Example #1
0
void
APH_redraw(APH_application_handle h)
{
	Bool result;
	cycle_data* c = (cycle_data*) h;

	TST_log_entry("NZC_redraw");
	TST_log_pointer((void*)h);
	TST_log_pointer((void*)c);
	TST_log_pointer((void*)c->plugin);
	
	if (!PLA_acquire_glx_context(c->plugin)) return;	

	glClearColor(myfrand(), myfrand(), myfrand(), 1.0);
	glClear(GL_COLOR_BUFFER_BIT);
	
	PLA_swap_glx_context(c->plugin);
	PLA_release_glx_context(c->plugin);
	
}
int test_inverse() 
{
	int Error(0);

	float const Epsilon = 0.0001f;

	glm::dualquat dqid;
	glm::mat4x4 mid(1.0f);

	for (int j = 0; j < 100; ++j)
	{
		glm::mat4x4 rot = glm::yawPitchRoll(myfrand() * 360.0f, myfrand() * 360.0f, myfrand() * 360.0f);
		glm::vec3 vt = glm::vec3(myfrand() * 10.0f, myfrand() * 10.0f, myfrand() * 10.0f);

		glm::mat4x4 m = glm::translate(mid, vt) * rot;

		glm::quat qr = glm::quat_cast(m);

		glm::dualquat dq(qr);

		glm::dualquat invdq = glm::inverse(dq);

		glm::dualquat r1 = invdq * dq;
		glm::dualquat r2 = dq * invdq;

		Error += glm::all(glm::epsilonEqual(r1.real, dqid.real, Epsilon)) && glm::all(glm::epsilonEqual(r1.dual, dqid.dual, Epsilon)) ? 0 : 1;
		Error += glm::all(glm::epsilonEqual(r2.real, dqid.real, Epsilon)) && glm::all(glm::epsilonEqual(r2.dual, dqid.dual, Epsilon)) ? 0 : 1;

		// testing commutative property
		glm::dualquat r (   glm::quat( myfrand() * glm::pi<float>() * 2.0f, myfrand(), myfrand(), myfrand() ),
							glm::vec3(myfrand() * 10.0f, myfrand() * 10.0f, myfrand() * 10.0f) );
		glm::dualquat riq = (r * invdq) * dq;
		glm::dualquat rqi = (r * dq) * invdq;

		Error += glm::all(glm::epsilonEqual(riq.real, rqi.real, Epsilon)) && glm::all(glm::epsilonEqual(riq.dual, rqi.dual, Epsilon)) ? 0 : 1;
	}

	return Error;
}
int test_mul() 
{
	int Error(0);

	float const Epsilon = 0.0001f;

	glm::mat4x4 mid(1.0f);

	for (int j = 0; j < 100; ++j)
	{
		// generate random rotations and translations and compare transformed by matrix and dualquats random points 
		glm::vec3 vt1 = glm::vec3(myfrand() * 10.0f, myfrand() * 10.0f, myfrand() * 10.0f);
		glm::vec3 vt2 = glm::vec3(myfrand() * 10.0f, myfrand() * 10.0f, myfrand() * 10.0f);

		glm::mat4x4 rot1 = glm::yawPitchRoll(myfrand() * 360.0f, myfrand() * 360.0f, myfrand() * 360.0f);
		glm::mat4x4 rot2 = glm::yawPitchRoll(myfrand() * 360.0f, myfrand() * 360.0f, myfrand() * 360.0f);
		glm::mat4x4 m1 = glm::translate(mid, vt1) * rot1;
		glm::mat4x4 m2 = glm::translate(mid, vt2) * rot2;
		glm::mat4x4 m3 = m2 * m1;
		glm::mat4x4 m4 = m1 * m2;

		glm::quat qrot1 = glm::quat_cast(rot1);
		glm::quat qrot2 = glm::quat_cast(rot2);

		glm::dualquat dq1 = glm::dualquat(qrot1,vt1);
		glm::dualquat dq2 = glm::dualquat(qrot2,vt2);
		glm::dualquat dq3 = dq2 * dq1;
		glm::dualquat dq4 = dq1 * dq2;

		for (int i = 0; i < 100; ++i)
		{
			glm::vec4 src_pt = glm::vec4(myfrand() * 4.0f, myfrand() * 5.0f, myfrand() * 3.0f,1.0f);
			// test both multiplication orders        
			glm::vec4 dst_pt_m3  = m3 * src_pt; 
			glm::vec4 dst_pt_dq3 = dq3 * src_pt;

			glm::vec4 dst_pt_m3_i  = glm::inverse(m3) * src_pt;
			glm::vec4 dst_pt_dq3_i = src_pt * dq3;

			glm::vec4 dst_pt_m4  = m4 * src_pt;
			glm::vec4 dst_pt_dq4 = dq4 * src_pt;

			glm::vec4 dst_pt_m4_i  = glm::inverse(m4) * src_pt;
			glm::vec4 dst_pt_dq4_i = src_pt * dq4;

			Error += glm::all(glm::epsilonEqual(dst_pt_m3, dst_pt_dq3, Epsilon)) ? 0 : 1;
			Error += glm::all(glm::epsilonEqual(dst_pt_m4, dst_pt_dq4, Epsilon)) ? 0 : 1;
			Error += glm::all(glm::epsilonEqual(dst_pt_m3_i, dst_pt_dq3_i, Epsilon)) ? 0 : 1;
			Error += glm::all(glm::epsilonEqual(dst_pt_m4_i, dst_pt_dq4_i, Epsilon)) ? 0 : 1;
		}
	} 

	return Error;
}