
 *
 * Returns Zero on success
 */
static int __init flash_init(void)
{
	/*
	 * Read the bootbus region 0 setup to determine the base
	 * address of the flash.
	 */
	union cvmx_mio_boot_reg_cfgx region_cfg;
	region_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(0));
	if (region_cfg.s.en) {
		/*
		 * The bootloader always takes the flash and sets its
		 * address so the entire flash fits below
		 * 0x1fc00000. This way the flash aliases to
		 * 0x1fc00000 for booting. Software can access the
		 * full flash at the true address, while core boot can
		 * access 4MB.
		 */
		/* Use this name so old part lines work */
		flash_map.name = "phys_mapped_flash";
		flash_map.phys = region_cfg.s.base << 16;
		flash_map.size = 0x1fc00000 - flash_map.phys;
		flash_map.bankwidth = 1;
		flash_map.virt = ioremap(flash_map.phys, flash_map.size);
		pr_notice("Bootbus flash: Setting flash for %luMB flash at "
			  "0x%08llx\n", flash_map.size >> 20, flash_map.phys);
		simple_map_init(&flash_map);
		mymtd = do_map_probe("cfi_probe", &flash_map);
		if (mymtd) {
			mymtd->owner = THIS_MODULE;

			nr_parts = parse_mtd_partitions(mymtd,
							part_probe_types,
							&parts, 0);
			mtd_device_register(mymtd, parts, nr_parts);
		} else {
			pr_err("Failed to register MTD device for flash\n");
		}
	}