Example #1
0
int render_test() {
    init_screen(-2, -2, 2, 2, 500, 500);
    float theta = M_PI / 3;
    struct timeval start, end;
    long mtime, secs, usecs;    
    int i = 0;
    matrix edge = init_identity(4);
    eye.x = 0;
    eye.y = 5;
    eye.z = 10;
    draw_box(1, 1, 1, 1, 0, 0, &edge);
    //draw_sphere(-1, 0, 0, 1, &edge);
    SDL_Color s;
    s.r = 0;
    s.g = 0;
    s.b = 255;
    float total_frames = 0;
    gettimeofday(&start, NULL);
    while( i < 300 ) {
    //theta = theta + M_PI / 30;
    matrix transformer = init_identity( 4 );
    //multiply_matrix_onto_self(rotation_matrix_x(theta), &transformer);
    //multiply_matrix_onto_self(rotation_matrix_z(theta), &transformer);
    //multiply_matrix_onto_self(rotation_matrix_y(theta), &transformer);
    double s[3];
    s[0] =.4;
    s[1] =.4;
    s[2] =.4;
    multiply_matrix_onto_self(scale_matrix(s), &transformer);
    matrix to_render = multiply_matrix(transformer, *m);
    draw_to_screen(eye.x, eye.y, eye.z, &to_render, *(Uint32 *)&s);
    eye.x += .01;
    eye.y += .01;

    //printf("y: %f\n", eye.y);
    //eye.y -= .01;
        //printf("Or %f seconds\n", l);
    total_frames++;
    //printf("Frames per sec: %f\n", l);
    //1 / framerate = 1000 * millseconds
    //ez = ez + 1;*/
    i++;
    }
    gettimeofday(&end, NULL);
    secs  = end.tv_sec  - start.tv_sec;
    usecs = end.tv_usec - start.tv_usec;
    mtime = ((secs) * 1000 + usecs/1000.0) + 0.5;
    //printf("Elapsed time: %ld millisecs\n", mtime);
    double l = (double) mtime / 1000;

    printf("Total frames: %f\n", total_frames);
    printf("Total time: %f\n", l);
    printf("Average fps: %f\n", total_frames / l);
    return 0;
}
Example #2
0
static void
Render(unsigned int width, unsigned int height, shader_data* data)
{
    float matrix_rotate[16], matrix_modelview[16], matrix_perspective[16], matrix_mvp[16];

    /* 
    * Do some rotation with Euler angles. It is not a fixed axis as
    * quaterions would be, but the effect is cool. 
    */
    rotate_matrix((float)data->angle_x, 1.0f, 0.0f, 0.0f, matrix_modelview);
    rotate_matrix((float)data->angle_y, 0.0f, 1.0f, 0.0f, matrix_rotate);

    multiply_matrix(matrix_rotate, matrix_modelview, matrix_modelview);

    rotate_matrix((float)data->angle_z, 0.0f, 1.0f, 0.0f, matrix_rotate);

    multiply_matrix(matrix_rotate, matrix_modelview, matrix_modelview);

    /* Pull the camera back from the cube */
    matrix_modelview[14] -= 2.5;

    perspective_matrix(45.0f, (float)width/height, 0.01f, 100.0f, matrix_perspective);
    multiply_matrix(matrix_perspective, matrix_modelview, matrix_mvp);

    GL_CHECK(glUniformMatrix4fv(data->attr_mvp, 1, GL_FALSE, matrix_mvp));

    data->angle_x += 3;
    data->angle_y += 2;
    data->angle_z += 1;

    if(data->angle_x >= 360) data->angle_x -= 360;
    if(data->angle_x < 0) data->angle_x += 360;
    if(data->angle_y >= 360) data->angle_y -= 360;
    if(data->angle_y < 0) data->angle_y += 360;
    if(data->angle_z >= 360) data->angle_z -= 360;
    if(data->angle_z < 0) data->angle_z += 360;

    GL_CHECK(glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT));
    GL_CHECK(glDrawArrays(GL_TRIANGLES, 0, 36));
}
Example #3
0
void hmm_set_tprob(hmm_t *hmm, double *tprob, int ntprob)
{
    hmm->ntprob_arr = ntprob;
    if ( ntprob<=0 ) ntprob = 1;

    if ( !hmm->tprob_arr )
        hmm->tprob_arr  = (double*) malloc(sizeof(double)*hmm->nstates*hmm->nstates*ntprob);

    memcpy(hmm->tprob_arr,tprob,sizeof(double)*hmm->nstates*hmm->nstates);

    int i;
    for (i=1; i<ntprob; i++)
        multiply_matrix(hmm->nstates, hmm->tprob_arr, hmm->tprob_arr+(i-1)*hmm->nstates*hmm->nstates, hmm->tprob_arr+i*hmm->nstates*hmm->nstates, hmm->tmp);
}
Example #4
0
void* pthread_mul_matrix(void* _tid) {
	int tid = *((int*) _tid);

	double start;
	double finish;

	GET_TIME(start);
	multiply_matrix(tid);
	GET_TIME(finish);

	printf("Thread_%02d,%lf,%lf\n", tid, start - start_time, finish - start_time);
	//printf("Thread: %d finish - %lf\n", tid, finish - start_time);
	return NULL;
}
Example #5
0
void draw_objects(simulation_t *simulation, buffer_t *buffer, shader_t *shader, GLfloat camera[16]) {
    GLfloat modelview[16];
    for (unsigned int i = 0; i < simulation->count; i++) {
        particle_t particle = simulation->src_buf[i];
        vec3f p = particle.position;
        load_identity(modelview);
        translate(modelview, p.x, p.y, p.z);
        scale(modelview, particle.radius, particle.radius, particle.radius);
        multiply_matrix(modelview, camera, modelview);
        set_matrix(shader, MODELVIEW_MATRIX, modelview);
        glColor3f(particle.r, particle.g, particle.b);
        draw_vbo(buffer);
    }
}
Example #6
0
int main(void)
{
	int mat1[MAX][MAX];
	int mat2[MAX][MAX];
	int mat3[MAX][MAX];

	input_matrix(mat1, MAX);
	input_matrix(mat2, MAX);

	multiply_matrix(mat1, mat2, mat3, MAX);

	printf("\n Answer : ");
	print_matrix(mat3, MAX);

	return 0;
}
Example #7
0
static void _set_tprob(hmm_t *hmm, int pos_diff)
{
    assert( pos_diff>=0 );

    int i, n;

    n = hmm->ntprob_arr ? pos_diff % hmm->ntprob_arr : 0;  // n-th precalculated matrix
    memcpy(hmm->curr_tprob, hmm->tprob_arr+n*hmm->nstates*hmm->nstates, sizeof(*hmm->curr_tprob)*hmm->nstates*hmm->nstates);

    if ( hmm->ntprob_arr > 0  )
    {
        n = pos_diff / hmm->ntprob_arr;  // number of full blocks to jump
        for (i=0; i<n; i++)
            multiply_matrix(hmm->nstates, hmm->tprob_arr+(hmm->ntprob_arr-1)*hmm->nstates*hmm->nstates, hmm->curr_tprob, hmm->curr_tprob, hmm->tmp);
    }
}
Example #8
0
void multiply_matrix_blocked(int n, dense_matrix matA, dense_matrix matB, int blocksize, int lld, dense_matrix matprod)
{
    int i,j,k;
    int blocks;
    if (n%blocksize!=0){
      printf("blocksize not correct");
      return;
    }
    blocks= n/blocksize;
    for (i=0; i<blocks; ++i) {
        for (j=0; j<blocks; ++j) {
            for (k=0; k<blocks; ++k) {
                multiply_matrix(blocksize,matA+i*blocksize*lld+k*blocksize,matB+j*blocksize+k*blocksize*lld,n,matprod+j*blocksize+i*blocksize*lld);
            }
        }
    }
    return;
}
Example #9
0
void estimate(KalmanFilter f) {
    /* Calculate innovation */
    multiply_matrix(f.observation_model, f.predicted_state,
                    f.innovation);
    subtract_matrix(f.observation, f.innovation,
                    f.innovation);

    /* Calculate innovation covariance */
    multiply_by_transpose_matrix(f.predicted_estimate_covariance,
                                 f.observation_model,
                                 f.vertical_scratch);
    multiply_matrix(f.observation_model, f.vertical_scratch,
                    f.innovation_covariance);
    add_matrix(f.innovation_covariance, f.observation_noise_covariance,
               f.innovation_covariance);

    /* Invert the innovation covariance.
       Note: this destroys the innovation covariance.
       TODO: handle inversion failure intelligently. */
    destructive_invert_matrix(f.innovation_covariance,
                              f.inverse_innovation_covariance);

    /* Calculate the optimal Kalman gain.
       Note we still have a useful partial product in vertical scratch
       from the innovation covariance. */
    multiply_matrix(f.vertical_scratch, f.inverse_innovation_covariance,
                    f.optimal_gain);

    /* Estimate the state */
    multiply_matrix(f.optimal_gain, f.innovation,
                    f.state_estimate);
    add_matrix(f.state_estimate, f.predicted_state,
               f.state_estimate);

    /* Estimate the state covariance */
    multiply_matrix(f.optimal_gain, f.observation_model,
                    f.big_square_scratch);
    subtract_from_identity_matrix(f.big_square_scratch);
    multiply_matrix(f.big_square_scratch, f.predicted_estimate_covariance,
                    f.estimate_covariance);
}
Example #10
0
void make_fit(int number,double *newcast)
{
  double *sj,*si,lavi,lavj,fav;
  long i,i1,j,j1,hi,hj,hi1,hj1,n,which;
  static int hdim;

  hdim=(embed-1)*DELAY;

  for (i=0;i<dim*embed;i++)
    localav[i]=0.0;
  for (i=0;i<dim;i++)
    foreav[i]=0.0;

  for (n=0;n<number;n++) {
    which=found[n];
    for (j=0;j<dim;j++) {
      sj=series[j];
      foreav[j] += sj[which+1];
      for (j1=0;j1<embed;j1++) {
	hj=j*embed+j1;
	localav[hj] += sj[which-j1*DELAY];
      }
    }
  }

  for (i=0;i<dim*embed;i++)
    localav[i] /= number;
  for (i=0;i<dim;i++)
    foreav[i] /= number;

  for (i=0;i<dim;i++) {
    si=series[i];
    for (i1=0;i1<embed;i1++) {
      hi=i*embed+i1;
      lavi=localav[hi];
      hi1=i1*DELAY;
      for (j=0;j<dim;j++) {
	sj=series[j];
	for (j1=0;j1<embed;j1++) {
	  hj=j*embed+j1;
	  lavj=localav[hj];
	  hj1=j1*DELAY;
	  mat[hi][hj]=0.0;
	  if (hj >= hi) {
	    for (n=0;n<number;n++) {
	      which=found[n];
	      mat[hi][hj] += (si[which-hi1]-lavi)*(sj[which-hj1]-lavj);
	    }
	  }
	}
      }
    }
  }
  
  for (i=0;i<dim*embed;i++)
    for (j=i;j<dim*embed;j++) {
      mat[i][j] /= number;
      mat[j][i]=mat[i][j];
    }
  
  imat=invert_matrix(mat,dim*embed);

  for (i=0;i<dim;i++) {
    si=series[i];
    fav=foreav[i];
    for (j=0;j<dim;j++) {
      sj=series[j];
      for (j1=0;j1<embed;j1++) {
	hj=j*embed+j1;
	lavj=localav[hj];
	hj1=j1*DELAY;
	vec[hj]=0.0;
	for (n=0;n<number;n++) {
	  which=found[n];
	  vec[hj] += (si[which+1]-fav)*(sj[which-hj1]-lavj);
	}
	vec[hj] /= number;
      }
    }

    multiply_matrix(imat,vec);

    newcast[i]=foreav[i];
    for (j=0;j<dim;j++) {
      for (j1=0;j1<embed;j1++) {
	hj=j*embed+j1;
	newcast[i] += vec[hj]*(cast[hdim-j1*DELAY][j]-localav[hj]);
      }
    }
  }
  
  for (i=0;i<dim*embed;i++)
    free(imat[i]);
  free(imat);
}
Example #11
0
HRESULT d3d_execute_buffer_execute(struct d3d_execute_buffer *buffer,
        struct d3d_device *device, struct d3d_viewport *viewport)
{
    DWORD vs = buffer->data.dwVertexOffset;
    DWORD is = buffer->data.dwInstructionOffset;
    char *instr = (char *)buffer->desc.lpData + is;

    if (viewport->active_device != device)
    {
        WARN("Viewport %p active device is %p.\n",
                viewport, viewport->active_device);
        return DDERR_INVALIDPARAMS;
    }

    /* Activate the viewport */
    viewport_activate(viewport, FALSE);

    TRACE("ExecuteData :\n");
    if (TRACE_ON(ddraw))
        _dump_executedata(&(buffer->data));

    while (1) {
        LPD3DINSTRUCTION current = (LPD3DINSTRUCTION) instr;
	BYTE size;
	WORD count;
	
	count = current->wCount;
	size = current->bSize;
	instr += sizeof(D3DINSTRUCTION);
	
	switch (current->bOpcode) {
	    case D3DOP_POINT: {
	        WARN("POINT-s          (%d)\n", count);
		instr += count * size;
	    } break;

	    case D3DOP_LINE: {
	        WARN("LINE-s           (%d)\n", count);
		instr += count * size;
	    } break;

	    case D3DOP_TRIANGLE: {
	        int i;
                D3DTLVERTEX *tl_vx = buffer->vertex_data;
		TRACE("TRIANGLE         (%d)\n", count);

                if (buffer->nb_indices < count * 3)
                {
                    buffer->nb_indices = count * 3;
                    HeapFree(GetProcessHeap(), 0, buffer->indices);
                    buffer->indices = HeapAlloc(GetProcessHeap(), 0, sizeof(*buffer->indices) * buffer->nb_indices);
                }

		for (i = 0; i < count; i++) {
                    LPD3DTRIANGLE ci = (LPD3DTRIANGLE) instr;
		    TRACE("  v1: %d  v2: %d  v3: %d\n",ci->u1.v1, ci->u2.v2, ci->u3.v3);
		    TRACE("  Flags : ");
                    if (TRACE_ON(ddraw))
                    {
                        /* Wireframe */
                        if (ci->wFlags & D3DTRIFLAG_EDGEENABLE1)
                            TRACE("EDGEENABLE1 ");
                        if (ci->wFlags & D3DTRIFLAG_EDGEENABLE2)
                            TRACE("EDGEENABLE2 ");
                        if (ci->wFlags & D3DTRIFLAG_EDGEENABLE1)
                            TRACE("EDGEENABLE3 ");
                        /* Strips / Fans */
                        if (ci->wFlags == D3DTRIFLAG_EVEN)
                            TRACE("EVEN ");
                        if (ci->wFlags == D3DTRIFLAG_ODD)
                            TRACE("ODD ");
                        if (ci->wFlags == D3DTRIFLAG_START)
                            TRACE("START ");
                        if ((ci->wFlags > 0) && (ci->wFlags < 30))
                            TRACE("STARTFLAT(%u) ", ci->wFlags);
                        TRACE("\n");
                    }
                    buffer->indices[(i * 3)    ] = ci->u1.v1;
                    buffer->indices[(i * 3) + 1] = ci->u2.v2;
                    buffer->indices[(i * 3) + 2] = ci->u3.v3;
                    instr += size;
                }
                IDirect3DDevice7_DrawIndexedPrimitive(&device->IDirect3DDevice7_iface,
                        D3DPT_TRIANGLELIST, D3DFVF_TLVERTEX, tl_vx, 0, buffer->indices, count * 3, 0);
	    } break;

	    case D3DOP_MATRIXLOAD:
	        WARN("MATRIXLOAD-s     (%d)\n", count);
	        instr += count * size;
	        break;

	    case D3DOP_MATRIXMULTIPLY: {
	        int i;
		TRACE("MATRIXMULTIPLY   (%d)\n", count);
		
                for (i = 0; i < count; ++i)
                {
                    D3DMATRIXMULTIPLY *ci = (D3DMATRIXMULTIPLY *)instr;
                    D3DMATRIX *a, *b, *c;

                    a = ddraw_get_object(&device->handle_table, ci->hDestMatrix - 1, DDRAW_HANDLE_MATRIX);
                    b = ddraw_get_object(&device->handle_table, ci->hSrcMatrix1 - 1, DDRAW_HANDLE_MATRIX);
                    c = ddraw_get_object(&device->handle_table, ci->hSrcMatrix2 - 1, DDRAW_HANDLE_MATRIX);

                    if (!a || !b || !c)
                    {
                        ERR("Invalid matrix handle (a %#x -> %p, b %#x -> %p, c %#x -> %p).\n",
                                ci->hDestMatrix, a, ci->hSrcMatrix1, b, ci->hSrcMatrix2, c);
                    }
                    else
                    {
                        TRACE("dst %p, src1 %p, src2 %p.\n", a, b, c);
                        multiply_matrix(a, c, b);
                    }

                    instr += size;
		}
	    } break;

	    case D3DOP_STATETRANSFORM: {
	        int i;
		TRACE("STATETRANSFORM   (%d)\n", count);
		
                for (i = 0; i < count; ++i)
                {
                    D3DSTATE *ci = (D3DSTATE *)instr;
                    D3DMATRIX *m;

                    m = ddraw_get_object(&device->handle_table, ci->u2.dwArg[0] - 1, DDRAW_HANDLE_MATRIX);
                    if (!m)
                    {
                        ERR("Invalid matrix handle %#x.\n", ci->u2.dwArg[0]);
                    }
                    else
                    {
                        if (ci->u1.dtstTransformStateType == D3DTRANSFORMSTATE_WORLD)
                            device->world = ci->u2.dwArg[0];
                        if (ci->u1.dtstTransformStateType == D3DTRANSFORMSTATE_VIEW)
                            device->view = ci->u2.dwArg[0];
                        if (ci->u1.dtstTransformStateType == D3DTRANSFORMSTATE_PROJECTION)
                            device->proj = ci->u2.dwArg[0];
                        IDirect3DDevice7_SetTransform(&device->IDirect3DDevice7_iface,
                                ci->u1.dtstTransformStateType, m);
                    }

                    instr += size;
                }
	    } break;

	    case D3DOP_STATELIGHT: {
		int i;
		TRACE("STATELIGHT       (%d)\n", count);

		for (i = 0; i < count; i++) {
		    LPD3DSTATE ci = (LPD3DSTATE) instr;

		    TRACE("(%08x,%08x)\n", ci->u1.dlstLightStateType, ci->u2.dwArg[0]);

		    if (!ci->u1.dlstLightStateType || (ci->u1.dlstLightStateType > D3DLIGHTSTATE_COLORVERTEX))
			ERR("Unexpected Light State Type %d\n", ci->u1.dlstLightStateType);
                    else if (ci->u1.dlstLightStateType == D3DLIGHTSTATE_MATERIAL /* 1 */)
                    {
                        struct d3d_material *m;

                        m = ddraw_get_object(&device->handle_table, ci->u2.dwArg[0] - 1, DDRAW_HANDLE_MATERIAL);
                        if (!m)
                            ERR("Invalid material handle %#x.\n", ci->u2.dwArg[0]);
                        else
                            material_activate(m);
                    }
                    else if (ci->u1.dlstLightStateType == D3DLIGHTSTATE_COLORMODEL /* 3 */)
                    {
			switch (ci->u2.dwArg[0]) {
			    case D3DCOLOR_MONO:
				ERR("DDCOLOR_MONO should not happen!\n");
				break;
			    case D3DCOLOR_RGB:
				/* We are already in this mode */
				break;
			    default:
				ERR("Unknown color model!\n");
			}
		    } else {
			D3DRENDERSTATETYPE rs = 0;
			switch (ci->u1.dlstLightStateType) {

			    case D3DLIGHTSTATE_AMBIENT:       /* 2 */
				rs = D3DRENDERSTATE_AMBIENT;
				break;
			    case D3DLIGHTSTATE_FOGMODE:       /* 4 */
				rs = D3DRENDERSTATE_FOGVERTEXMODE;
				break;
			    case D3DLIGHTSTATE_FOGSTART:      /* 5 */
				rs = D3DRENDERSTATE_FOGSTART;
				break;
			    case D3DLIGHTSTATE_FOGEND:        /* 6 */
				rs = D3DRENDERSTATE_FOGEND;
				break;
			    case D3DLIGHTSTATE_FOGDENSITY:    /* 7 */
				rs = D3DRENDERSTATE_FOGDENSITY;
				break;
			    case D3DLIGHTSTATE_COLORVERTEX:   /* 8 */
				rs = D3DRENDERSTATE_COLORVERTEX;
				break;
			    default:
				break;
			}

                        IDirect3DDevice7_SetRenderState(&device->IDirect3DDevice7_iface, rs, ci->u2.dwArg[0]);
		    }

		    instr += size;
		}
	    } break;

	    case D3DOP_STATERENDER: {
	        int i;
                IDirect3DDevice2 *d3d_device2 = &device->IDirect3DDevice2_iface;
		TRACE("STATERENDER      (%d)\n", count);

		for (i = 0; i < count; i++) {
		    LPD3DSTATE ci = (LPD3DSTATE) instr;

                    IDirect3DDevice2_SetRenderState(d3d_device2, ci->u1.drstRenderStateType, ci->u2.dwArg[0]);

		    instr += size;
		}
	    } break;

            case D3DOP_PROCESSVERTICES:
            {
                /* TODO: Share code with IDirect3DVertexBuffer::ProcessVertices and / or
                 * IWineD3DDevice::ProcessVertices
                 */
                int i;
                D3DMATRIX view_mat, world_mat, proj_mat;
                TRACE("PROCESSVERTICES  (%d)\n", count);

                /* Get the transform and world matrix */
                /* Note: D3DMATRIX is compatible with struct wined3d_matrix. */
                wined3d_device_get_transform(device->wined3d_device,
                        D3DTRANSFORMSTATE_VIEW, (struct wined3d_matrix *)&view_mat);
                wined3d_device_get_transform(device->wined3d_device,
                        D3DTRANSFORMSTATE_PROJECTION, (struct wined3d_matrix *)&proj_mat);
                wined3d_device_get_transform(device->wined3d_device,
                        WINED3D_TS_WORLD_MATRIX(0), (struct wined3d_matrix *)&world_mat);

		for (i = 0; i < count; i++) {
		    LPD3DPROCESSVERTICES ci = (LPD3DPROCESSVERTICES) instr;

                    TRACE("  Start : %d Dest : %d Count : %d\n",
			  ci->wStart, ci->wDest, ci->dwCount);
		    TRACE("  Flags : ");
                    if (TRACE_ON(ddraw))
                    {
		        if (ci->dwFlags & D3DPROCESSVERTICES_COPY)
			    TRACE("COPY ");
			if (ci->dwFlags & D3DPROCESSVERTICES_NOCOLOR)
			    TRACE("NOCOLOR ");
			if (ci->dwFlags == D3DPROCESSVERTICES_OPMASK)
			    TRACE("OPMASK ");
			if (ci->dwFlags & D3DPROCESSVERTICES_TRANSFORM)
			    TRACE("TRANSFORM ");
			if (ci->dwFlags == D3DPROCESSVERTICES_TRANSFORMLIGHT)
			    TRACE("TRANSFORMLIGHT ");
			if (ci->dwFlags & D3DPROCESSVERTICES_UPDATEEXTENTS)
			    TRACE("UPDATEEXTENTS ");
			TRACE("\n");
		    }

		    /* This is where doing Direct3D on top on OpenGL is quite difficult.
		       This method transforms a set of vertices using the CURRENT state
		       (lighting, projection, ...) but does not rasterize them.
		       They will only be put on screen later (with the POINT / LINE and
		       TRIANGLE op-codes). The problem is that you can have a triangle
		       with each point having been transformed using another state...

		       In this implementation, I will emulate only ONE thing : each
		       vertex can have its own "WORLD" transformation (this is used in the
		       TWIST.EXE demo of the 5.2 SDK). I suppose that all vertices of the
		       execute buffer use the same state.

		       If I find applications that change other states, I will try to do a
		       more 'fine-tuned' state emulation (but I may become quite tricky if
		       it changes a light position in the middle of a triangle).

		       In this case, a 'direct' approach (i.e. without using OpenGL, but
		       writing our own 3D rasterizer) would be easier. */

		    /* The current method (with the hypothesis that only the WORLD matrix
		       will change between two points) is like this :
		       - I transform 'manually' all the vertices with the current WORLD
		         matrix and store them in the vertex buffer
		       - during the rasterization phase, the WORLD matrix will be set to
		         the Identity matrix */

		    /* Enough for the moment */
		    if (ci->dwFlags == D3DPROCESSVERTICES_TRANSFORMLIGHT) {
		        unsigned int nb;
                        D3DVERTEX *src = ((D3DVERTEX *)((char *)buffer->desc.lpData + vs)) + ci->wStart;
                        D3DTLVERTEX *dst = ((D3DTLVERTEX *)buffer->vertex_data) + ci->wDest;
                        D3DVIEWPORT *Viewport = &viewport->viewports.vp1;
			D3DMATRIX mat;
			
                        if (TRACE_ON(ddraw))
                        {
			    TRACE("  Projection Matrix : (%p)\n", &proj_mat);
			    dump_D3DMATRIX(&proj_mat);
			    TRACE("  View       Matrix : (%p)\n", &view_mat);
			    dump_D3DMATRIX(&view_mat);
			    TRACE("  World Matrix : (%p)\n", &world_mat);
			    dump_D3DMATRIX(&world_mat);
			}

                        multiply_matrix(&mat,&view_mat,&world_mat);
                        multiply_matrix(&mat,&proj_mat,&mat);

			for (nb = 0; nb < ci->dwCount; nb++) {
			    /* No lighting yet */
			    dst->u5.color = 0xFFFFFFFF; /* Opaque white */
			    dst->u6.specular = 0xFF000000; /* No specular and no fog factor */

			    dst->u7.tu  = src->u7.tu;
			    dst->u8.tv  = src->u8.tv;

			    /* Now, the matrix multiplication */
			    dst->u1.sx = (src->u1.x * mat._11) + (src->u2.y * mat._21) + (src->u3.z * mat._31) + (1.0 * mat._41);
			    dst->u2.sy = (src->u1.x * mat._12) + (src->u2.y * mat._22) + (src->u3.z * mat._32) + (1.0 * mat._42);
			    dst->u3.sz = (src->u1.x * mat._13) + (src->u2.y * mat._23) + (src->u3.z * mat._33) + (1.0 * mat._43);
			    dst->u4.rhw = (src->u1.x * mat._14) + (src->u2.y * mat._24) + (src->u3.z * mat._34) + (1.0 * mat._44);

			    dst->u1.sx = dst->u1.sx / dst->u4.rhw * Viewport->dvScaleX
				       + Viewport->dwX + Viewport->dwWidth / 2;
			    dst->u2.sy = (-dst->u2.sy) / dst->u4.rhw * Viewport->dvScaleY
				       + Viewport->dwY + Viewport->dwHeight / 2;
			    dst->u3.sz /= dst->u4.rhw;
			    dst->u4.rhw = 1 / dst->u4.rhw;

			    src++;
			    dst++;

			}
		    } else if (ci->dwFlags == D3DPROCESSVERTICES_TRANSFORM) {
		        unsigned int nb;
                        D3DLVERTEX *src = ((D3DLVERTEX *)((char *)buffer->desc.lpData + vs)) + ci->wStart;
                        D3DTLVERTEX *dst = ((D3DTLVERTEX *)buffer->vertex_data) + ci->wDest;
                        D3DVIEWPORT *Viewport = &viewport->viewports.vp1;
			D3DMATRIX mat;
			
                        if (TRACE_ON(ddraw))
                        {
			    TRACE("  Projection Matrix : (%p)\n", &proj_mat);
			    dump_D3DMATRIX(&proj_mat);
			    TRACE("  View       Matrix : (%p)\n",&view_mat);
			    dump_D3DMATRIX(&view_mat);
			    TRACE("  World Matrix : (%p)\n", &world_mat);
			    dump_D3DMATRIX(&world_mat);
			}

			multiply_matrix(&mat,&view_mat,&world_mat);
			multiply_matrix(&mat,&proj_mat,&mat);

			for (nb = 0; nb < ci->dwCount; nb++) {
			    dst->u5.color = src->u4.color;
			    dst->u6.specular = src->u5.specular;
			    dst->u7.tu = src->u6.tu;
			    dst->u8.tv = src->u7.tv;

			    /* Now, the matrix multiplication */
			    dst->u1.sx = (src->u1.x * mat._11) + (src->u2.y * mat._21) + (src->u3.z * mat._31) + (1.0 * mat._41);
			    dst->u2.sy = (src->u1.x * mat._12) + (src->u2.y * mat._22) + (src->u3.z * mat._32) + (1.0 * mat._42);
			    dst->u3.sz = (src->u1.x * mat._13) + (src->u2.y * mat._23) + (src->u3.z * mat._33) + (1.0 * mat._43);
			    dst->u4.rhw = (src->u1.x * mat._14) + (src->u2.y * mat._24) + (src->u3.z * mat._34) + (1.0 * mat._44);

			    dst->u1.sx = dst->u1.sx / dst->u4.rhw * Viewport->dvScaleX
				       + Viewport->dwX + Viewport->dwWidth / 2;
			    dst->u2.sy = (-dst->u2.sy) / dst->u4.rhw * Viewport->dvScaleY
				       + Viewport->dwY + Viewport->dwHeight / 2;

			    dst->u3.sz /= dst->u4.rhw;
			    dst->u4.rhw = 1 / dst->u4.rhw;

			    src++;
			    dst++;
			}
                    }
                    else if (ci->dwFlags == D3DPROCESSVERTICES_COPY)
                    {
                        D3DTLVERTEX *src = ((D3DTLVERTEX *)((char *)buffer->desc.lpData + vs)) + ci->wStart;
                        D3DTLVERTEX *dst = ((D3DTLVERTEX *)buffer->vertex_data) + ci->wDest;

			memcpy(dst, src, ci->dwCount * sizeof(D3DTLVERTEX));
		    } else {
		        ERR("Unhandled vertex processing flag %#x.\n", ci->dwFlags);
		    }

		    instr += size;
		}
	    } break;

	    case D3DOP_TEXTURELOAD: {
	        WARN("TEXTURELOAD-s    (%d)\n", count);

		instr += count * size;
	    } break;

	    case D3DOP_EXIT: {
	        TRACE("EXIT             (%d)\n", count);
		/* We did this instruction */
		instr += size;
		/* Exit this loop */
		goto end_of_buffer;
	    } break;

	    case D3DOP_BRANCHFORWARD: {
	        int i;
		TRACE("BRANCHFORWARD    (%d)\n", count);

		for (i = 0; i < count; i++) {
		    LPD3DBRANCH ci = (LPD3DBRANCH) instr;

                    if ((buffer->data.dsStatus.dwStatus & ci->dwMask) == ci->dwValue)
                    {
                        if (!ci->bNegate)
                        {
                            TRACE(" Branch to %d\n", ci->dwOffset);
                            if (ci->dwOffset) {
                                instr = (char*)current + ci->dwOffset;
                                break;
                            }
			}
		    } else {
		        if (ci->bNegate) {
                            TRACE(" Branch to %d\n", ci->dwOffset);
                            if (ci->dwOffset) {
                                instr = (char*)current + ci->dwOffset;
                                break;
                            }
			}
		    }

		    instr += size;
		}
	    } break;

	    case D3DOP_SPAN: {
	        WARN("SPAN-s           (%d)\n", count);

		instr += count * size;
	    } break;

	    case D3DOP_SETSTATUS: {
	        int i;
		TRACE("SETSTATUS        (%d)\n", count);

		for (i = 0; i < count; i++) {
		    LPD3DSTATUS ci = (LPD3DSTATUS) instr;

                    buffer->data.dsStatus = *ci;

		    instr += size;
		}
	    } break;

	    default:
	        ERR("Unhandled OpCode %d !!!\n",current->bOpcode);
	        /* Try to save ... */
	        instr += count * size;
	        break;
	}
    }

end_of_buffer:
    return D3D_OK;
}
Example #12
0
int main(int argc, char **argv) {
    EGLDisplay	sEGLDisplay;
    EGLContext	sEGLContext;
    EGLSurface	sEGLSurface;

    /* EGL Configuration */

    EGLint aEGLAttributes[] = {
        EGL_RED_SIZE, 8,
        EGL_GREEN_SIZE, 8,
        EGL_BLUE_SIZE, 8,
        EGL_DEPTH_SIZE, 16,
        EGL_RENDERABLE_TYPE, EGL_OPENGL_ES2_BIT,
        EGL_NONE
    };

    EGLint aEGLContextAttributes[] = {
        EGL_CONTEXT_CLIENT_VERSION, 2,
        EGL_NONE
    };

    EGLConfig	aEGLConfigs[1];
    EGLint		cEGLConfigs;

#ifdef _WIN32
    MSG sMessage;
#else
    XSetWindowAttributes win_attrs;
    int attrs[64], idx = 0, num_config = 0;
    int major, minor;
    Colormap colormap;
    XVisualInfo *pVisual;
    XEvent e;
#endif

    GLint iLocPosition = 0;

    GLint iLocColour, iLocTexCoord, iLocNormal, iLocMVP;
    GLint iLocXangle, iLocYangle, iLocZangle;
    GLint iLocAspect, iLocLightPos, iLocSampler, iLocSampler2;

    GLuint uiProgram, uiFragShader, uiVertShader;

    GLenum myTex, myTex2;

    int bDone = 0;

    const unsigned int uiWidth  = 640;
    const unsigned int uiHeight = 480;

    int iXangle = 0, iYangle = 0, iZangle = 0;

    float aTBNmatrix1[9], aTBNmatrix2[9];

    float aLightPos[] = { 0.0f, 0.0f, -1.0f }; // Light is nearest camera.

    unsigned char *myPixels = calloc(1, 128*128*4); // Holds texture data.
    unsigned char *myPixels2 = calloc(1, 128*128*4); // Holds texture data.

    float aRotate[16], aModelView[16], aPerspective[16], aMVP[16];

    int i;

    /* EGL Init */

#ifdef _WIN32
    hDisplay = EGL_DEFAULT_DISPLAY;
#else
    hDisplay = XOpenDisplay(NULL);

    if (!hDisplay) {
        printf("Could not open display\n");
        exit(-1);
    }
#endif

    sEGLDisplay = EGL_CHECK(eglGetDisplay(hDisplay));

    EGL_CHECK(eglInitialize(sEGLDisplay, NULL, NULL));
    EGL_CHECK(eglChooseConfig(sEGLDisplay, aEGLAttributes, aEGLConfigs, 1, &cEGLConfigs));

    if (cEGLConfigs == 0) {
        printf("No EGL configurations were returned.\n");
        exit(-1);
    }

#ifdef _WIN32
    hWindow = create_window(uiWidth, uiHeight);
#else
    hWindow = create_window("OpenGL ES 2.0 Example on a Linux Desktop", uiWidth,
        uiHeight, hDisplay, sEGLDisplay, aEGLConfigs[0], &colormap, &pVisual);
#endif

    sEGLSurface = EGL_CHECK(eglCreateWindowSurface(sEGLDisplay, aEGLConfigs[0], (EGLNativeWindowType)hWindow, NULL));

    if (sEGLSurface == EGL_NO_SURFACE) {
        printf("Failed to create EGL surface.\n");
        exit(-1);
    }

    sEGLContext = EGL_CHECK(eglCreateContext(sEGLDisplay, aEGLConfigs[0], EGL_NO_CONTEXT, aEGLContextAttributes));

    if (sEGLContext == EGL_NO_CONTEXT) {
        printf("Failed to create EGL context.\n");
        exit(-1);
    }

    EGL_CHECK(eglMakeCurrent(sEGLDisplay, sEGLSurface, sEGLSurface, sEGLContext));

    /* Shader Initialisation */
    process_shader(&uiVertShader, "shader.vert", GL_VERTEX_SHADER);
    process_shader(&uiFragShader, "shader.frag", GL_FRAGMENT_SHADER);

    /* Create uiProgram (ready to attach shaders) */
    uiProgram = GL_CHECK(glCreateProgram());

    /* Attach shaders and link uiProgram */
    GL_CHECK(glAttachShader(uiProgram, uiVertShader));
    GL_CHECK(glAttachShader(uiProgram, uiFragShader));
    GL_CHECK(glLinkProgram(uiProgram));

    /* Get attribute locations of non-fixed attributes like colour and texture coordinates. */
    iLocPosition = GL_CHECK(glGetAttribLocation(uiProgram, "av4position"));
    iLocColour = GL_CHECK(glGetAttribLocation(uiProgram, "av3colour"));

#ifdef DEBUG
    printf("iLocPosition = %i\n", iLocPosition);
    printf("iLocColour   = %i\n", iLocColour);
#endif

    /* Get uniform locations */
    iLocMVP = GL_CHECK(glGetUniformLocation(uiProgram, "mvp"));

#ifdef DEBUG
    printf("iLocMVP      = %i\n", iLocMVP);
#endif

    GL_CHECK(glUseProgram(uiProgram));

    /* Enable attributes for position, colour and texture coordinates etc. */
    GL_CHECK(glEnableVertexAttribArray(iLocPosition));
    GL_CHECK(glEnableVertexAttribArray(iLocColour));

    /* Populate attributes for position, colour and texture coordinates etc. */
    GL_CHECK(glVertexAttribPointer(iLocPosition, 3, GL_FLOAT, GL_FALSE, 0, aVertices));
    GL_CHECK(glVertexAttribPointer(iLocColour, 3, GL_FLOAT, GL_FALSE, 0, aColours));

    GL_CHECK(glEnable(GL_CULL_FACE));
    GL_CHECK(glEnable(GL_DEPTH_TEST));

#ifndef _WIN32
    XSelectInput(hDisplay, hWindow, KeyPressMask | ExposureMask | EnterWindowMask
        | LeaveWindowMask | PointerMotionMask | VisibilityChangeMask | ButtonPressMask
        | ButtonReleaseMask | StructureNotifyMask);
#endif

    /* Enter event loop */
    while (!bDone) {
#ifdef _WIN32
        if(PeekMessage(&sMessage, NULL, 0, 0, PM_REMOVE)) {
            if(sMessage.message == WM_QUIT) {
                bDone = 1;
            } else {
                TranslateMessage(&sMessage);
                DispatchMessage(&sMessage);
            }
        }
#else
        while (XPending(hDisplay) > 0) {
            XNextEvent(hDisplay, &e);

            if (e.type == ButtonPress) {
                bDone = 1;
            }
        }
#endif

        /* 
        * Do some rotation with Euler angles. It is not a fixed axis as
        * quaterions would be, but the effect is cool. 
        */
        rotate_matrix(iXangle, 1.0, 0.0, 0.0, aModelView);
        rotate_matrix(iYangle, 0.0, 1.0, 0.0, aRotate);

        multiply_matrix(aRotate, aModelView, aModelView);

        rotate_matrix(iZangle, 0.0, 1.0, 0.0, aRotate);

        multiply_matrix(aRotate, aModelView, aModelView);

        /* Pull the camera back from the cube */
        aModelView[14] -= 2.5;

        perspective_matrix(45.0, (double)uiWidth/(double)uiHeight, 0.01, 100.0, aPerspective);
        multiply_matrix(aPerspective, aModelView, aMVP);

        GL_CHECK(glUniformMatrix4fv(iLocMVP, 1, GL_FALSE, aMVP));

        iXangle += 3;
        iYangle += 2;
        iZangle += 1;

        if(iXangle >= 360) iXangle -= 360;
        if(iXangle < 0) iXangle += 360;
        if(iYangle >= 360) iYangle -= 360;
        if(iYangle < 0) iYangle += 360;
        if(iZangle >= 360) iZangle -= 360;
        if(iZangle < 0) iZangle += 360;

        GL_CHECK(glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT));
        GL_CHECK(glDrawArrays(GL_TRIANGLES, 0, 36));

        if (!eglSwapBuffers(sEGLDisplay, sEGLSurface)) {
            printf("Failed to swap buffers.\n");
        }

#ifdef _WIN32
        Sleep(20);
#else
        usleep(20000);
#endif
    }

    /* Cleanup shaders */
    GL_CHECK(glUseProgram(0));
    GL_CHECK(glDeleteShader(uiVertShader));
    GL_CHECK(glDeleteShader(uiFragShader));
    GL_CHECK(glDeleteProgram(uiProgram));

    /* EGL clean up */
    EGL_CHECK(eglMakeCurrent(sEGLDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT));
    EGL_CHECK(eglDestroySurface(sEGLDisplay, sEGLSurface));
    EGL_CHECK(eglDestroyContext(sEGLDisplay, sEGLContext));
    EGL_CHECK(eglTerminate(sEGLDisplay));

#ifndef _WIN32
    /* X windows clean up */
    XDestroyWindow(hDisplay, hWindow);
    XFreeColormap(hDisplay, colormap);
    XFree(pVisual);
    XCloseDisplay(hDisplay);
#endif

    return 0;
}
Example #13
0
/*****************************************************************************
 * IDirect3DViewport3::TransformVertices
 *
 * Transforms vertices by the transformation matrix.
 *
 * This function is pretty similar to IDirect3DVertexBuffer7::ProcessVertices,
 * so it's tempting to forward it to there. However, there are some
 * tiny differences. First, the lpOffscreen flag that is reported back,
 * then there is the homogeneous vertex that is generated. Also there's a lack
 * of FVFs, but still a custom stride. Last, the d3d1 - d3d3 viewport has some
 * settings (scale) that d3d7 and wined3d do not have. All in all wrapping to
 * ProcessVertices doesn't pay of in terms of wrapper code needed and code
 * reused.
 *
 * Params:
 *  dwVertexCount: The number of vertices to be transformed
 *  lpData: Pointer to the vertex data
 *  dwFlags: D3DTRANSFORM_CLIPPED or D3DTRANSFORM_UNCLIPPED
 *  lpOffScreen: Set to the clipping plane clipping the vertex, if only one
 *               vertex is transformed and clipping is on. 0 otherwise
 *
 * Returns:
 *  D3D_OK on success
 *  D3DERR_VIEWPORTHASNODEVICE if the viewport is not assigned to a device
 *  DDERR_INVALIDPARAMS if no clipping flag is specified
 *
 *****************************************************************************/
static HRESULT WINAPI
IDirect3DViewportImpl_TransformVertices(IDirect3DViewport3 *iface,
                                        DWORD dwVertexCount,
                                        D3DTRANSFORMDATA *lpData,
                                        DWORD dwFlags,
                                        DWORD *lpOffScreen)
{
    IDirect3DViewportImpl *This = (IDirect3DViewportImpl *)iface;
    D3DMATRIX view_mat, world_mat, proj_mat, mat;
    float *in;
    float *out;
    float x, y, z, w;
    unsigned int i;
    D3DVIEWPORT vp = This->viewports.vp1;
    D3DHVERTEX *outH;

    TRACE("iface %p, vertex_count %u, vertex_data %p, flags %#x, clip_plane %p.\n",
            iface, dwVertexCount, lpData, dwFlags, lpOffScreen);

    /* Tests on windows show that Windows crashes when this occurs,
     * so don't return the (intuitive) return value
    if(!This->active_device)
    {
        WARN("No device active, returning D3DERR_VIEWPORTHASNODEVICE\n");
        return D3DERR_VIEWPORTHASNODEVICE;
    }
     */

    if(!(dwFlags & (D3DTRANSFORM_UNCLIPPED | D3DTRANSFORM_CLIPPED)))
    {
        WARN("No clipping flag passed, returning DDERR_INVALIDPARAMS\n");
        return DDERR_INVALIDPARAMS;
    }


    EnterCriticalSection(&ddraw_cs);
    IWineD3DDevice_GetTransform(This->active_device->wineD3DDevice,
                                D3DTRANSFORMSTATE_VIEW,
                                (WINED3DMATRIX*) &view_mat);

    IWineD3DDevice_GetTransform(This->active_device->wineD3DDevice,
                                D3DTRANSFORMSTATE_PROJECTION,
                                (WINED3DMATRIX*) &proj_mat);

    IWineD3DDevice_GetTransform(This->active_device->wineD3DDevice,
                                WINED3DTS_WORLDMATRIX(0),
                                (WINED3DMATRIX*) &world_mat);
    multiply_matrix(&mat,&view_mat,&world_mat);
    multiply_matrix(&mat,&proj_mat,&mat);

    in = lpData->lpIn;
    out = lpData->lpOut;
    outH = lpData->lpHOut;
    for(i = 0; i < dwVertexCount; i++)
    {
        x = (in[0] * mat._11) + (in[1] * mat._21) + (in[2] * mat._31) + (1.0 * mat._41);
        y = (in[0] * mat._12) + (in[1] * mat._22) + (in[2] * mat._32) + (1.0 * mat._42);
        z = (in[0] * mat._13) + (in[1] * mat._23) + (in[2] * mat._33) + (1.0 * mat._43);
        w = (in[0] * mat._14) + (in[1] * mat._24) + (in[2] * mat._34) + (1.0 * mat._44);

        if(dwFlags & D3DTRANSFORM_CLIPPED)
        {
            /* If clipping is enabled, Windows assumes that outH is
             * a valid pointer
             */
            outH[i].u1.hx = x; outH[i].u2.hy = y; outH[i].u3.hz = z;

            outH[i].dwFlags = 0;
            if(x * vp.dvScaleX > ((float) vp.dwWidth * 0.5))
                outH[i].dwFlags |= D3DCLIP_RIGHT;
            if(x * vp.dvScaleX <= -((float) vp.dwWidth) * 0.5)
                outH[i].dwFlags |= D3DCLIP_LEFT;
            if(y * vp.dvScaleY > ((float) vp.dwHeight * 0.5))
                outH[i].dwFlags |= D3DCLIP_TOP;
            if(y * vp.dvScaleY <= -((float) vp.dwHeight) * 0.5)
                outH[i].dwFlags |= D3DCLIP_BOTTOM;
            if(z < 0.0)
                outH[i].dwFlags |= D3DCLIP_FRONT;
            if(z > 1.0)
                outH[i].dwFlags |= D3DCLIP_BACK;

            if(outH[i].dwFlags)
            {
                /* Looks like native just drops the vertex, leaves whatever data
                 * it has in the output buffer and goes on with the next vertex.
                 * The exact scheme hasn't been figured out yet, but windows
                 * definitely writes something there.
                 */
                out[0] = x;
                out[1] = y;
                out[2] = z;
                out[3] = w;
                in = (float *) ((char *) in + lpData->dwInSize);
                out = (float *) ((char *) out + lpData->dwOutSize);
                continue;
            }
        }

        w = 1 / w;
        x *= w; y *= w; z *= w;

        out[0] = vp.dwWidth / 2 + vp.dwX + x * vp.dvScaleX;
        out[1] = vp.dwHeight / 2 + vp.dwY - y * vp.dvScaleY;
        out[2] = z;
        out[3] = w;
        in = (float *) ((char *) in + lpData->dwInSize);
        out = (float *) ((char *) out + lpData->dwOutSize);
    }

    /* According to the d3d test, the offscreen flag is set only
     * if exactly one vertex is transformed. Its not documented,
     * but the test shows that the lpOffscreen flag is set to the
     * flag combination of clipping planes that clips the vertex.
     *
     * If clipping is requested, Windows assumes that the offscreen
     * param is a valid pointer.
     */
    if(dwVertexCount == 1 && dwFlags & D3DTRANSFORM_CLIPPED)
    {
        *lpOffScreen = outH[0].dwFlags;
    }
    else if(*lpOffScreen)
    {
        *lpOffScreen = 0;
    }
    LeaveCriticalSection(&ddraw_cs);

    TRACE("All done\n");
    return DD_OK;
}
Example #14
0
void renderFrame() {
	static float grey;
	//grey += 0.01f;
	//if (grey > 1.0f) {
	//	grey = 0.0f;
	//}
	glClearColor(grey, grey, grey, 1.0f);
	checkGlError("glClearColor");
	glClear( GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);
	checkGlError("glClear");

	glUseProgram(gProgram);
	checkGlError("glUseProgram");

#if USE_MESH
	glVertexAttribPointer(gvPositionHandle, 4, GL_FLOAT, GL_FALSE, 0, gpMesh->m_pTriangleList);
#else
	glVertexAttribPointer(gvPositionHandle, 3, GL_FLOAT, GL_FALSE, 0, gCubeVertices);
#endif

	glEnableVertexAttribArray(gvPositionHandle);
	checkGlError("glEnableVertexAttribArray");

#if USE_MESH
	glVertexAttribPointer(gvColorHandle, 3, GL_FLOAT, GL_FALSE, 0, gpMesh->m_pVertexColor);
	checkGlError("glVertexAttribPointer");
#else
	glVertexAttribPointer(gvColorHandle, 3, GL_FLOAT, GL_FALSE, 0, gCubeColors);
	checkGlError("glVertexAttribPointer");
#endif

	glEnableVertexAttribArray(gvColorHandle);
	checkGlError("glEnableVertexAttribArray");

    
	//rotate - begin
	rotate_matrix(iXangle, 1.0, 0.0, 0.0, aModelView);
	rotate_matrix(iYangle, 0.0, 1.0, 0.0, aRotate);
	
	multiply_matrix(aRotate, aModelView, aModelView);

	rotate_matrix(iZangle, 0.0, 0.0, 1.0, aRotate);

	multiply_matrix(aRotate, aModelView, aModelView);

	//Pull the camera back from the geometry
	aModelView[14] -= 3.5;
	
#if USE_MESH
	//translate to lower left of geometry to lower-left of screen 	
	aModelView[12] -= 1.0;
	aModelView[13] -= 1.7;	
#endif
	perspective_matrix(45.0, (double)uiWidth/(double)uiHeight, 0.01, 100.0, aPerspective);
	multiply_matrix(aPerspective, aModelView, aMVP);

	glUniformMatrix4fv(gmvP, 1, GL_FALSE, aMVP);
	
	glUniform1f(gAHandle, -1.0*(1.0 - animParam));
	glUniform1f(gThetaHandle, animParam*_HALF_PI);
	
	animParam -= 0.01;
	if(animParam < 0.0) animParam = 1.0f;

#if !USE_MESH
	//Comment the lines below to disable rotation
	iZangle += 2;
	iYangle += 2;
#endif
	if(iXangle >= 360) iXangle -= 360;
	if(iXangle < 0) iXangle += 360;
	if(iYangle >= 360) iYangle -= 360;
	if(iYangle < 0) iYangle += 360;
	if(iZangle >= 360) iZangle -= 360;
	if(iZangle < 0) iZangle += 360;
	//rotate - end

#if USE_MESH
	glDrawArrays(GL_TRIANGLES, 0, gpMesh->m_numTriangles);
#else
	glDrawArrays(GL_TRIANGLES, 0, 36);
#endif
	checkGlError("glDrawArrays");
}
Example #15
0
void VoxelEditor::paintGL()
{
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
    glLoadIdentity();
    glEnable(GL_DEPTH_TEST);

    view_matrix = mat4();
    view_matrix = glm::translate(view_matrix, 
        vec3(width() / 2, height() / 2, 0.0f));
    view_matrix = glm::translate(view_matrix, pos);
    view_matrix = glm::scale(view_matrix, vec3(scale, scale, scale));
    view_matrix = glm::rotate(view_matrix, rotate_x, vec3(1.0f, 0.0f, 0.0f));
    view_matrix = glm::rotate(view_matrix, rotate_z, vec3(0.0f, 0.0f, 1.0f));
    mvp = projection_matrix * view_matrix;
    inverse_mvp = glm::inverse(mvp);

    multiply_matrix(view_matrix);

    glEnable(GL_LIGHTING);
    setup_lighting();
    model->draw_immediate();

    SelectedVoxels::const_iterator it;
    for (it = selected_list.begin(); it != selected_list.end(); it++) {
        const SelectedVoxel & v = *it;
        RGBColor & c = global_palette[v.v];
        draw_cube(v.x, v.y, v.z, v.x + 1.0f, v.y + 1.0f, v.z + 1.0f,
            c.r, c.g, c.b, 255);
        glDisable(GL_LIGHTING);
        draw_wireframe_cube(v.x, v.y, v.z, v.x + 1.0f, v.y + 1.0f, v.z + 1.0f,
            255, 255, 255, 255);
        glEnable(GL_LIGHTING);
    }

    glDisable(GL_LIGHTING);

    glColor4f(1.0f, 1.0f, 1.0f, 1.0f);
    vec3 min = voxel->get_min();
    vec3 max = voxel->get_max();
    float x1 = min.x;
    float x2 = max.x;
    float y1 = min.y;
    float y2 = max.y;
    float z1 = min.z;
    float z2 = max.z;
    draw_wireframe_cube(x1, y1, z1, x2, y2, z2, 255, 255, 255, 255);

    // checkerboard
    glNormal3f(0.0f, 0.0f, 1.0f);
    glBegin(GL_QUADS);
    for (int x = 0; x < voxel->x_size; x++)
    for (int y = 0; y < voxel->y_size; y++) {
        float gl_x1 = x1 + float(x);
        float gl_x2 = gl_x1 + 1.0f;
        float gl_y1 = y1 + float(y);
        float gl_y2 = gl_y1 + 1.0f;
        unsigned char r, g, b;
        if ((x + y) % 2 == 0)
            r = g = b = 100;
        else
            r = g = b = 180;
        glColor4ub(r, g, b, 255);
        glVertex3f(gl_x1, gl_y1, z1 - 0.01f);
        glVertex3f(gl_x2, gl_y1, z1 - 0.01f);
        glVertex3f(gl_x2, gl_y2, z1 - 0.01f);
        glVertex3f(gl_x1, gl_y2, z1 - 0.01f);
    }
    glEnd();

    // draw axis lines
    glLineWidth(1.0f);
    glBegin(GL_LINES);
    glColor4ub(GREY_R, GREY_G, GREY_B, 255);
    glVertex3f(-COORD_LINE_SIZE, 0.0f, 0.0f);
    glVertex3f(0, 0.0f, 0.0f);
    glVertex3f(0.0f, -COORD_LINE_SIZE, 0.0f);
    glVertex3f(0.0f, 0, 0.0f);

    glColor4ub(RED_R, RED_G, RED_B, 255);
    glVertex3f(0, 0.0f, 0.0f);
    glVertex3f(COORD_LINE_SIZE, 0.0f, 0.0f);

    glColor4ub(BLUE_R, BLUE_G, BLUE_B, 255);
    glVertex3f(0.0f, 0, 0.0f);
    glVertex3f(0.0f, COORD_LINE_SIZE, 0.0f);

    glColor4ub(GREEN_R, GREEN_G, GREEN_B, 255);
    glVertex3f(0.0f, 0.0f, 0);
    glVertex3f(0.0f, 0.0f, COORD_LINE_SIZE);
    glEnd();

    glDisable(GL_DEPTH_TEST);

    if (selected_list.size() > 0)
        pos_arrows.draw();

    if (window->test_current_window(this)) {
        ReferencePoint * ref = window->model_properties->get_point();
        if (ref != NULL) {
            float x, y, z;
            x = float(ref->x);
            y = float(ref->y);
            z = float(ref->z);
            draw_cube(x, y, z, 0.5f, 127, 127, 127, 127);
            draw_cube(x, y, z, 0.2f, 0, 0, 255, 255);
        }
    }

    glColor4f(1.0f, 1.0f, 1.0f, 1.0f);
}
Example #16
0
HRESULT d3d_execute_buffer_execute(struct d3d_execute_buffer *buffer,
        struct d3d_device *device, struct d3d_viewport *viewport)
{
    DWORD vs = buffer->data.dwVertexOffset;
    DWORD is = buffer->data.dwInstructionOffset;
    char *instr = (char *)buffer->desc.lpData + is;
    unsigned int i;

    if (viewport->active_device != device)
    {
        WARN("Viewport %p active device is %p.\n",
                viewport, viewport->active_device);
        return DDERR_INVALIDPARAMS;
    }

    /* Activate the viewport */
    viewport_activate(viewport, FALSE);

    TRACE("ExecuteData :\n");
    if (TRACE_ON(ddraw))
        _dump_executedata(&(buffer->data));

    for (;;)
    {
        D3DINSTRUCTION *current = (D3DINSTRUCTION *)instr;
	BYTE size;
	WORD count;
	
	count = current->wCount;
	size = current->bSize;
	instr += sizeof(D3DINSTRUCTION);
	
	switch (current->bOpcode) {
	    case D3DOP_POINT: {
	        WARN("POINT-s          (%d)\n", count);
		instr += count * size;
	    } break;

	    case D3DOP_LINE: {
	        WARN("LINE-s           (%d)\n", count);
		instr += count * size;
	    } break;

            case D3DOP_TRIANGLE:
            {
                D3DTLVERTEX *tl_vx = buffer->vertex_data;
		TRACE("TRIANGLE         (%d)\n", count);

                if (buffer->nb_indices < count * 3)
                {
                    buffer->nb_indices = count * 3;
                    HeapFree(GetProcessHeap(), 0, buffer->indices);
                    buffer->indices = HeapAlloc(GetProcessHeap(), 0, sizeof(*buffer->indices) * buffer->nb_indices);
                }

                for (i = 0; i < count; ++i)
                {
                    D3DTRIANGLE *ci = (D3DTRIANGLE *)instr;
		    TRACE("  v1: %d  v2: %d  v3: %d\n",ci->u1.v1, ci->u2.v2, ci->u3.v3);
		    TRACE("  Flags : ");
                    if (TRACE_ON(ddraw))
                    {
                        /* Wireframe */
                        if (ci->wFlags & D3DTRIFLAG_EDGEENABLE1)
                            TRACE("EDGEENABLE1 ");
                        if (ci->wFlags & D3DTRIFLAG_EDGEENABLE2)
                            TRACE("EDGEENABLE2 ");
                        if (ci->wFlags & D3DTRIFLAG_EDGEENABLE1)
                            TRACE("EDGEENABLE3 ");
                        /* Strips / Fans */
                        if (ci->wFlags == D3DTRIFLAG_EVEN)
                            TRACE("EVEN ");
                        if (ci->wFlags == D3DTRIFLAG_ODD)
                            TRACE("ODD ");
                        if (ci->wFlags == D3DTRIFLAG_START)
                            TRACE("START ");
                        if ((ci->wFlags > 0) && (ci->wFlags < 30))
                            TRACE("STARTFLAT(%u) ", ci->wFlags);
                        TRACE("\n");
                    }
                    buffer->indices[(i * 3)    ] = ci->u1.v1;
                    buffer->indices[(i * 3) + 1] = ci->u2.v2;
                    buffer->indices[(i * 3) + 2] = ci->u3.v3;
                    instr += size;
                }
                if (count)
                    IDirect3DDevice7_DrawIndexedPrimitive(&device->IDirect3DDevice7_iface,
                            D3DPT_TRIANGLELIST, D3DFVF_TLVERTEX, tl_vx, buffer->nb_vertices,
                            buffer->indices, count * 3, 0);
	    } break;

	    case D3DOP_MATRIXLOAD:
	        WARN("MATRIXLOAD-s     (%d)\n", count);
	        instr += count * size;
	        break;

            case D3DOP_MATRIXMULTIPLY:
                TRACE("MATRIXMULTIPLY   (%d)\n", count);
                for (i = 0; i < count; ++i)
                {
                    D3DMATRIXMULTIPLY *ci = (D3DMATRIXMULTIPLY *)instr;
                    D3DMATRIX *a, *b, *c;

                    a = ddraw_get_object(&device->handle_table, ci->hDestMatrix - 1, DDRAW_HANDLE_MATRIX);
                    b = ddraw_get_object(&device->handle_table, ci->hSrcMatrix1 - 1, DDRAW_HANDLE_MATRIX);
                    c = ddraw_get_object(&device->handle_table, ci->hSrcMatrix2 - 1, DDRAW_HANDLE_MATRIX);

                    if (!a || !b || !c)
                    {
                        ERR("Invalid matrix handle (a %#x -> %p, b %#x -> %p, c %#x -> %p).\n",
                                ci->hDestMatrix, a, ci->hSrcMatrix1, b, ci->hSrcMatrix2, c);
                    }
                    else
                    {
                        TRACE("dst %p, src1 %p, src2 %p.\n", a, b, c);
                        multiply_matrix(a, c, b);
                    }

                    instr += size;
                }
                break;

            case D3DOP_STATETRANSFORM:
                TRACE("STATETRANSFORM   (%d)\n", count);
                for (i = 0; i < count; ++i)
                {
                    D3DSTATE *ci = (D3DSTATE *)instr;
                    D3DMATRIX *m;

                    m = ddraw_get_object(&device->handle_table, ci->u2.dwArg[0] - 1, DDRAW_HANDLE_MATRIX);
                    if (!m)
                    {
                        ERR("Invalid matrix handle %#x.\n", ci->u2.dwArg[0]);
                    }
                    else
                    {
                        if (ci->u1.dtstTransformStateType == D3DTRANSFORMSTATE_WORLD)
                            device->world = ci->u2.dwArg[0];
                        if (ci->u1.dtstTransformStateType == D3DTRANSFORMSTATE_VIEW)
                            device->view = ci->u2.dwArg[0];
                        if (ci->u1.dtstTransformStateType == D3DTRANSFORMSTATE_PROJECTION)
                            device->proj = ci->u2.dwArg[0];
                        IDirect3DDevice7_SetTransform(&device->IDirect3DDevice7_iface,
                                ci->u1.dtstTransformStateType, m);
                    }

                    instr += size;
                }
                break;

            case D3DOP_STATELIGHT:
                TRACE("STATELIGHT       (%d)\n", count);
                for (i = 0; i < count; ++i)
                {
                    D3DSTATE *ci = (D3DSTATE *)instr;

                    if (FAILED(IDirect3DDevice3_SetLightState(&device->IDirect3DDevice3_iface,
                            ci->u1.dlstLightStateType, ci->u2.dwArg[0])))
                        WARN("Failed to set light state.\n");

                    instr += size;
                }
                break;

            case D3DOP_STATERENDER:
                TRACE("STATERENDER      (%d)\n", count);
                for (i = 0; i < count; ++i)
                {
                    D3DSTATE *ci = (D3DSTATE *)instr;

                    if (FAILED(IDirect3DDevice3_SetRenderState(&device->IDirect3DDevice3_iface,
                            ci->u1.drstRenderStateType, ci->u2.dwArg[0])))
                        WARN("Failed to set render state.\n");

                    instr += size;
                }
                break;

            case D3DOP_PROCESSVERTICES:
            {
                /* TODO: Share code with d3d_vertex_buffer7_ProcessVertices()
                 * and / or wined3d_device_process_vertices(). */
                D3DMATRIX view_mat, world_mat, proj_mat, mat;

                TRACE("PROCESSVERTICES  (%d)\n", count);

                /* Get the transform and world matrix */
                /* Note: D3DMATRIX is compatible with struct wined3d_matrix. */
                wined3d_device_get_transform(device->wined3d_device,
                        D3DTRANSFORMSTATE_VIEW, (struct wined3d_matrix *)&view_mat);
                wined3d_device_get_transform(device->wined3d_device,
                        D3DTRANSFORMSTATE_PROJECTION, (struct wined3d_matrix *)&proj_mat);
                wined3d_device_get_transform(device->wined3d_device,
                        WINED3D_TS_WORLD_MATRIX(0), (struct wined3d_matrix *)&world_mat);

                if (TRACE_ON(ddraw))
                {
                    TRACE("  Projection Matrix:\n");
                    dump_D3DMATRIX(&proj_mat);
                    TRACE("  View Matrix:\n");
                    dump_D3DMATRIX(&view_mat);
                    TRACE("  World Matrix:\n");
                    dump_D3DMATRIX(&world_mat);
                }

                multiply_matrix(&mat, &view_mat, &world_mat);
                multiply_matrix(&mat, &proj_mat, &mat);

                for (i = 0; i < count; ++i)
                {
                    D3DPROCESSVERTICES *ci = (D3DPROCESSVERTICES *)instr;
                    D3DTLVERTEX *dst = (D3DTLVERTEX *)buffer->vertex_data + ci->wDest;
                    DWORD op = ci->dwFlags & D3DPROCESSVERTICES_OPMASK;

                    TRACE("  start %u, dest %u, count %u, flags %#x.\n",
                            ci->wStart, ci->wDest, ci->dwCount, ci->dwFlags);

                    if (ci->dwFlags & D3DPROCESSVERTICES_UPDATEEXTENTS)
                        FIXME("D3DPROCESSVERTICES_UPDATEEXTENTS not implemented.\n");
                    if (ci->dwFlags & D3DPROCESSVERTICES_NOCOLOR)
                        FIXME("D3DPROCESSVERTICES_NOCOLOR not implemented.\n");

                    switch (op)
                    {
                        case D3DPROCESSVERTICES_TRANSFORMLIGHT:
                        {
                            const D3DVERTEX *src = (D3DVERTEX *)((char *)buffer->desc.lpData + vs) + ci->wStart;
                            unsigned int vtx_idx;
                            static unsigned int once;

                            if (!once++)
                                FIXME("Lighting not implemented.\n");

                            for (vtx_idx = 0; vtx_idx < ci->dwCount; ++vtx_idx)
                            {
                                transform_vertex(&dst[vtx_idx], &mat, &viewport->viewports.vp1,
                                        src[vtx_idx].u1.x, src[vtx_idx].u2.y, src[vtx_idx].u3.z);
                                /* No lighting yet */
                                dst[vtx_idx].u5.color = 0xffffffff; /* Opaque white */
                                dst[vtx_idx].u6.specular = 0xff000000; /* No specular and no fog factor */
                                dst[vtx_idx].u7.tu = src[vtx_idx].u7.tu;
                                dst[vtx_idx].u8.tv = src[vtx_idx].u8.tv;
                            }
                            break;
                        }

                        case D3DPROCESSVERTICES_TRANSFORM:
                        {
                            const D3DLVERTEX *src = (D3DLVERTEX *)((char *)buffer->desc.lpData + vs) + ci->wStart;
                            unsigned int vtx_idx;

                            for (vtx_idx = 0; vtx_idx < ci->dwCount; ++vtx_idx)
                            {
                                transform_vertex(&dst[vtx_idx], &mat, &viewport->viewports.vp1,
                                        src[vtx_idx].u1.x, src[vtx_idx].u2.y, src[vtx_idx].u3.z);
                                dst[vtx_idx].u5.color = src[vtx_idx].u4.color;
                                dst[vtx_idx].u6.specular = src[vtx_idx].u5.specular;
                                dst[vtx_idx].u7.tu = src[vtx_idx].u6.tu;
                                dst[vtx_idx].u8.tv = src[vtx_idx].u7.tv;
                            }
                            break;
                        }

                        case D3DPROCESSVERTICES_COPY:
                        {
                            const D3DTLVERTEX *src = (D3DTLVERTEX *)((char *)buffer->desc.lpData + vs) + ci->wStart;

                            memcpy(dst, src, ci->dwCount * sizeof(*dst));
                            break;
                        }

                        default:
                            FIXME("Unhandled vertex processing op %#x.\n", op);
                            break;
                    }

                    instr += size;
                }
                break;
            }

	    case D3DOP_TEXTURELOAD: {
	        WARN("TEXTURELOAD-s    (%d)\n", count);

		instr += count * size;
	    } break;

	    case D3DOP_EXIT: {
	        TRACE("EXIT             (%d)\n", count);
		/* We did this instruction */
		instr += size;
		/* Exit this loop */
		goto end_of_buffer;
	    } break;

            case D3DOP_BRANCHFORWARD:
                TRACE("BRANCHFORWARD    (%d)\n", count);
                for (i = 0; i < count; ++i)
                {
                    D3DBRANCH *ci = (D3DBRANCH *)instr;

                    if ((buffer->data.dsStatus.dwStatus & ci->dwMask) == ci->dwValue)
                    {
                        if (!ci->bNegate)
                        {
                            TRACE(" Branch to %d\n", ci->dwOffset);
                            if (ci->dwOffset) {
                                instr = (char*)current + ci->dwOffset;
                                break;
                            }
			}
		    } else {
		        if (ci->bNegate) {
                            TRACE(" Branch to %d\n", ci->dwOffset);
                            if (ci->dwOffset) {
                                instr = (char*)current + ci->dwOffset;
                                break;
                            }
			}
		    }

		    instr += size;
                }
                break;

	    case D3DOP_SPAN: {
	        WARN("SPAN-s           (%d)\n", count);

		instr += count * size;
	    } break;

            case D3DOP_SETSTATUS:
                TRACE("SETSTATUS        (%d)\n", count);
                for (i = 0; i < count; ++i)
                {
                    buffer->data.dsStatus = *(D3DSTATUS *)instr;
                    instr += size;
                }
                break;

	    default:
	        ERR("Unhandled OpCode %d !!!\n",current->bOpcode);
	        /* Try to save ... */
	        instr += count * size;
	        break;
	}
    }

end_of_buffer:
    return D3D_OK;
}
Example #17
0
// O primeiro parâmetro é o tamanho do vetor, e o segundo é o número de threads.
int main(int argc, char *argv[]) {
    if (argc!=3) {
        printf("Número incorreto de parâmetros\n");
        printf("Uso: ./<nome do programa> <ordem da matriz> <qtd. de threads>\n");
        return 0;
    }
    int thread_quantity, sum, sum_thread=0, counter;
    int offset=0, partition_size;
    long int **matrix_copy;
    int_tuple *offset_vector;
    double time_main, time_thread;
    // Um vetor de pthreads permite a criação dinâmica de threads.
    pthread_t *thread_vector;
    sscanf(argv[1],"%d",&matrix_size);
    sscanf(argv[2],"%d",&thread_quantity);

    printf("Criando dados para as matrizes... ");
    thread_vector=(pthread_t*)malloc(sizeof(pthread_t)*thread_quantity);
    offset_vector=(int_tuple*)malloc(sizeof(int_tuple)*thread_quantity);
    partition_size=matrix_size/thread_quantity;
    partition_size--;

    for(counter=0; counter<thread_quantity-1; counter++) {
        offset_vector[counter].start=offset;
        offset=offset+partition_size;
        offset_vector[counter].end=offset;
        offset++;
    }

    offset_vector[thread_quantity-1].start=offset;
    offset_vector[thread_quantity-1].end=matrix_size-1;

    matrix_a=create_random_matrix();
    matrix_b=create_random_matrix();
    printf("feito.\n\n");

    matrix_result=(long int**)malloc(sizeof(long int*)*matrix_size);
    for(counter=0; counter<matrix_size; counter++)
        matrix_result[counter]=(long int*)malloc(sizeof(long int)*matrix_size);

    printf("Iniciando as contas na função main().\n");

    set_start_time();
    multiply_matrix();
    set_end_time();
    time_main=end_time-start_time;

    printf("As contas na main() foram finalizadas.\n");

    /* Aloca uma nova matriz para fazer uma cópia do resultado.
     * Isso é feito para saber se a multiplicação está igual.
     */
    matrix_copy=(long int**)malloc(sizeof(long int*)*matrix_size);
    for(counter=0; counter<matrix_size; counter++)
        matrix_copy[counter]=(long int*)malloc(sizeof(long int)*matrix_size);

    for(counter=0; counter<matrix_size; counter++) {
        for(offset=0; offset<matrix_size; offset++)
            matrix_copy[counter][offset]=matrix_result[counter][offset];
    }

    printf("\nIniciando as contas com %d threads.\n",thread_quantity);

    // Inicia as contas com as threads, assim como a marcação de tempo.
    set_start_time();
    for(counter=0; counter<thread_quantity; counter++)
        pthread_create(thread_vector+counter,NULL,threaded_matrix_multiplier,(void*)(offset_vector+counter));
    for(counter=0; counter<thread_quantity; counter++)
        pthread_join(thread_vector[counter],NULL);
    set_end_time();
    time_thread=end_time-start_time;

    printf("As threads foram finalizadas.\n\n");

    check_matrix_match(matrix_copy);
    printf("\n");

    printf("Tempo na main(): %f segundos\n",time_main);
    printf("Tempo com threads: %f segundos\n",time_thread);

    //Libera tudo que foi alocado.
    free(thread_vector);
    free(offset_vector);
    for(counter=0; counter<matrix_size; counter++) {
        free(matrix_a[counter]);
        free(matrix_b[counter]);
        free(matrix_result[counter]);
        free(matrix_copy[counter]);
    }
    free(matrix_a);
    free(matrix_b);
    free(matrix_result);
    free(matrix_copy);
    return 0;
}
Example #18
0
static void draw_gl(Evas_Object *obj)
{
	static int i=0;
	appdata_s *ad = evas_object_data_get(obj, "ad");
	float model[16], view[16];
	float aspect;

	if (!ad)
		return;

	init_matrix(model);
	init_matrix(view);

	aspect = (float) ad->glview_w / (float) ad->glview_h;

	view_set_perspective(view, 60.0f, aspect, 1.0f, 20.0f);

	translate_xyz(model, 0.0f, 0.0f, -2.5f);
	rotate_xyz(model, ad->xangle, ad->yangle, 0.0f);

	multiply_matrix(ad->mvp, view, model);

	glViewport(0, 0, ad->glview_w, ad->glview_h);

	glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
	glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

	glVertexAttribPointer(ad->idx_position, 3, GL_FLOAT, GL_FALSE,
			3 * sizeof(float), cube_vertices);
	glVertexAttribPointer(ad->idx_color, 4, GL_FLOAT, GL_FALSE,
			4 * sizeof(float), cube_colors);

	glEnableVertexAttribArray(ad->idx_position);
	glEnableVertexAttribArray(ad->idx_color);

	glUniformMatrix4fv(ad->idx_mvp, 1, GL_FALSE, ad->mvp);

	glDrawElements(GL_TRIANGLES, cube_indices_count, GL_UNSIGNED_SHORT,
			cube_indices);


	//3rd
	glVertexAttribPointer(ad->idx_position, 3, GL_FLOAT, GL_FALSE,
			3 * sizeof(float), cubeBFL_vertices);
	glVertexAttribPointer(ad->idx_color, 4, GL_FLOAT, GL_FALSE,
			4 * sizeof(float), cube_colors);

	glEnableVertexAttribArray(ad->idx_position);
	glEnableVertexAttribArray(ad->idx_color);

	glUniformMatrix4fv(ad->idx_mvp, 1, GL_FALSE, ad->mvp);


	//glRotatef(45,0,1,1);

	i = (i+10)%360;


	glDrawElements(GL_TRIANGLES, cubeBFL_indices_count, GL_UNSIGNED_SHORT,
			cubeBFL_indices);




	glFlush();
	display_fps();
}
Example #19
0
File: main.c Project: aajarven/c
int main(void) {
    multiply_matrix(10);
    return 0;
}