void cloverndpoly_heatbath(const int id, hamiltonian_field_t * const hf) {
  int j;
  monomial * mnl = &monomial_list[id];
  spinor *up0, *dn0, *up1, *dn1, *dummy;
  double atime, etime;
  atime = gettime();
  ndpoly_set_global_parameter(mnl, 0);
  g_mu3 = 0.;
  init_sw_fields();
  sw_term((const su3**)hf->gaugefield, mnl->kappa, mnl->c_sw); 
  sw_invert_nd(mnl->mubar*mnl->mubar - mnl->epsbar*mnl->epsbar);
  
  // we measure before trajectory!
  if((mnl->rec_ev != 0) && (hf->traj_counter%mnl->rec_ev == 0)) {
    phmc_compute_ev(hf->traj_counter-1, id, &Qsw_pm_ndbipsi);
  }

  mnl->energy0 = 0.;
  random_spinor_field_eo(g_chi_up_spinor_field[0], mnl->rngrepro, RN_GAUSS);
  mnl->energy0 = square_norm(g_chi_up_spinor_field[0], VOLUME/2, 1);

  random_spinor_field_eo(g_chi_dn_spinor_field[0], mnl->rngrepro, RN_GAUSS);
  mnl->energy0 += square_norm(g_chi_dn_spinor_field[0], VOLUME/2, 1);

  Qsw_ndpsi(g_chi_up_spinor_field[1], g_chi_dn_spinor_field[1], 
	    g_chi_up_spinor_field[0], g_chi_dn_spinor_field[0]);

  up0 = g_chi_up_spinor_field[0];
  up1 = g_chi_up_spinor_field[1];
  dn0 = g_chi_dn_spinor_field[0];
  dn1 = g_chi_dn_spinor_field[1];
  
  for(j = 1; j < (mnl->MDPolyDegree); j++){
    Qsw_tau1_sub_const_ndpsi(up0, dn0,
			     up1, dn1, 
			     mnl->MDPolyRoots[mnl->MDPolyDegree-2+j], phmc_Cpol, phmc_invmaxev);
    dummy = up1; up1 = up0; up0 = dummy;
    dummy = dn1; dn1 = dn0; dn0 = dummy;
  }
  Ptilde_ndpsi(up0, dn0, mnl->PtildeCoefs, 
	       mnl->PtildeDegree, up1, dn1, &Qsw_pm_ndpsi);
  
  assign(mnl->pf, up0, VOLUME/2);
  assign(mnl->pf2, dn0, VOLUME/2);
  etime = gettime();
  if(g_proc_id == 0) {
    if(g_debug_level > 1) {
      printf("# Time for %s monomial heatbath: %e s\n", mnl->name, etime-atime);
    }
    if(g_debug_level > 3) {
      printf("called cloverndpoly_heatbath for id %d energy %f\n", id, mnl->energy0);
    }
  }
  return;
}
double cloverndpoly_acc(const int id, hamiltonian_field_t * const hf) {
  int j;
  monomial * mnl = &monomial_list[id];
  spinor *up0, *dn0, *up1, *dn1, *dummy;
  double atime, etime;
  atime = gettime();
  ndpoly_set_global_parameter(mnl, 0);
  g_mu3 = 0.;
  sw_term((const su3**) hf->gaugefield, mnl->kappa, mnl->c_sw); 
  sw_invert_nd(mnl->mubar*mnl->mubar - mnl->epsbar*mnl->epsbar);

  mnl->energy1 = 0.;

  up0 = g_chi_up_spinor_field[0];
  up1 = g_chi_up_spinor_field[1];
  dn0 = g_chi_dn_spinor_field[0];
  dn1 = g_chi_dn_spinor_field[1];
  /* This is needed if we consider only "1" in eq. 9 */
  assign(up0, mnl->pf , VOLUME/2);
  assign(dn0, mnl->pf2, VOLUME/2);

  for(j = 1; j <= (mnl->MDPolyDegree-1); j++) {
    Qsw_tau1_sub_const_ndpsi(up1, dn1, up0, dn0, mnl->MDPolyRoots[j-1]);
    
    dummy = up1; up1 = up0; up0 = dummy;
    dummy = dn1; dn1 = dn0; dn0 = dummy;
    /* result always in up0 and dn0 */
  }
  
  mnl->energy1 = square_norm(up0, VOLUME/2, 1);
  mnl->energy1 += square_norm(dn0, VOLUME/2, 1);
  etime = gettime();
  if(g_proc_id == 0) {
    if(g_debug_level > 1) {
      printf("# Time for %s monomial acc step: %e s\n", mnl->name, etime-atime);
    }
    if(g_debug_level > 3) {
      printf("called cloverndpoly_acc for id %d dH = %1.10e\n", id, mnl->energy1 - mnl->energy0);
    }
  }
  return(mnl->energy1 - mnl->energy0);
}
void cloverndpoly_derivative(const int id, hamiltonian_field_t * const hf) {
  int j, k;
  monomial * mnl = &monomial_list[id];
  double atime, etime;
  atime = gettime();
  for(int i = 0; i < VOLUME; i++) { 
    for(int mu = 0; mu < 4; mu++) { 
      _su3_zero(swm[i][mu]);
      _su3_zero(swp[i][mu]);
    }
  }
  ndpoly_set_global_parameter(mnl, 0);
  
  // we compute the clover term (1 + T_ee(oo)) for all sites x
  sw_term( (const su3**) hf->gaugefield, mnl->kappa, mnl->c_sw); 
  // we invert it for the even sites only
  sw_invert_nd(mnl->mubar*mnl->mubar - mnl->epsbar*mnl->epsbar);

  mnl->forcefactor = -phmc_Cpol*mnl->EVMaxInv;

  /* Recall:  The GAMMA_5 left of  delta M_eo  is done in  deriv_Sb !!! */

  /* Here comes the definitions for the chi_j fields */
  /* from  j=0  (chi_0 = phi)  .....  to j = n-1 */
  /* in  g_chi_up_spinor_field[0] (g_chi_dn_spinor_field[0] we expect */
  /* to find the phi field, the pseudo fermion field                  */
  /* i.e. must be equal to mnl->pf (mnl->pf2)                         */
  
  assign(g_chi_up_spinor_field[0], mnl->pf, VOLUME/2);
  assign(g_chi_dn_spinor_field[0], mnl->pf2, VOLUME/2);
  
  for(k = 1; k < (mnl->MDPolyDegree-1); k++) {
    Qsw_tau1_sub_const_ndpsi(g_chi_up_spinor_field[k], g_chi_dn_spinor_field[k], 
			   g_chi_up_spinor_field[k-1], g_chi_dn_spinor_field[k-1], 
			   mnl->MDPolyRoots[k-1]);
  }
  
  /* Here comes the remaining fields  chi_k ; k=n,...,2n-1  */
  /*They are evaluated step-by-step overwriting the same field (mnl->MDPolyDegree)*/
  
  assign(g_chi_up_spinor_field[mnl->MDPolyDegree], g_chi_up_spinor_field[mnl->MDPolyDegree-2], VOLUME/2);
  assign(g_chi_dn_spinor_field[mnl->MDPolyDegree], g_chi_dn_spinor_field[mnl->MDPolyDegree-2], VOLUME/2);
  
  for(j = (mnl->MDPolyDegree-1); j > 0; j--) {
    assign(g_chi_up_spinor_field[mnl->MDPolyDegree-1], g_chi_up_spinor_field[mnl->MDPolyDegree], VOLUME/2);
    assign(g_chi_dn_spinor_field[mnl->MDPolyDegree-1], g_chi_dn_spinor_field[mnl->MDPolyDegree], VOLUME/2);
    
    Qsw_tau1_sub_const_ndpsi(g_chi_up_spinor_field[mnl->MDPolyDegree], g_chi_dn_spinor_field[mnl->MDPolyDegree], 
			     g_chi_up_spinor_field[mnl->MDPolyDegree-1], g_chi_dn_spinor_field[mnl->MDPolyDegree-1], 
			     mnl->MDPolyRoots[2*mnl->MDPolyDegree-3-j]);
    
    /* Get the even parts of the  (j-1)th  chi_spinors */
    H_eo_sw_ndpsi(mnl->w_fields[0], mnl->w_fields[1], 
		  g_chi_up_spinor_field[j-1], g_chi_dn_spinor_field[j-1]);
    
    /* \delta M_eo sandwitched by  chi[j-1]_e^\dagger  and  chi[2N-j]_o */
    deriv_Sb(EO, mnl->w_fields[0], g_chi_up_spinor_field[mnl->MDPolyDegree], hf, mnl->forcefactor);/* UP */
    deriv_Sb(EO, mnl->w_fields[1], g_chi_dn_spinor_field[mnl->MDPolyDegree], hf, mnl->forcefactor);/* DN */

    /* Get the even parts of the  (2N-j)-th  chi_spinors */
    H_eo_sw_ndpsi(mnl->w_fields[2], mnl->w_fields[3], 
		  g_chi_up_spinor_field[mnl->MDPolyDegree], g_chi_dn_spinor_field[mnl->MDPolyDegree]);
    
    /* \delta M_oe sandwitched by  chi[j-1]_o^\dagger  and  chi[2N-j]_e */
    deriv_Sb(OE, g_chi_up_spinor_field[j-1], mnl->w_fields[2], hf, mnl->forcefactor);
    deriv_Sb(OE, g_chi_dn_spinor_field[j-1], mnl->w_fields[3], hf, mnl->forcefactor);

    // even/even sites sandwiched by gamma_5 Y_e and gamma_5 X_e
    sw_spinor(EE, mnl->w_fields[3], mnl->w_fields[0], mnl->forcefactor);
    // odd/odd sites sandwiched by gamma_5 Y_o and gamma_5 X_o
    sw_spinor(OO, g_chi_up_spinor_field[j-1], g_chi_dn_spinor_field[mnl->MDPolyDegree], mnl->forcefactor);

    // even/even sites sandwiched by gamma_5 Y_e and gamma_5 X_e
    sw_spinor(EE, mnl->w_fields[2], mnl->w_fields[1], mnl->forcefactor);
    // odd/odd sites sandwiched by gamma_5 Y_o and gamma_5 X_o
    sw_spinor(OO, g_chi_dn_spinor_field[j-1], g_chi_up_spinor_field[mnl->MDPolyDegree], mnl->forcefactor);
  }
  // trlog part does not depend on the normalisation of the polynomial
  sw_deriv_nd(EE);
  sw_all(hf, mnl->kappa, mnl->c_sw);
  etime = gettime();
  if(g_debug_level > 1 && g_proc_id == 0) {
    printf("# Time for %s monomial derivative: %e s\n", mnl->name, etime-atime);
  }
  return;
}