Example #1
0
/***************************************************************************************
 *decode the gps data packet
 ***************************************************************************************/
static void decode_gpspacket(struct NpsFdm *fdm, byte *buffer)
{
  /* gps velocity (1e2 m/s to  m/s */
  struct NedCoor_d vel;
  vel.x = (double)LongOfBuf(buffer, 3) * 1.0e-2;
  vel.y = (double)LongOfBuf(buffer, 7) * 1.0e-2;
  vel.z = (double)LongOfBuf(buffer, 11) * 1.0e-2;
  fdm->ltp_ecef_vel = vel;
  ecef_of_ned_vect_d(&fdm->ecef_ecef_vel, &ltpdef, &vel);

  /* No airspeed from CRRCSIM?
   * use ground speed for now, since we also don't know wind
   */
  struct DoubleVect3 ltp_airspeed;
  VECT3_COPY(ltp_airspeed, vel);
  fdm.airspeed = double_vect3_norm(&ltp_airspeed);

  /* gps position (1e7 deg to rad and 1e3 m to m) */
  struct LlaCoor_d pos;
  pos.lon = (double)LongOfBuf(buffer, 15) * 1.74533e-9;
  pos.lat = (double)LongOfBuf(buffer, 19) * 1.74533e-9;
  pos.alt = (double)LongOfBuf(buffer, 23) * 1.0e-3;

  pos.lat += ltpdef.lla.lat;
  pos.lon += ltpdef.lla.lon;
  pos.alt += ltpdef.lla.alt;

  fdm->lla_pos = pos;
  ecef_of_lla_d(&fdm->ecef_pos, &pos);
  fdm->hmsl = pos.alt - NAV_MSL0 / 1000.;

  fdm->pressure = pprz_isa_pressure_of_altitude(fdm->hmsl);

  /* gps time */
  fdm->time = (double)UShortOfBuf(buffer, 27);

  /* in LTP pprz */
  ned_of_ecef_point_d(&fdm->ltpprz_pos, &ltpdef, &fdm->ecef_pos);
  fdm->lla_pos_pprz = pos;
  ned_of_ecef_vect_d(&fdm->ltpprz_ecef_vel, &ltpdef, &fdm->ecef_ecef_vel);

#if NPS_CRRCSIM_DEBUG
  printf("decode gps | pos %f %f %f | vel %f %f %f | time %f\n",
         57.3 * fdm->lla_pos.lat,
         57.3 * fdm->lla_pos.lon,
         fdm->lla_pos.alt,
         fdm->ltp_ecef_vel.x,
         fdm->ltp_ecef_vel.y,
         fdm->ltp_ecef_vel.z,
         fdm->time);
#endif
}
static void print_estimator_state(double time) {

#if FILTER_OUTPUT_IN_NED
	
	struct EcefCoor_d pos_ecef,
										cur_pos_ecef,
										cur_vel_ecef;
	struct NedCoor_d	pos_ned,
										vel_ned;
										
	struct DoubleQuat q_ecef2body,
										q_ecef2enu,
										q_enu2body,
										q_ned2enu,
										q_ned2body;
										
	VECTOR_AS_VECT3(pos_ecef,pos_0_ecef);
	VECTOR_AS_VECT3(cur_pos_ecef,ins.avg_state.position);
	VECTOR_AS_VECT3(cur_vel_ecef,ins.avg_state.velocity);
	
	ned_of_ecef_point_d(&pos_ned, &current_ltp, &cur_pos_ecef);
	ned_of_ecef_vect_d(&vel_ned, &current_ltp, &cur_vel_ecef);
	
  int32_t xdd = 0;
  int32_t ydd = 0;
  int32_t zdd = 0;
  
  int32_t xd = vel_ned.x/0.0000019073;
  int32_t yd = vel_ned.y/0.0000019073;
  int32_t zd = vel_ned.z/0.0000019073;
  
  int32_t x = pos_ned.x/0.0039;
  int32_t y = pos_ned.y/0.0039;
  int32_t z = pos_ned.z/0.0039;

  fprintf(ins_logfile, "%f %d BOOZ2_INS2 %d %d %d %d %d %d %d %d %d\n", time, AC_ID, xdd, ydd, zdd, xd, yd, zd, x, y, z);
  #if 0
  QUAT_ASSIGN(q_ecef2body, ins.avg_state.orientation.w(), -ins.avg_state.orientation.x(),
	         -ins.avg_state.orientation.y(), -ins.avg_state.orientation.z());
  QUAT_ASSIGN(q_ned2enu, 0, M_SQRT1_2, M_SQRT1_2, 0);
  
  FLOAT_QUAT_OF_RMAT(q_ecef2enu, current_ltp.ltp_of_ecef);
	FLOAT_QUAT_INV_COMP(q_enu2body, q_ecef2enu, q_ecef2body);		// q_enu2body = q_ecef2body * (q_ecef2enu)^*
  FLOAT_QUAT_COMP(q_ned2body, q_ned2enu, q_enu2body);					// q_ned2body = q_enu2body * q_ned2enu

  #else /* if 0 */
  QUATERNIOND_AS_DOUBLEQUAT(q_ecef2body, ins.avg_state.orientation);
  DOUBLE_QUAT_OF_RMAT(q_ecef2enu, current_ltp.ltp_of_ecef);
  FLOAT_QUAT_INV_COMP(q_enu2body, q_ecef2enu, q_ecef2body);
  QUAT_ENU_FROM_TO_NED(q_enu2body, q_ned2body);
  
  #endif /* if 0 */
  
  struct FloatEulers e;
  FLOAT_EULERS_OF_QUAT(e, q_ned2body);
  
  
	#if PRINT_EULER_NED
		printf("EULER % 6.1f % 6.1f % 6.1f\n", e.phi*180*M_1_PI, e.theta*180*M_1_PI, e.psi*180*M_1_PI);
	#endif /* PRINT_EULER_NED */
  fprintf(ins_logfile, "%f %d AHRS_EULER %f %f %f\n", time, AC_ID, e.phi, e.theta, e.psi);
  fprintf(ins_logfile, "%f %d DEBUG_COVARIANCE %f %f %f %f %f %f %f %f %f %f %f %f\n", time, AC_ID,
				sqrt(ins.cov( 0, 0)),  sqrt(ins.cov( 1, 1)),  sqrt(ins.cov( 2, 2)), 
				sqrt(ins.cov( 3, 3)),  sqrt(ins.cov( 4, 4)),  sqrt(ins.cov( 5, 5)), 
				sqrt(ins.cov( 6, 6)),  sqrt(ins.cov( 7, 7)),  sqrt(ins.cov( 8, 8)), 
				sqrt(ins.cov( 9, 9)),  sqrt(ins.cov(10,10)),  sqrt(ins.cov(11,11)));
  fprintf(ins_logfile, "%f %d BOOZ_SIM_GYRO_BIAS %f %f %f\n", time, AC_ID, ins.avg_state.gyro_bias(0), ins.avg_state.gyro_bias(1), ins.avg_state.gyro_bias(2));

#else /* FILTER_OUTPUT_IN_ECEF */
  int32_t xdd = 0;
  int32_t ydd = 0;
  int32_t zdd = 0;

  int32_t xd = ins.avg_state.velocity(0)/0.0000019073;
  int32_t yd = ins.avg_state.velocity(1)/0.0000019073;
  int32_t zd = ins.avg_state.velocity(2)/0.0000019073;
  int32_t x = ins.avg_state.position(0)/0.0039;
  int32_t y = ins.avg_state.position(1)/0.0039;
  int32_t z = ins.avg_state.position(2)/0.0039;

  fprintf(ins_logfile, "%f %d BOOZ2_INS2 %d %d %d %d %d %d %d %d %d\n", time, AC_ID, xdd, ydd, zdd, xd, yd, zd, x, y, z);
  
  struct FloatQuat q_ecef2body;
  QUAT_ASSIGN(q_ecef2body, ins.avg_state.orientation.w(), ins.avg_state.orientation.x(),
	         ins.avg_state.orientation.y(), ins.avg_state.orientation.z());
  struct FloatEulers e_ecef2body;
  FLOAT_EULERS_OF_QUAT(e_ecef2body, q_ecef2body);

  fprintf(ins_logfile, "%f %d AHRS_EULER %f %f %f\n", time, AC_ID, e_ecef2body.phi, e_ecef2body.theta, e_ecef2body.psi);
  fprintf(ins_logfile, "%f %d DEBUG_COVARIANCE %f %f %f %f %f %f %f %f %f %f %f %f\n", time, AC_ID,
				sqrt(ins.cov( 0, 0)),  sqrt(ins.cov( 1, 1)),  sqrt(ins.cov( 2, 2)), 
				sqrt(ins.cov( 3, 3)),  sqrt(ins.cov( 4, 4)),  sqrt(ins.cov( 5, 5)), 
				sqrt(ins.cov( 6, 6)),  sqrt(ins.cov( 7, 7)),  sqrt(ins.cov( 8, 8)), 
				sqrt(ins.cov( 9, 9)),  sqrt(ins.cov(10,10)),  sqrt(ins.cov(11,11)));
  fprintf(ins_logfile, "%f %d BOOZ_SIM_GYRO_BIAS %f %f %f\n", time, AC_ID, ins.avg_state.gyro_bias(0), ins.avg_state.gyro_bias(1), ins.avg_state.gyro_bias(2));
#endif /* FILTER_OUTPUT_IN_NED / ECEF */
}