Example #1
0
int main(int argc, char **argv) {

  Halide::Func cell("cell");
  Halide::Var x, y;
  cell(x, y) = 0;
  cell(2, 1) = 1;
  cell(3, 2) = 1;
  cell(1, 3) = 1;
  cell(2, 3) = 1;
  cell(3, 3) = 1;

  Halide::Image<int32_t> output;
  output = cell.realize(NX,NY);

  Halide::ImageParam input(Halide::Int(32), 2); // int32_t 2D


  Halide::Func cell2;
  cell2(x,y)=input(x,y)+1;
  Halide::Func nbd("nbd");
  Halide::Func bc("bc");

  for (int t=0; t<10; ++t) {
    Halide::Image<int32_t> output = cell.realize(NX,NY);
    for (int j = 0; j < output.height(); j++) {
      for (int i = 0; i < output.width(); i++) {
	printf("%1d", output(i, j));
      }
      printf("\n");
    }
    printf("\n");

    bc(x,y)=select((x>=0)&&(x<NX)&&(y>=0)&&(y<NY)
		   ,output(min(NX-1,max(x,0)),min(NY-1,max(y,0))),0);
    
    nbd(x,y)=-bc(x,y);
    // staged programming!
    for(int dy=-1; dy<=1; ++dy) {   
      for(int dx=-1; dx<=1; ++dx) {
	nbd(x,y)+=bc(x+dx,y+dy);
      }
    }

    cell(x,y)=select((bc(x,y)==1&&nbd(x,y)==3)||(bc(x,y)==1&&nbd(x,y)==2)
		     || (bc(x,y)==0&&nbd(x,y)==3)
		     ,1,0);
  }

  return 0;
}
void Lbfgs::minimize(int maxiter)
{

    int n = objToMinimize.ProblemSize();
    std::cout  << "number of free variables for the minimizer: " << n << std::endl;


    std::vector<double> l(n);
    std::vector<double> u(n);
    Vint nbd(n);

    x.resize(n);
    g.resize(n);

    for (int i=0;i<n; i++)
    {
        l[i]=0;
        u[i]=0;
        nbd[i]=0;
        x[i] = 0.0;
        g[i] = 0.0;
    }  //unconstrained problem



    int rc;

    int m = 5;

    m_opt = lbfgsb_create(n, m, &l[0], &u[0], &nbd[0]);
    assert(m_opt);


    m_opt->iprint=-1;

    double f = DBL_MAX;

    m_opt->max_iter = maxiter;

    int last_iter = 0;

    /*    opt->iprint = 0;*/
    while (1) {
        rc = lbfgsb_run(m_opt, &x[0], &f, &g[0]);
        if (rc == 0) {
            break;
        } else if (rc < 0) {
            printf("lbfgsb stop with an error");
            break;
        } else if (rc == 1) {



/*
//check analytical derivatives with surreal:
{
            std::vector<dbl> vdblx;
            tocplx(x,vdblx);
            std::vector<dbl> vdblg;
            tocplx(g,vdblg);

            f = objToMinimize.Function(vdblx);
            objToMinimize.Derivatives(vdblx,vdblg);

            g=todbl(vdblg);


            for (uint i=0; i<x.size(); i++)
            {
                std::vector<surreal> svdblx = vdblx ;
                svdblx[i]+=surreal(0,1);
                std::cout <<"check: " << svdblx[i] << std::endl;

                std::cout << g[i] << "==" << imag(objToMinimize.Function(svdblx)) << "  " ;
            }
            std::cout << std::endl;
}
//end check derivatives
*/




            if (last_iter < m_opt->niter)
            {
                //this is a new iteration
                last_iter = m_opt->niter;
                //saves the minimizer variables for each iteration (can be useful for generating animations)
                m_vars_over_time.push_back(x);

            }


            std::vector<dbl> vdblx;
            tocplx(x,vdblx);
            std::vector<dbl> vdblg;
            tocplx(g,vdblg);

            f = objToMinimize.Function(vdblx);
            objToMinimize.Derivatives(vdblx,vdblg);

            g=todbl(vdblg);

//                 std::cout << "analytical derivatives: \n";
//                 for(uint i=0; i<g.size(); i++)
//                 {
//                     std::cout << "deriv[" << i << "]: " << g[i] << std::endl;
//                 }
//                 objToMinimize.NumDerivatives(x,g,true);


        } else {
            assert(!"can not reach here");
        }
    }


    m_opt->task[59]='\0'; //add a null terminating character to task[]


    std::cout << m_opt->task  << " |  " << m_opt->niter << " iterations\n";
}
Example #3
0
int Engine::smoothSearch()
{
    char task[60];
    std::vector<int> nbd(xBuffer_.size());
    double f, dsave[29], *wa;
    int tr = -1, iter = 0, *iwa, isave[44], lsave[4];
    int xSize = xBuffer_.size();
    int m = 5;
    bool canstop = 0;

    wa = (double*) malloc(
            ((2 * m + 4) * xSize + 11 * m * m + 8 * m) * sizeof(double));
    iwa = (int *) R_alloc(3 * xSize, sizeof(int));

    if (itSoftMax_ < 100)
        itSoftMax_ = 100;
    else if (itSoftMax_ > 1000)
        itSoftMax_ = 1000;

    strcpy(task, "START");

    for (int i = 0; i < xSize; ++i)
    {
        nbd[i] = 2;
    }
L111: if (iter >= itSoftMax_)
      {
          fValue_ = f;
          return 0;
      }
      if (isVerbose())
      {
          Rprintf("iter: %d itSoftMax: %d \n", iter, itSoftMax_);
      }

      Utils::setulb(xSize, m, &xBuffer_[0], &lower_[0], &upper_[0], &nbd[0], &f, &g_[0],
              factr_, &pgTol_, wa, iwa, task, tr, lsave, isave, dsave);
      iter++;
      if (strncmp(task, "FG", 2) == 0)
      {
          f = fObjective(xBuffer_);
          // Check if we have reach the threshold
          if (knowRealEnergy_)
          {
              canstop = f <= realEnergyThreshold_;
              if (canstop)
              {
                  if (isVerbose())
                  {
                      Rprintf(
                              "Have got accurate energy %.10g <= %.10g in smooth search\n",
                              f, realEnergyThreshold_);
                  }
                  fValue_ = f;
                  return 0;
              }
          }
          gradient();
          //Rprintf("LS TRACE: fValue: %.10g gradient: %.10g\n", f, g_[0]);
          goto L111;
      }
      if (strncmp(task, "NEW_X", 5) == 0)
      {
          goto L111;
      }
      // We should stop here
      fValue_ = f;
      if (fValue_ >= BIG_VALUE)
      {
          return -1;
      }
      return 0;
}
Example #4
0
// This attempts to match the behavior of optim() defined in the documentation
//   https://stat.ethz.ch/R-manual/R-devel/library/stats/html/optim.html
// and in the reference implementation
//   https://svn.r-project.org/R/trunk/src/library/stats/R/optim.R
//   https://svn.r-project.org/R/trunk/src/library/stats/src/optim.c
//   https://svn.r-project.org/R/trunk/src/include/R_ext/Applic.h
nimSmartPtr<OptimResultNimbleList> NimOptimProblem::solve(
    NimArr<1, double>& par) {
    NIM_ASSERT1(!par.isMap(), "Internal error: failed to handle mapped NimArr");
    const int n = par.dimSize(0);

    nimSmartPtr<OptimResultNimbleList> result = new OptimResultNimbleList;
    result->par = par;
    result->counts.initialize(NA_INTEGER, true, 2);
    if (hessian_) {
        result->hessian.initialize(NA_REAL, true, n, n);
    }

    // Set context-dependent default control_ values.
    if (control_->maxit == NA_INTEGER) {
        if (method_ == "Nelder-Mead") {
            control_->maxit = 500;
        } else {
            control_->maxit = 100;
        }
    }

    // Parameters common to all methods.
    double* dpar = par.getPtr();
    double* X = result->par.getPtr();
    double* Fmin = &(result->value);
    int* fail = &(result->convergence);
    void* ex = this;
    int* fncount = &(result->counts[0]);
    int* grcount = &(result->counts[1]);

    if (method_ == "Nelder-Mead") {
        nmmin(n, dpar, X, Fmin, NimOptimProblem::fn, fail, control_->abstol,
              control_->reltol, ex, control_->alpha, control_->beta,
              control_->gamma, control_->trace, fncount, control_->maxit);
    } else if (method_ == "BFGS") {
        std::vector<int> mask(n, 1);
        vmmin(n, dpar, Fmin, NimOptimProblem::fn, NimOptimProblem::gr,
              control_->maxit, control_->trace, mask.data(), control_->abstol,
              control_->reltol, control_->REPORT, ex, fncount, grcount, fail);
        result->par = par;
    } else if (method_ == "CG") {
        cgmin(n, dpar, X, Fmin, NimOptimProblem::fn, NimOptimProblem::gr, fail,
              control_->abstol, control_->reltol, ex, control_->type,
              control_->trace, fncount, grcount, control_->maxit);
    } else if (method_ == "L-BFGS-B") {
        if (lower_.dimSize(0) == 1) lower_.initialize(lower_[0], true, n);
        if (upper_.dimSize(0) == 1) upper_.initialize(upper_[0], true, n);
        NIM_ASSERT_SIZE(lower_, n);
        NIM_ASSERT_SIZE(upper_, n);
        std::vector<int> nbd(n, 0);
        for (int i = 0; i < n; ++i) {
            if (std::isfinite(lower_[i])) nbd[i] |= 1;
            if (std::isfinite(upper_[i])) nbd[i] |= 2;
        }
        char msg[60];
        lbfgsb(n, control_->lmm, X, lower_.getPtr(), upper_.getPtr(),
               nbd.data(), Fmin, NimOptimProblem::fn, NimOptimProblem::gr, fail,
               ex, control_->factr, control_->pgtol, fncount, grcount,
               control_->maxit, msg, control_->trace, control_->REPORT);
        result->message = msg;
    } else {
        NIMERROR("Unknown method_: %s", method_.c_str());
    }
    result->value *= control_->fnscale;

    // Compute Hessian.
    if (hessian_) {
        Rf_warning("Hessian computation is not implemented");  // TODO
    }

    return result;
}
Example #5
0
bool GoEyeUtil::NumberOfMoveToEye2(const GoBoard& board, SgBlackWhite color,
                                   SgPoint p, int& nummoves)
{
    nummoves = 0;
    bool capturing = false;
    SgVector<SgPoint> usedpoints;
    usedpoints.PushBack(p);
    SgPointSet counted;

    // Can never turn own stone into an eye
    if (board.IsColor(p, color))
        return false;
    
    // If opponent stone then it must be captured to make eye
    if (board.IsColor(p, SgOppBW(color)))
    {
        capturing = true;
    
        // If it is obviously safe then it can never be an eye
        if (SinglePointSafe2(board, p)) // Quick, naive safety test
            return false;

        for (GoBoard::LibertyIterator libit(board, p); libit; ++libit)
            counted.Include(*libit);
    }

    // Count immediate adjacencies
    for (SgNb4Iterator nb(p); nb; ++nb)
    {
        SgPoint adj = *nb;
        
        // Empty points must be filled
        if (board.IsColor(adj, SG_EMPTY))
        {
            counted.Include(adj);
        }
        
        // If adjacent opponent then can never be an eye
        else if (board.IsColor(adj, SgOppBW(color)))
        {
            if (capturing)
                counted.Include(adj); // must capture and then fill
            else
                return false;
        }
    }

    // Up to one diagonal can be ignored: estimate most costly
    SgPoint toignore = SG_NULLPOINT;
    int maxcost = 0;
    int infcost = 1000;
    if (board.Line(p) > 1)
    {
        for (SgNb4DiagIterator nbd(p); nbd; ++nbd)
        {
            SgPoint diag = *nbd;
            int cost = 0;

            if (  board.IsColor(diag, SG_EMPTY)
               && ! IsSinglePointEye2(board, diag, color, usedpoints))
            {
                cost = 1;
            }
            
            else if (board.IsColor(diag, SgOppBW(color)))
            {
                // quick safety test
                if (SinglePointSafe2(board, diag))
                    cost = infcost;
                else
                    cost = board.NumLiberties(diag);
            }

            if (cost > maxcost)
            {
                maxcost = cost;
                toignore = diag;
            }
        }
    }

    // Now mark points that must be played to secure diagonals
    for (SgNb4DiagIterator nbd(p); nbd; ++nbd)
    {
        SgPoint diag = *nbd;
        if (diag == toignore)
            continue;
        
        // Empty points must be filled (unless they are eyes)
        if (  board.IsColor(diag, SG_EMPTY)
           && ! IsSinglePointEye2(board, diag, color, usedpoints))
        {
            counted.Include(diag);
        }
        
        // Opponent stones on diagonals must be captured and filled
        else if (board.IsColor(diag, SgOppBW(color)))
        {
            if (SinglePointSafe2(board, diag))
                return false;
            else
            {
                counted.Include(diag);
                for (GoBoard::LibertyIterator libit(board, diag); libit;
                     ++libit)
                    counted.Include(*libit);
            }
        }
    }

    nummoves = counted.Size();
    return true;
}