static int tftp_help(struct sk_buff *skb,
		     unsigned int protoff,
		     struct nf_conn *ct,
		     enum ip_conntrack_info ctinfo)
{
	const struct tftphdr *tfh;
	struct tftphdr _tftph;
	struct nf_conntrack_expect *exp;
	struct nf_conntrack_tuple *tuple;
	unsigned int ret = NF_ACCEPT;
	typeof(nf_nat_tftp_hook) nf_nat_tftp;

	#ifdef CONFIG_CAMEO_ALG_TFTP
	if(!tftp_enable)
		return NF_ACCEPT;
	#endif

	tfh = skb_header_pointer(skb, protoff + sizeof(struct udphdr),
				 sizeof(_tftph), &_tftph);
	if (tfh == NULL)
		return NF_ACCEPT;

	switch (ntohs(tfh->opcode)) {
	case TFTP_OPCODE_READ:
	case TFTP_OPCODE_WRITE:
		/* RRQ and WRQ works the same way */
		nf_ct_dump_tuple(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
		nf_ct_dump_tuple(&ct->tuplehash[IP_CT_DIR_REPLY].tuple);

		exp = nf_ct_expect_alloc(ct);
		if (exp == NULL)
			return NF_DROP;
		tuple = &ct->tuplehash[IP_CT_DIR_REPLY].tuple;
		nf_ct_expect_init(exp, NF_CT_EXPECT_CLASS_DEFAULT,
				  nf_ct_l3num(ct),
				  &tuple->src.u3, &tuple->dst.u3,
				  IPPROTO_UDP, NULL, &tuple->dst.u.udp.port);

		pr_debug("expect: ");
		nf_ct_dump_tuple(&exp->tuple);

		nf_nat_tftp = rcu_dereference(nf_nat_tftp_hook);
		if (nf_nat_tftp && ct->status & IPS_NAT_MASK)
			ret = nf_nat_tftp(skb, ctinfo, exp);
		else if (nf_ct_expect_related(exp) != 0)
			ret = NF_DROP;
		nf_ct_expect_put(exp);
		break;
	case TFTP_OPCODE_DATA:
	case TFTP_OPCODE_ACK:
		pr_debug("Data/ACK opcode\n");
		break;
	case TFTP_OPCODE_ERROR:
		pr_debug("Error opcode\n");
		break;
	default:
		pr_debug("Unknown opcode\n");
	}
	return ret;
}
static int destroy_sibling_or_exp(struct net *net,
				  const struct nf_conntrack_tuple *t)
{
	const struct nf_conntrack_tuple_hash *h;
	struct nf_conntrack_expect *exp;
	struct nf_conn *sibling;

	pr_debug("trying to timeout ct or exp for tuple ");
	nf_ct_dump_tuple(t);

	h = nf_conntrack_find_get(net, t);
	if (h)  {
		sibling = nf_ct_tuplehash_to_ctrack(h);
		pr_debug("setting timeout of conntrack %p to 0\n", sibling);
		sibling->proto.gre.timeout	  = 0;
		sibling->proto.gre.stream_timeout = 0;
		if (del_timer(&sibling->timeout))
			sibling->timeout.function((unsigned long)sibling);
		nf_ct_put(sibling);
		return 1;
	} else {
		exp = nf_ct_expect_find_get(net, t);
		if (exp) {
			pr_debug("unexpect_related of expect %p\n", exp);
			nf_ct_unexpect_related(exp);
			nf_ct_expect_put(exp);
			return 1;
		}
	}
	return 0;
}
Example #3
0
static int expect_q931(struct sk_buff *skb, struct nf_conn *ct,
		       enum ip_conntrack_info ctinfo,
		       unsigned char **data,
		       TransportAddress *taddr, int count)
{
	struct nf_ct_h323_master *info = &nfct_help(ct)->help.ct_h323_info;
	int dir = CTINFO2DIR(ctinfo);
	int ret = 0;
	int i;
	__be16 port;
	union nf_inet_addr addr;
	struct nf_conntrack_expect *exp;
	typeof(nat_q931_hook) nat_q931;

#ifdef CONFIG_HTC_NETWORK_MODIFY
	if (IS_ERR(info) || (!info))
		printk(KERN_ERR "[NET] info is NULL in %s!\n", __func__);
#endif

	
	for (i = 0; i < count; i++) {
		if (get_h225_addr(ct, *data, &taddr[i], &addr, &port) &&
		    memcmp(&addr, &ct->tuplehash[dir].tuple.src.u3,
			   sizeof(addr)) == 0 && port != 0)
			break;
	}

	if (i >= count)		
		return 0;

	
	if ((exp = nf_ct_expect_alloc(ct)) == NULL)
		return -1;
	nf_ct_expect_init(exp, NF_CT_EXPECT_CLASS_DEFAULT, nf_ct_l3num(ct),
			  gkrouted_only ? 
				&ct->tuplehash[!dir].tuple.src.u3 : NULL,
			  &ct->tuplehash[!dir].tuple.dst.u3,
			  IPPROTO_TCP, NULL, &port);
	exp->helper = nf_conntrack_helper_q931;
	exp->flags = NF_CT_EXPECT_PERMANENT;	

	nat_q931 = rcu_dereference(nat_q931_hook);
	if (nat_q931 && ct->status & IPS_NAT_MASK) {	
		ret = nat_q931(skb, ct, ctinfo, data, taddr, i, port, exp);
	} else {		
		if (nf_ct_expect_related(exp) == 0) {
			pr_debug("nf_ct_ras: expect Q.931 ");
			nf_ct_dump_tuple(&exp->tuple);

			
			info->sig_port[dir] = port;
		} else
			ret = -1;
	}

	nf_ct_expect_put(exp);

	return ret;
}
Example #4
0
static int expect_callforwarding(struct sk_buff *skb,
				 struct nf_conn *ct,
				 enum ip_conntrack_info ctinfo,
				 unsigned char **data, int dataoff,
				 TransportAddress *taddr)
{
	int dir = CTINFO2DIR(ctinfo);
	int ret = 0;
	__be16 port;
	union nf_inet_addr addr;
	struct nf_conntrack_expect *exp;
	typeof(nat_callforwarding_hook) nat_callforwarding;

	
	if (!get_h225_addr(ct, *data, taddr, &addr, &port) || port == 0)
		return 0;

	
	if (callforward_filter &&
	    callforward_do_filter(&addr, &ct->tuplehash[!dir].tuple.src.u3,
				  nf_ct_l3num(ct))) {
		pr_debug("nf_ct_q931: Call Forwarding not tracked\n");
		return 0;
	}

	
	if ((exp = nf_ct_expect_alloc(ct)) == NULL)
		return -1;
	nf_ct_expect_init(exp, NF_CT_EXPECT_CLASS_DEFAULT, nf_ct_l3num(ct),
			  &ct->tuplehash[!dir].tuple.src.u3, &addr,
			  IPPROTO_TCP, NULL, &port);
	exp->helper = nf_conntrack_helper_q931;

	if (memcmp(&ct->tuplehash[dir].tuple.src.u3,
		   &ct->tuplehash[!dir].tuple.dst.u3,
		   sizeof(ct->tuplehash[dir].tuple.src.u3)) &&
	    (nat_callforwarding = rcu_dereference(nat_callforwarding_hook)) &&
	    ct->status & IPS_NAT_MASK) {
		
		ret = nat_callforwarding(skb, ct, ctinfo, data, dataoff,
					 taddr, port, exp);
	} else {		
		if (nf_ct_expect_related(exp) == 0) {
			pr_debug("nf_ct_q931: expect Call Forwarding ");
			nf_ct_dump_tuple(&exp->tuple);
		} else
			ret = -1;
	}

	nf_ct_expect_put(exp);

	return ret;
}
Example #5
0
static int process_rcf(struct sk_buff *skb, struct nf_conn *ct,
		       enum ip_conntrack_info ctinfo,
		       unsigned char **data, RegistrationConfirm *rcf)
{
	struct nf_ct_h323_master *info = &nfct_help(ct)->help.ct_h323_info;
	int dir = CTINFO2DIR(ctinfo);
	int ret;
	struct nf_conntrack_expect *exp;
	typeof(set_sig_addr_hook) set_sig_addr;

	pr_debug("nf_ct_ras: RCF\n");

#ifdef CONFIG_HTC_NETWORK_MODIFY
	if (IS_ERR(info) || (!info))
		printk(KERN_ERR "[NET] info is NULL in %s!\n", __func__);
#endif

	set_sig_addr = rcu_dereference(set_sig_addr_hook);
	if (set_sig_addr && ct->status & IPS_NAT_MASK) {
		ret = set_sig_addr(skb, ct, ctinfo, data,
					rcf->callSignalAddress.item,
					rcf->callSignalAddress.count);
		if (ret < 0)
			return -1;
	}

	if (rcf->options & eRegistrationConfirm_timeToLive) {
		pr_debug("nf_ct_ras: RCF TTL = %u seconds\n", rcf->timeToLive);
		info->timeout = rcf->timeToLive;
	}

	if (info->timeout > 0) {
		pr_debug("nf_ct_ras: set RAS connection timeout to "
			 "%u seconds\n", info->timeout);
		nf_ct_refresh(ct, skb, info->timeout * HZ);

		
		spin_lock_bh(&nf_conntrack_lock);
		exp = find_expect(ct, &ct->tuplehash[dir].tuple.dst.u3,
				  info->sig_port[!dir]);
		if (exp) {
			pr_debug("nf_ct_ras: set Q.931 expect "
				 "timeout to %u seconds for",
				 info->timeout);
			nf_ct_dump_tuple(&exp->tuple);
			set_expect_timeout(exp, info->timeout);
		}
		spin_unlock_bh(&nf_conntrack_lock);
	}

	return 0;
}
Example #6
0
static int h245_help(struct sk_buff *skb, unsigned int protoff,
		     struct nf_conn *ct, enum ip_conntrack_info ctinfo)
{
	static MultimediaSystemControlMessage mscm;
	unsigned char *data = NULL;
	int datalen;
	int dataoff;
	int ret;

	
	if (ctinfo != IP_CT_ESTABLISHED &&
	    ctinfo != IP_CT_ESTABLISHED + IP_CT_IS_REPLY) {
		return NF_ACCEPT;
	}
	pr_debug("nf_ct_h245: skblen = %u\n", skb->len);

	spin_lock_bh(&nf_h323_lock);

	
	while (get_tpkt_data(skb, protoff, ct, ctinfo,
			     &data, &datalen, &dataoff)) {
		pr_debug("nf_ct_h245: TPKT len=%d ", datalen);
		nf_ct_dump_tuple(&ct->tuplehash[CTINFO2DIR(ctinfo)].tuple);

		
		ret = DecodeMultimediaSystemControlMessage(data, datalen,
							   &mscm);
		if (ret < 0) {
			pr_debug("nf_ct_h245: decoding error: %s\n",
				 ret == H323_ERROR_BOUND ?
				 "out of bound" : "out of range");
			
			break;
		}

		
		if (process_h245(skb, ct, ctinfo, &data, dataoff, &mscm) < 0)
			goto drop;
	}

	spin_unlock_bh(&nf_h323_lock);
	return NF_ACCEPT;

      drop:
	spin_unlock_bh(&nf_h323_lock);
	if (net_ratelimit())
		printk("nf_ct_h245: packet dropped\n");
	return NF_DROP;
}
Example #7
0
static int expect_t120(struct sk_buff *skb,
		       struct nf_conn *ct,
		       enum ip_conntrack_info ctinfo,
		       unsigned char **data, int dataoff,
		       H245_TransportAddress *taddr)
{
	int dir = CTINFO2DIR(ctinfo);
	int ret = 0;
	__be16 port;
	union nf_inet_addr addr;
	struct nf_conntrack_expect *exp;
	typeof(nat_t120_hook) nat_t120;

	
	if (!get_h245_addr(ct, *data, taddr, &addr, &port) ||
	    memcmp(&addr, &ct->tuplehash[dir].tuple.src.u3, sizeof(addr)) ||
	    port == 0)
		return 0;

	
	if ((exp = nf_ct_expect_alloc(ct)) == NULL)
		return -1;
	nf_ct_expect_init(exp, NF_CT_EXPECT_CLASS_DEFAULT, nf_ct_l3num(ct),
			  &ct->tuplehash[!dir].tuple.src.u3,
			  &ct->tuplehash[!dir].tuple.dst.u3,
			  IPPROTO_TCP, NULL, &port);
	exp->flags = NF_CT_EXPECT_PERMANENT;	

	if (memcmp(&ct->tuplehash[dir].tuple.src.u3,
		   &ct->tuplehash[!dir].tuple.dst.u3,
		   sizeof(ct->tuplehash[dir].tuple.src.u3)) &&
	    (nat_t120 = rcu_dereference(nat_t120_hook)) &&
	    ct->status & IPS_NAT_MASK) {
		
		ret = nat_t120(skb, ct, ctinfo, data, dataoff, taddr,
			       port, exp);
	} else {		
		if (nf_ct_expect_related(exp) == 0) {
			pr_debug("nf_ct_h323: expect T.120 ");
			nf_ct_dump_tuple(&exp->tuple);
		} else
			ret = -1;
	}

	nf_ct_expect_put(exp);

	return ret;
}
Example #8
0
static int q931_help(struct sk_buff *skb, unsigned int protoff,
		     struct nf_conn *ct, enum ip_conntrack_info ctinfo)
{
	static Q931 q931;
	unsigned char *data = NULL;
	int datalen = 0;
	int dataoff = 0;
	int ret;

	
	if (ctinfo != IP_CT_ESTABLISHED && ctinfo != IP_CT_ESTABLISHED_REPLY)
		return NF_ACCEPT;

	pr_debug("nf_ct_q931: skblen = %u\n", skb->len);

	spin_lock_bh(&nf_h323_lock);

	
	while (get_tpkt_data(skb, protoff, ct, ctinfo,
			     &data, &datalen, &dataoff)) {
		pr_debug("nf_ct_q931: TPKT len=%d ", datalen);
		nf_ct_dump_tuple(&ct->tuplehash[CTINFO2DIR(ctinfo)].tuple);

		
		ret = DecodeQ931(data, datalen, &q931);
		if (ret < 0) {
			pr_debug("nf_ct_q931: decoding error: %s\n",
				 ret == H323_ERROR_BOUND ?
				 "out of bound" : "out of range");
			
			break;
		}

		
		if (process_q931(skb, ct, ctinfo, &data, dataoff, &q931) < 0)
			goto drop;
	}

	spin_unlock_bh(&nf_h323_lock);
	return NF_ACCEPT;

      drop:
	spin_unlock_bh(&nf_h323_lock);
	if (net_ratelimit())
		pr_info("nf_ct_q931: packet dropped\n");
	return NF_DROP;
}
Example #9
0
static int process_acf(struct sk_buff *skb, struct nf_conn *ct,
		       enum ip_conntrack_info ctinfo,
		       unsigned char **data, AdmissionConfirm *acf)
{
	int dir = CTINFO2DIR(ctinfo);
	int ret = 0;
	__be16 port;
	union nf_inet_addr addr;
	struct nf_conntrack_expect *exp;
	typeof(set_sig_addr_hook) set_sig_addr;

	pr_debug("nf_ct_ras: ACF\n");

	if (!get_h225_addr(ct, *data, &acf->destCallSignalAddress,
			   &addr, &port))
		return 0;

	if (!memcmp(&addr, &ct->tuplehash[dir].tuple.dst.u3, sizeof(addr))) {
		
		set_sig_addr = rcu_dereference(set_sig_addr_hook);
		if (set_sig_addr && ct->status & IPS_NAT_MASK)
			return set_sig_addr(skb, ct, ctinfo, data,
					    &acf->destCallSignalAddress, 1);
		return 0;
	}

	
	if ((exp = nf_ct_expect_alloc(ct)) == NULL)
		return -1;
	nf_ct_expect_init(exp, NF_CT_EXPECT_CLASS_DEFAULT, nf_ct_l3num(ct),
			  &ct->tuplehash[!dir].tuple.src.u3, &addr,
			  IPPROTO_TCP, NULL, &port);
	exp->flags = NF_CT_EXPECT_PERMANENT;
	exp->helper = nf_conntrack_helper_q931;

	if (nf_ct_expect_related(exp) == 0) {
		pr_debug("nf_ct_ras: expect Q.931 ");
		nf_ct_dump_tuple(&exp->tuple);
	} else
		ret = -1;

	nf_ct_expect_put(exp);

	return ret;
}
Example #10
0
static int process_gcf(struct sk_buff *skb, struct nf_conn *ct,
		       enum ip_conntrack_info ctinfo,
		       unsigned char **data, GatekeeperConfirm *gcf)
{
	int dir = CTINFO2DIR(ctinfo);
	int ret = 0;
	__be16 port;
	union nf_inet_addr addr;
	struct nf_conntrack_expect *exp;

	pr_debug("nf_ct_ras: GCF\n");

	if (!get_h225_addr(ct, *data, &gcf->rasAddress, &addr, &port))
		return 0;

	
	if (!memcmp(&addr, &ct->tuplehash[dir].tuple.src.u3, sizeof(addr)) &&
	    port == ct->tuplehash[dir].tuple.src.u.udp.port)
		return 0;

	
	if (test_bit(IPS_EXPECTED_BIT, &ct->status))
		return 0;

	
	if ((exp = nf_ct_expect_alloc(ct)) == NULL)
		return -1;
	nf_ct_expect_init(exp, NF_CT_EXPECT_CLASS_DEFAULT, nf_ct_l3num(ct),
			  &ct->tuplehash[!dir].tuple.src.u3, &addr,
			  IPPROTO_UDP, NULL, &port);
	exp->helper = nf_conntrack_helper_ras;

	if (nf_ct_expect_related(exp) == 0) {
		pr_debug("nf_ct_ras: expect RAS ");
		nf_ct_dump_tuple(&exp->tuple);
	} else
		ret = -1;

	nf_ct_expect_put(exp);

	return ret;
}
Example #11
0
static int ras_help(struct sk_buff *skb, unsigned int protoff,
		    struct nf_conn *ct, enum ip_conntrack_info ctinfo)
{
	static RasMessage ras;
	unsigned char *data;
	int datalen = 0;
	int ret;

	pr_debug("nf_ct_ras: skblen = %u\n", skb->len);

	spin_lock_bh(&nf_h323_lock);

	
	data = get_udp_data(skb, protoff, &datalen);
	if (data == NULL)
		goto accept;
	pr_debug("nf_ct_ras: RAS message len=%d ", datalen);
	nf_ct_dump_tuple(&ct->tuplehash[CTINFO2DIR(ctinfo)].tuple);

	
	ret = DecodeRasMessage(data, datalen, &ras);
	if (ret < 0) {
		pr_debug("nf_ct_ras: decoding error: %s\n",
			 ret == H323_ERROR_BOUND ?
			 "out of bound" : "out of range");
		goto accept;
	}

	
	if (process_ras(skb, ct, ctinfo, &data, &ras) < 0)
		goto drop;

      accept:
	spin_unlock_bh(&nf_h323_lock);
	return NF_ACCEPT;

      drop:
	spin_unlock_bh(&nf_h323_lock);
	if (net_ratelimit())
		pr_info("nf_ct_ras: packet dropped\n");
	return NF_DROP;
}
static void pptp_expectfn(struct nf_conn *ct,
			 struct nf_conntrack_expect *exp)
{
	struct net *net = nf_ct_net(ct);
	typeof(nf_nat_pptp_hook_expectfn) nf_nat_pptp_expectfn;
	pr_debug("increasing timeouts\n");

	/* increase timeout of GRE data channel conntrack entry */
	ct->proto.gre.timeout	     = PPTP_GRE_TIMEOUT;
	ct->proto.gre.stream_timeout = PPTP_GRE_STREAM_TIMEOUT;

	/* Can you see how rusty this code is, compared with the pre-2.6.11
	 * one? That's what happened to my shiny newnat of 2002 ;( -HW */

	rcu_read_lock();
	nf_nat_pptp_expectfn = rcu_dereference(nf_nat_pptp_hook_expectfn);
	if (nf_nat_pptp_expectfn && ct->master->status & IPS_NAT_MASK)
		nf_nat_pptp_expectfn(ct, exp);
	else {
		struct nf_conntrack_tuple inv_t;
		struct nf_conntrack_expect *exp_other;

		/* obviously this tuple inversion only works until you do NAT */
		nf_ct_invert_tuplepr(&inv_t, &exp->tuple);
		pr_debug("trying to unexpect other dir: ");
		nf_ct_dump_tuple(&inv_t);

		exp_other = nf_ct_expect_find_get(net, &inv_t);
		if (exp_other) {
			/* delete other expectation.  */
			pr_debug("found\n");
			nf_ct_unexpect_related(exp_other);
			nf_ct_expect_put(exp_other);
		} else {
			pr_debug("not found\n");
		}
	}
	rcu_read_unlock();
}
Example #13
0
static int process_lcf(struct sk_buff *skb, struct nf_conn *ct,
		       enum ip_conntrack_info ctinfo,
		       unsigned char **data, LocationConfirm *lcf)
{
	int dir = CTINFO2DIR(ctinfo);
	int ret = 0;
	__be16 port;
	union nf_inet_addr addr;
	struct nf_conntrack_expect *exp;

	pr_debug("nf_ct_ras: LCF\n");

	if (!get_h225_addr(ct, *data, &lcf->callSignalAddress,
			   &addr, &port))
		return 0;

	
	if ((exp = nf_ct_expect_alloc(ct)) == NULL)
		return -1;
	nf_ct_expect_init(exp, NF_CT_EXPECT_CLASS_DEFAULT, nf_ct_l3num(ct),
			  &ct->tuplehash[!dir].tuple.src.u3, &addr,
			  IPPROTO_TCP, NULL, &port);
	exp->flags = NF_CT_EXPECT_PERMANENT;
	exp->helper = nf_conntrack_helper_q931;

	if (nf_ct_expect_related(exp) == 0) {
		pr_debug("nf_ct_ras: expect Q.931 ");
		nf_ct_dump_tuple(&exp->tuple);
	} else
		ret = -1;

	nf_ct_expect_put(exp);

	

	return ret;
}
/* Returns verdict for packet, or -1 for invalid. */
static int tcp_packet(struct nf_conn *ct,
		      const struct sk_buff *skb,
		      unsigned int dataoff,
		      enum ip_conntrack_info ctinfo,
		      u_int8_t pf,
		      unsigned int hooknum)
{
	struct net *net = nf_ct_net(ct);
	struct nf_conntrack_tuple *tuple;
#if defined(CONFIG_MV_ETH_NFP_CT_LEARN)
	struct nf_conntrack_tuple *tupleInverseDir;
#endif
	enum tcp_conntrack new_state, old_state;
	enum ip_conntrack_dir dir;
	const struct tcphdr *th;
	struct tcphdr _tcph;
	unsigned long timeout;
	unsigned int index;

	th = skb_header_pointer(skb, dataoff, sizeof(_tcph), &_tcph);
	BUG_ON(th == NULL);

	spin_lock_bh(&ct->lock);
	old_state = ct->proto.tcp.state;
	dir = CTINFO2DIR(ctinfo);
	index = get_conntrack_index(th);
	new_state = tcp_conntracks[dir][index][old_state];
	tuple = &ct->tuplehash[dir].tuple;
#if defined(CONFIG_MV_ETH_NFP_CT_LEARN)
	tupleInverseDir	= &ct->tuplehash[!dir].tuple;
#endif
	switch (new_state) {
	case TCP_CONNTRACK_SYN_SENT:
		if (old_state < TCP_CONNTRACK_TIME_WAIT)
			break;
		/* RFC 1122: "When a connection is closed actively,
		 * it MUST linger in TIME-WAIT state for a time 2xMSL
		 * (Maximum Segment Lifetime). However, it MAY accept
		 * a new SYN from the remote TCP to reopen the connection
		 * directly from TIME-WAIT state, if..."
		 * We ignore the conditions because we are in the
		 * TIME-WAIT state anyway.
		 *
		 * Handle aborted connections: we and the server
		 * think there is an existing connection but the client
		 * aborts it and starts a new one.
		 */
		if (((ct->proto.tcp.seen[dir].flags
		      | ct->proto.tcp.seen[!dir].flags)
		     & IP_CT_TCP_FLAG_CLOSE_INIT)
		    || (ct->proto.tcp.last_dir == dir
		        && ct->proto.tcp.last_index == TCP_RST_SET)) {
			/* Attempt to reopen a closed/aborted connection.
			 * Delete this connection and look up again. */
			spin_unlock_bh(&ct->lock);

			/* Only repeat if we can actually remove the timer.
			 * Destruction may already be in progress in process
			 * context and we must give it a chance to terminate.
			 */
			if (nf_ct_kill(ct))
				return -NF_REPEAT;
			return NF_DROP;
		}
		/* Fall through */
	case TCP_CONNTRACK_IGNORE:
		/* Ignored packets:
		 *
		 * Our connection entry may be out of sync, so ignore
		 * packets which may signal the real connection between
		 * the client and the server.
		 *
		 * a) SYN in ORIGINAL
		 * b) SYN/ACK in REPLY
		 * c) ACK in reply direction after initial SYN in original.
		 *
		 * If the ignored packet is invalid, the receiver will send
		 * a RST we'll catch below.
		 */
		if (index == TCP_SYNACK_SET
		    && ct->proto.tcp.last_index == TCP_SYN_SET
		    && ct->proto.tcp.last_dir != dir
		    && ntohl(th->ack_seq) == ct->proto.tcp.last_end) {
			/* b) This SYN/ACK acknowledges a SYN that we earlier
			 * ignored as invalid. This means that the client and
			 * the server are both in sync, while the firewall is
			 * not. We kill this session and block the SYN/ACK so
			 * that the client cannot but retransmit its SYN and
			 * thus initiate a clean new session.
			 */
			spin_unlock_bh(&ct->lock);
			if (LOG_INVALID(net, IPPROTO_TCP))
				nf_log_packet(pf, 0, skb, NULL, NULL, NULL,
					  "nf_ct_tcp: killing out of sync session ");
			nf_ct_kill(ct);
			return NF_DROP;
		}
		ct->proto.tcp.last_index = index;
		ct->proto.tcp.last_dir = dir;
		ct->proto.tcp.last_seq = ntohl(th->seq);
		ct->proto.tcp.last_end =
		    segment_seq_plus_len(ntohl(th->seq), skb->len, dataoff, th);

		spin_unlock_bh(&ct->lock);
		if (LOG_INVALID(net, IPPROTO_TCP))
			nf_log_packet(pf, 0, skb, NULL, NULL, NULL,
				  "nf_ct_tcp: invalid packet ignored ");
		return NF_ACCEPT;
	case TCP_CONNTRACK_MAX:
		/* Invalid packet */
		pr_debug("nf_ct_tcp: Invalid dir=%i index=%u ostate=%u\n",
			 dir, get_conntrack_index(th), old_state);
		spin_unlock_bh(&ct->lock);
		if (LOG_INVALID(net, IPPROTO_TCP))
			nf_log_packet(pf, 0, skb, NULL, NULL, NULL,
				  "nf_ct_tcp: invalid state ");
		return -NF_ACCEPT;
	case TCP_CONNTRACK_CLOSE:
		if (index == TCP_RST_SET
		    && (ct->proto.tcp.seen[!dir].flags & IP_CT_TCP_FLAG_MAXACK_SET)
		    && before(ntohl(th->seq), ct->proto.tcp.seen[!dir].td_maxack)) {
			/* Invalid RST  */
			spin_unlock_bh(&ct->lock);
			if (LOG_INVALID(net, IPPROTO_TCP))
				nf_log_packet(pf, 0, skb, NULL, NULL, NULL,
					  "nf_ct_tcp: invalid RST ");
			return -NF_ACCEPT;
		}
		if (index == TCP_RST_SET
		    && ((test_bit(IPS_SEEN_REPLY_BIT, &ct->status)
			 && ct->proto.tcp.last_index == TCP_SYN_SET)
			|| (!test_bit(IPS_ASSURED_BIT, &ct->status)
			    && ct->proto.tcp.last_index == TCP_ACK_SET))
		    && ntohl(th->ack_seq) == ct->proto.tcp.last_end) {
			/* RST sent to invalid SYN or ACK we had let through
			 * at a) and c) above:
			 *
			 * a) SYN was in window then
			 * c) we hold a half-open connection.
			 *
			 * Delete our connection entry.
			 * We skip window checking, because packet might ACK
			 * segments we ignored. */
			goto in_window;
		}
		/* Just fall through */
	default:
		/* Keep compilers happy. */
		break;
	}

#if defined(CONFIG_MV_ETH_NFP_CT_LEARN)
	/*
	 * When connection is handled by NFP, we have to relax TCP tracking
	 * rules as not all packets goes through Linux conntrack.
	 */
	if ((tuple->nfp) || (tupleInverseDir->nfp))
		goto in_window;
#endif /* CONFIG_MV_ETH_NFP_CT_LEARN */

	if (!tcp_in_window(ct, &ct->proto.tcp, dir, index,
			   skb, dataoff, th, pf)) {
		spin_unlock_bh(&ct->lock);
		return -NF_ACCEPT;
	}
     in_window:
	/* From now on we have got in-window packets */
	ct->proto.tcp.last_index = index;
	ct->proto.tcp.last_dir = dir;

	pr_debug("tcp_conntracks: ");
	nf_ct_dump_tuple(tuple);
	pr_debug("syn=%i ack=%i fin=%i rst=%i old=%i new=%i\n",
		 (th->syn ? 1 : 0), (th->ack ? 1 : 0),
		 (th->fin ? 1 : 0), (th->rst ? 1 : 0),
		 old_state, new_state);

	ct->proto.tcp.state = new_state;
	if (old_state != new_state
	    && new_state == TCP_CONNTRACK_FIN_WAIT)
		ct->proto.tcp.seen[dir].flags |= IP_CT_TCP_FLAG_CLOSE_INIT;

	if (ct->proto.tcp.retrans >= nf_ct_tcp_max_retrans &&
	    tcp_timeouts[new_state] > nf_ct_tcp_timeout_max_retrans)
		timeout = nf_ct_tcp_timeout_max_retrans;
	else if ((ct->proto.tcp.seen[0].flags | ct->proto.tcp.seen[1].flags) &
		 IP_CT_TCP_FLAG_DATA_UNACKNOWLEDGED &&
		 tcp_timeouts[new_state] > nf_ct_tcp_timeout_unacknowledged)
		timeout = nf_ct_tcp_timeout_unacknowledged;
	else
		timeout = tcp_timeouts[new_state];
	spin_unlock_bh(&ct->lock);

	if (new_state != old_state)
		nf_conntrack_event_cache(IPCT_PROTOINFO, ct);

	if (!test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
		/* If only reply is a RST, we can consider ourselves not to
		   have an established connection: this is a fairly common
		   problem case, so we can delete the conntrack
		   immediately.  --RR */
		if (th->rst) {
			nf_ct_kill_acct(ct, ctinfo, skb);
			return NF_ACCEPT;
		}
	} else if (!test_bit(IPS_ASSURED_BIT, &ct->status)
		   && (old_state == TCP_CONNTRACK_SYN_RECV
		       || old_state == TCP_CONNTRACK_ESTABLISHED)
		   && new_state == TCP_CONNTRACK_ESTABLISHED) {
		/* Set ASSURED if we see see valid ack in ESTABLISHED
		   after SYN_RECV or a valid answer for a picked up
		   connection. */
		set_bit(IPS_ASSURED_BIT, &ct->status);
		nf_conntrack_event_cache(IPCT_STATUS, ct);
	}
	nf_ct_refresh_acct(ct, ctinfo, skb, timeout);

	return NF_ACCEPT;
}
static bool tcp_in_window(const struct nf_conn *ct,
			  struct ip_ct_tcp *state,
			  enum ip_conntrack_dir dir,
			  unsigned int index,
			  const struct sk_buff *skb,
			  unsigned int dataoff,
			  const struct tcphdr *tcph,
			  u_int8_t pf)
{
	struct net *net = nf_ct_net(ct);
	struct ip_ct_tcp_state *sender = &state->seen[dir];
	struct ip_ct_tcp_state *receiver = &state->seen[!dir];
	const struct nf_conntrack_tuple *tuple = &ct->tuplehash[dir].tuple;
	__u32 seq, ack, sack, end, win, swin;
	s16 receiver_offset;
	bool res;

	/*
	 * Get the required data from the packet.
	 */
	seq = ntohl(tcph->seq);
	ack = sack = ntohl(tcph->ack_seq);
	win = ntohs(tcph->window);
	end = segment_seq_plus_len(seq, skb->len, dataoff, tcph);

	if (receiver->flags & IP_CT_TCP_FLAG_SACK_PERM)
		tcp_sack(skb, dataoff, tcph, &sack);

	/* Take into account NAT sequence number mangling */
	receiver_offset = NAT_OFFSET(pf, ct, !dir, ack - 1);
	ack -= receiver_offset;
	sack -= receiver_offset;

	pr_debug("tcp_in_window: START\n");
	pr_debug("tcp_in_window: ");
	nf_ct_dump_tuple(tuple);
	pr_debug("seq=%u ack=%u+(%d) sack=%u+(%d) win=%u end=%u\n",
		 seq, ack, receiver_offset, sack, receiver_offset, win, end);
	pr_debug("tcp_in_window: sender end=%u maxend=%u maxwin=%u scale=%i "
		 "receiver end=%u maxend=%u maxwin=%u scale=%i\n",
		 sender->td_end, sender->td_maxend, sender->td_maxwin,
		 sender->td_scale,
		 receiver->td_end, receiver->td_maxend, receiver->td_maxwin,
		 receiver->td_scale);

	if (sender->td_maxwin == 0) {
		/*
		 * Initialize sender data.
		 */
		if (tcph->syn) {
			/*
			 * SYN-ACK in reply to a SYN
			 * or SYN from reply direction in simultaneous open.
			 */
			sender->td_end =
			sender->td_maxend = end;
			sender->td_maxwin = (win == 0 ? 1 : win);

			tcp_options(skb, dataoff, tcph, sender);
			/*
			 * RFC 1323:
			 * Both sides must send the Window Scale option
			 * to enable window scaling in either direction.
			 */
			if (!(sender->flags & IP_CT_TCP_FLAG_WINDOW_SCALE
			      && receiver->flags & IP_CT_TCP_FLAG_WINDOW_SCALE))
				sender->td_scale =
				receiver->td_scale = 0;
			if (!tcph->ack)
				/* Simultaneous open */
				return true;
		} else {
			/*
			 * We are in the middle of a connection,
			 * its history is lost for us.
			 * Let's try to use the data from the packet.
			 */
			sender->td_end = end;
<<<<<<< HEAD
			win <<= sender->td_scale;
			sender->td_maxwin = (win == 0 ? 1 : win);
			sender->td_maxend = end + sender->td_maxwin;
			/*
			 * We haven't seen traffic in the other direction yet
			 * but we have to tweak window tracking to pass III
			 * and IV until that happens.
			 */
			if (receiver->td_maxwin == 0)
				receiver->td_end = receiver->td_maxend = sack;
=======
			sender->td_maxwin = (win == 0 ? 1 : win);
			sender->td_maxend = end + sender->td_maxwin;
>>>>>>> 296c66da8a02d52243f45b80521febece5ed498a
		}
	} else if (((state->state == TCP_CONNTRACK_SYN_SENT
static bool tcp_in_window(const struct nf_conn *ct,
			  struct ip_ct_tcp *state,
			  enum ip_conntrack_dir dir,
			  unsigned int index,
			  const struct sk_buff *skb,
			  unsigned int dataoff,
			  const struct tcphdr *tcph,
			  u_int8_t pf)
{
	struct net *net = nf_ct_net(ct);
	struct ip_ct_tcp_state *sender = &state->seen[dir];
	struct ip_ct_tcp_state *receiver = &state->seen[!dir];
	const struct nf_conntrack_tuple *tuple = &ct->tuplehash[dir].tuple;
	__u32 seq, ack, sack, end, win, swin;
	s16 receiver_offset;
	bool res;

	/*
	 * Get the required data from the packet.
	 */
	seq = ntohl(tcph->seq);
	ack = sack = ntohl(tcph->ack_seq);
	win = ntohs(tcph->window);
	end = segment_seq_plus_len(seq, skb->len, dataoff, tcph);

	if (receiver->flags & IP_CT_TCP_FLAG_SACK_PERM)
		tcp_sack(skb, dataoff, tcph, &sack);

	/* Take into account NAT sequence number mangling */
	receiver_offset = NAT_OFFSET(pf, ct, !dir, ack - 1);
	ack -= receiver_offset;
	sack -= receiver_offset;

	pr_debug("tcp_in_window: START\n");
	pr_debug("tcp_in_window: ");
	nf_ct_dump_tuple(tuple);
	pr_debug("seq=%u ack=%u+(%d) sack=%u+(%d) win=%u end=%u\n",
		 seq, ack, receiver_offset, sack, receiver_offset, win, end);
	pr_debug("tcp_in_window: sender end=%u maxend=%u maxwin=%u scale=%i "
		 "receiver end=%u maxend=%u maxwin=%u scale=%i\n",
		 sender->td_end, sender->td_maxend, sender->td_maxwin,
		 sender->td_scale,
		 receiver->td_end, receiver->td_maxend, receiver->td_maxwin,
		 receiver->td_scale);

	if (sender->td_maxwin == 0) {
		/*
		 * Initialize sender data.
		 */
		if (tcph->syn) {
			/*
			 * SYN-ACK in reply to a SYN
			 * or SYN from reply direction in simultaneous open.
			 */
			sender->td_end =
			sender->td_maxend = end;
			sender->td_maxwin = (win == 0 ? 1 : win);

			tcp_options(skb, dataoff, tcph, sender);
			/*
			 * RFC 1323:
			 * Both sides must send the Window Scale option
			 * to enable window scaling in either direction.
			 */
			if (!(sender->flags & IP_CT_TCP_FLAG_WINDOW_SCALE
			      && receiver->flags & IP_CT_TCP_FLAG_WINDOW_SCALE))
				sender->td_scale =
				receiver->td_scale = 0;
			if (!tcph->ack)
				/* Simultaneous open */
				return true;
		} else {
			/*
			 * We are in the middle of a connection,
			 * its history is lost for us.
			 * Let's try to use the data from the packet.
			 */
			sender->td_end = end;
			sender->td_maxwin = (win == 0 ? 1 : win);
			sender->td_maxend = end + sender->td_maxwin;
		}
	} else if (((state->state == TCP_CONNTRACK_SYN_SENT
		     && dir == IP_CT_DIR_ORIGINAL)
		   || (state->state == TCP_CONNTRACK_SYN_RECV
		     && dir == IP_CT_DIR_REPLY))
		   && after(end, sender->td_end)) {
		/*
		 * RFC 793: "if a TCP is reinitialized ... then it need
		 * not wait at all; it must only be sure to use sequence
		 * numbers larger than those recently used."
		 */
		sender->td_end =
		sender->td_maxend = end;
		sender->td_maxwin = (win == 0 ? 1 : win);

		tcp_options(skb, dataoff, tcph, sender);
	}

	if (!(tcph->ack)) {
		/*
		 * If there is no ACK, just pretend it was set and OK.
		 */
		ack = sack = receiver->td_end;
	} else if (((tcp_flag_word(tcph) & (TCP_FLAG_ACK|TCP_FLAG_RST)) ==
		    (TCP_FLAG_ACK|TCP_FLAG_RST))
		   && (ack == 0)) {
		/*
		 * Broken TCP stacks, that set ACK in RST packets as well
		 * with zero ack value.
		 */
		ack = sack = receiver->td_end;
	}

	if (seq == end
	    && (!tcph->rst
		|| (seq == 0 && state->state == TCP_CONNTRACK_SYN_SENT)))
		/*
		 * Packets contains no data: we assume it is valid
		 * and check the ack value only.
		 * However RST segments are always validated by their
		 * SEQ number, except when seq == 0 (reset sent answering
		 * SYN.
		 */
		seq = end = sender->td_end;

	pr_debug("tcp_in_window: ");
	nf_ct_dump_tuple(tuple);
	pr_debug("seq=%u ack=%u+(%d) sack=%u+(%d) win=%u end=%u\n",
		 seq, ack, receiver_offset, sack, receiver_offset, win, end);
	pr_debug("tcp_in_window: sender end=%u maxend=%u maxwin=%u scale=%i "
		 "receiver end=%u maxend=%u maxwin=%u scale=%i\n",
		 sender->td_end, sender->td_maxend, sender->td_maxwin,
		 sender->td_scale,
		 receiver->td_end, receiver->td_maxend, receiver->td_maxwin,
		 receiver->td_scale);

	pr_debug("tcp_in_window: I=%i II=%i III=%i IV=%i\n",
		 before(seq, sender->td_maxend + 1),
		 after(end, sender->td_end - receiver->td_maxwin - 1),
		 before(sack, receiver->td_end + 1),
		 after(sack, receiver->td_end - MAXACKWINDOW(sender) - 1));

	if (before(seq, sender->td_maxend + 1) &&
	    after(end, sender->td_end - receiver->td_maxwin - 1) &&
	    before(sack, receiver->td_end + 1) &&
	    after(sack, receiver->td_end - MAXACKWINDOW(sender) - 1)) {
		/*
		 * Take into account window scaling (RFC 1323).
		 */
		if (!tcph->syn)
			win <<= sender->td_scale;

		/*
		 * Update sender data.
		 */
		swin = win + (sack - ack);
		if (sender->td_maxwin < swin)
			sender->td_maxwin = swin;
		if (after(end, sender->td_end)) {
			sender->td_end = end;
			sender->flags |= IP_CT_TCP_FLAG_DATA_UNACKNOWLEDGED;
		}
		if (tcph->ack) {
			if (!(sender->flags & IP_CT_TCP_FLAG_MAXACK_SET)) {
				sender->td_maxack = ack;
				sender->flags |= IP_CT_TCP_FLAG_MAXACK_SET;
			} else if (after(ack, sender->td_maxack))
				sender->td_maxack = ack;
		}

		/*
		 * Update receiver data.
		 */
		if (after(end, sender->td_maxend))
			receiver->td_maxwin += end - sender->td_maxend;
		if (after(sack + win, receiver->td_maxend - 1)) {
			receiver->td_maxend = sack + win;
			if (win == 0)
				receiver->td_maxend++;
		}
		if (ack == receiver->td_end)
			receiver->flags &= ~IP_CT_TCP_FLAG_DATA_UNACKNOWLEDGED;

		/*
		 * Check retransmissions.
		 */
		if (index == TCP_ACK_SET) {
			if (state->last_dir == dir
			    && state->last_seq == seq
			    && state->last_ack == ack
			    && state->last_end == end
			    && state->last_win == win)
				state->retrans++;
			else {
				state->last_dir = dir;
				state->last_seq = seq;
				state->last_ack = ack;
				state->last_end = end;
				state->last_win = win;
				state->retrans = 0;
			}
		}
		res = true;
	} else {
		res = false;
		if (sender->flags & IP_CT_TCP_FLAG_BE_LIBERAL ||
		    nf_ct_tcp_be_liberal)
			res = true;
		if (!res && LOG_INVALID(net, IPPROTO_TCP))
			nf_log_packet(pf, 0, skb, NULL, NULL, NULL,
			"nf_ct_tcp: %s ",
			before(seq, sender->td_maxend + 1) ?
			after(end, sender->td_end - receiver->td_maxwin - 1) ?
			before(sack, receiver->td_end + 1) ?
			after(sack, receiver->td_end - MAXACKWINDOW(sender) - 1) ? "BUG"
			: "ACK is under the lower bound (possible overly delayed ACK)"
			: "ACK is over the upper bound (ACKed data not seen yet)"
			: "SEQ is under the lower bound (already ACKed data retransmitted)"
			: "SEQ is over the upper bound (over the window of the receiver)");
	}

	pr_debug("tcp_in_window: res=%u sender end=%u maxend=%u maxwin=%u "
		 "receiver end=%u maxend=%u maxwin=%u\n",
		 res, sender->td_end, sender->td_maxend, sender->td_maxwin,
		 receiver->td_end, receiver->td_maxend, receiver->td_maxwin);

	return res;
}
static int tcp_packet(struct nf_conn *ct,
		      const struct sk_buff *skb,
		      unsigned int dataoff,
		      enum ip_conntrack_info ctinfo,
		      u_int8_t pf,
		      unsigned int hooknum,
		      unsigned int *timeouts)
{
	struct net *net = nf_ct_net(ct);
	struct nf_conntrack_tuple *tuple;
	enum tcp_conntrack new_state, old_state;
	enum ip_conntrack_dir dir;
	const struct tcphdr *th;
	struct tcphdr _tcph;
	unsigned long timeout;
	unsigned int index;

	th = skb_header_pointer(skb, dataoff, sizeof(_tcph), &_tcph);
	BUG_ON(th == NULL);

	spin_lock_bh(&ct->lock);
	old_state = ct->proto.tcp.state;
	dir = CTINFO2DIR(ctinfo);
	index = get_conntrack_index(th);
	new_state = tcp_conntracks[dir][index][old_state];
	tuple = &ct->tuplehash[dir].tuple;

	switch (new_state) {
	case TCP_CONNTRACK_SYN_SENT:
		if (old_state < TCP_CONNTRACK_TIME_WAIT)
			break;
		if (((ct->proto.tcp.seen[dir].flags
		      | ct->proto.tcp.seen[!dir].flags)
		     & IP_CT_TCP_FLAG_CLOSE_INIT)
		    || (ct->proto.tcp.last_dir == dir
		        && ct->proto.tcp.last_index == TCP_RST_SET)) {
			spin_unlock_bh(&ct->lock);

			if (nf_ct_kill(ct))
				return -NF_REPEAT;
			return NF_DROP;
		}
		
	case TCP_CONNTRACK_IGNORE:
		if (index == TCP_SYNACK_SET
		    && ct->proto.tcp.last_index == TCP_SYN_SET
		    && ct->proto.tcp.last_dir != dir
		    && ntohl(th->ack_seq) == ct->proto.tcp.last_end) {
			old_state = TCP_CONNTRACK_SYN_SENT;
			new_state = TCP_CONNTRACK_SYN_RECV;
			ct->proto.tcp.seen[ct->proto.tcp.last_dir].td_end =
				ct->proto.tcp.last_end;
			ct->proto.tcp.seen[ct->proto.tcp.last_dir].td_maxend =
				ct->proto.tcp.last_end;
			ct->proto.tcp.seen[ct->proto.tcp.last_dir].td_maxwin =
				ct->proto.tcp.last_win == 0 ?
					1 : ct->proto.tcp.last_win;
			ct->proto.tcp.seen[ct->proto.tcp.last_dir].td_scale =
				ct->proto.tcp.last_wscale;
			ct->proto.tcp.seen[ct->proto.tcp.last_dir].flags =
				ct->proto.tcp.last_flags;
			memset(&ct->proto.tcp.seen[dir], 0,
			       sizeof(struct ip_ct_tcp_state));
			break;
		}
		ct->proto.tcp.last_index = index;
		ct->proto.tcp.last_dir = dir;
		ct->proto.tcp.last_seq = ntohl(th->seq);
		ct->proto.tcp.last_end =
		    segment_seq_plus_len(ntohl(th->seq), skb->len, dataoff, th);
		ct->proto.tcp.last_win = ntohs(th->window);

		if (index == TCP_SYN_SET && dir == IP_CT_DIR_ORIGINAL) {
			struct ip_ct_tcp_state seen = {};

			ct->proto.tcp.last_flags =
			ct->proto.tcp.last_wscale = 0;
			tcp_options(skb, dataoff, th, &seen);
			if (seen.flags & IP_CT_TCP_FLAG_WINDOW_SCALE) {
				ct->proto.tcp.last_flags |=
					IP_CT_TCP_FLAG_WINDOW_SCALE;
				ct->proto.tcp.last_wscale = seen.td_scale;
			}
			if (seen.flags & IP_CT_TCP_FLAG_SACK_PERM) {
				ct->proto.tcp.last_flags |=
					IP_CT_TCP_FLAG_SACK_PERM;
			}
		}
		spin_unlock_bh(&ct->lock);
		if (LOG_INVALID(net, IPPROTO_TCP))
			nf_log_packet(pf, 0, skb, NULL, NULL, NULL,
				  "nf_ct_tcp: invalid packet ignored ");
		return NF_ACCEPT;
	case TCP_CONNTRACK_MAX:
		
		pr_debug("nf_ct_tcp: Invalid dir=%i index=%u ostate=%u\n",
			 dir, get_conntrack_index(th), old_state);
		spin_unlock_bh(&ct->lock);
		if (LOG_INVALID(net, IPPROTO_TCP))
			nf_log_packet(pf, 0, skb, NULL, NULL, NULL,
				  "nf_ct_tcp: invalid state ");
		return -NF_ACCEPT;
	case TCP_CONNTRACK_CLOSE:
		if (index == TCP_RST_SET
		    && (ct->proto.tcp.seen[!dir].flags & IP_CT_TCP_FLAG_MAXACK_SET)
		    && before(ntohl(th->seq), ct->proto.tcp.seen[!dir].td_maxack)) {
			
			spin_unlock_bh(&ct->lock);
			if (LOG_INVALID(net, IPPROTO_TCP))
				nf_log_packet(pf, 0, skb, NULL, NULL, NULL,
					  "nf_ct_tcp: invalid RST ");
			return -NF_ACCEPT;
		}
		if (index == TCP_RST_SET
		    && ((test_bit(IPS_SEEN_REPLY_BIT, &ct->status)
			 && ct->proto.tcp.last_index == TCP_SYN_SET)
			|| (!test_bit(IPS_ASSURED_BIT, &ct->status)
			    && ct->proto.tcp.last_index == TCP_ACK_SET))
		    && ntohl(th->ack_seq) == ct->proto.tcp.last_end) {
			goto in_window;
		}
		
	default:
		
		break;
	}

	if (!tcp_in_window(ct, &ct->proto.tcp, dir, index,
			   skb, dataoff, th, pf)) {
		spin_unlock_bh(&ct->lock);
		return -NF_ACCEPT;
	}
     in_window:
	
	ct->proto.tcp.last_index = index;
	ct->proto.tcp.last_dir = dir;

	pr_debug("tcp_conntracks: ");
	nf_ct_dump_tuple(tuple);
	pr_debug("syn=%i ack=%i fin=%i rst=%i old=%i new=%i\n",
		 (th->syn ? 1 : 0), (th->ack ? 1 : 0),
		 (th->fin ? 1 : 0), (th->rst ? 1 : 0),
		 old_state, new_state);

	ct->proto.tcp.state = new_state;
	if (old_state != new_state
	    && new_state == TCP_CONNTRACK_FIN_WAIT)
		ct->proto.tcp.seen[dir].flags |= IP_CT_TCP_FLAG_CLOSE_INIT;

	if (ct->proto.tcp.retrans >= nf_ct_tcp_max_retrans &&
	    timeouts[new_state] > timeouts[TCP_CONNTRACK_RETRANS])
		timeout = timeouts[TCP_CONNTRACK_RETRANS];
	else if ((ct->proto.tcp.seen[0].flags | ct->proto.tcp.seen[1].flags) &
		 IP_CT_TCP_FLAG_DATA_UNACKNOWLEDGED &&
		 timeouts[new_state] > timeouts[TCP_CONNTRACK_UNACK])
		timeout = timeouts[TCP_CONNTRACK_UNACK];
	else
		timeout = timeouts[new_state];
	spin_unlock_bh(&ct->lock);

	if (new_state != old_state)
		nf_conntrack_event_cache(IPCT_PROTOINFO, ct);

	if (!test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
		if (th->rst) {
			nf_ct_kill_acct(ct, ctinfo, skb);
			return NF_ACCEPT;
		}
	} else if (!test_bit(IPS_ASSURED_BIT, &ct->status)
		   && (old_state == TCP_CONNTRACK_SYN_RECV
		       || old_state == TCP_CONNTRACK_ESTABLISHED)
		   && new_state == TCP_CONNTRACK_ESTABLISHED) {
		set_bit(IPS_ASSURED_BIT, &ct->status);
		nf_conntrack_event_cache(IPCT_ASSURED, ct);
	}
	nf_ct_refresh_acct(ct, ctinfo, skb, timeout);

	return NF_ACCEPT;
}
/* Returns verdict for packet, or -1 for invalid. */
static int tcp_packet(struct nf_conn *ct,
		      struct sk_buff *skb,
		      unsigned int dataoff,
		      enum ip_conntrack_info ctinfo,
		      const struct nf_hook_state *state)
{
	struct net *net = nf_ct_net(ct);
	struct nf_tcp_net *tn = nf_tcp_pernet(net);
	struct nf_conntrack_tuple *tuple;
	enum tcp_conntrack new_state, old_state;
	unsigned int index, *timeouts;
	enum ip_conntrack_dir dir;
	const struct tcphdr *th;
	struct tcphdr _tcph;
	unsigned long timeout;

	th = skb_header_pointer(skb, dataoff, sizeof(_tcph), &_tcph);
	if (th == NULL)
		return -NF_ACCEPT;

	if (tcp_error(th, skb, dataoff, state))
		return -NF_ACCEPT;

	if (!nf_ct_is_confirmed(ct) && !tcp_new(ct, skb, dataoff, th))
		return -NF_ACCEPT;

	spin_lock_bh(&ct->lock);
	old_state = ct->proto.tcp.state;
	dir = CTINFO2DIR(ctinfo);
	index = get_conntrack_index(th);
	new_state = tcp_conntracks[dir][index][old_state];
	tuple = &ct->tuplehash[dir].tuple;

	switch (new_state) {
	case TCP_CONNTRACK_SYN_SENT:
		if (old_state < TCP_CONNTRACK_TIME_WAIT)
			break;
		/* RFC 1122: "When a connection is closed actively,
		 * it MUST linger in TIME-WAIT state for a time 2xMSL
		 * (Maximum Segment Lifetime). However, it MAY accept
		 * a new SYN from the remote TCP to reopen the connection
		 * directly from TIME-WAIT state, if..."
		 * We ignore the conditions because we are in the
		 * TIME-WAIT state anyway.
		 *
		 * Handle aborted connections: we and the server
		 * think there is an existing connection but the client
		 * aborts it and starts a new one.
		 */
		if (((ct->proto.tcp.seen[dir].flags
		      | ct->proto.tcp.seen[!dir].flags)
		     & IP_CT_TCP_FLAG_CLOSE_INIT)
		    || (ct->proto.tcp.last_dir == dir
		        && ct->proto.tcp.last_index == TCP_RST_SET)) {
			/* Attempt to reopen a closed/aborted connection.
			 * Delete this connection and look up again. */
			spin_unlock_bh(&ct->lock);

			/* Only repeat if we can actually remove the timer.
			 * Destruction may already be in progress in process
			 * context and we must give it a chance to terminate.
			 */
			if (nf_ct_kill(ct))
				return -NF_REPEAT;
			return NF_DROP;
		}
		/* Fall through */
	case TCP_CONNTRACK_IGNORE:
		/* Ignored packets:
		 *
		 * Our connection entry may be out of sync, so ignore
		 * packets which may signal the real connection between
		 * the client and the server.
		 *
		 * a) SYN in ORIGINAL
		 * b) SYN/ACK in REPLY
		 * c) ACK in reply direction after initial SYN in original.
		 *
		 * If the ignored packet is invalid, the receiver will send
		 * a RST we'll catch below.
		 */
		if (index == TCP_SYNACK_SET
		    && ct->proto.tcp.last_index == TCP_SYN_SET
		    && ct->proto.tcp.last_dir != dir
		    && ntohl(th->ack_seq) == ct->proto.tcp.last_end) {
			/* b) This SYN/ACK acknowledges a SYN that we earlier
			 * ignored as invalid. This means that the client and
			 * the server are both in sync, while the firewall is
			 * not. We get in sync from the previously annotated
			 * values.
			 */
			old_state = TCP_CONNTRACK_SYN_SENT;
			new_state = TCP_CONNTRACK_SYN_RECV;
			ct->proto.tcp.seen[ct->proto.tcp.last_dir].td_end =
				ct->proto.tcp.last_end;
			ct->proto.tcp.seen[ct->proto.tcp.last_dir].td_maxend =
				ct->proto.tcp.last_end;
			ct->proto.tcp.seen[ct->proto.tcp.last_dir].td_maxwin =
				ct->proto.tcp.last_win == 0 ?
					1 : ct->proto.tcp.last_win;
			ct->proto.tcp.seen[ct->proto.tcp.last_dir].td_scale =
				ct->proto.tcp.last_wscale;
			ct->proto.tcp.last_flags &= ~IP_CT_EXP_CHALLENGE_ACK;
			ct->proto.tcp.seen[ct->proto.tcp.last_dir].flags =
				ct->proto.tcp.last_flags;
			memset(&ct->proto.tcp.seen[dir], 0,
			       sizeof(struct ip_ct_tcp_state));
			break;
		}
		ct->proto.tcp.last_index = index;
		ct->proto.tcp.last_dir = dir;
		ct->proto.tcp.last_seq = ntohl(th->seq);
		ct->proto.tcp.last_end =
		    segment_seq_plus_len(ntohl(th->seq), skb->len, dataoff, th);
		ct->proto.tcp.last_win = ntohs(th->window);

		/* a) This is a SYN in ORIGINAL. The client and the server
		 * may be in sync but we are not. In that case, we annotate
		 * the TCP options and let the packet go through. If it is a
		 * valid SYN packet, the server will reply with a SYN/ACK, and
		 * then we'll get in sync. Otherwise, the server potentially
		 * responds with a challenge ACK if implementing RFC5961.
		 */
		if (index == TCP_SYN_SET && dir == IP_CT_DIR_ORIGINAL) {
			struct ip_ct_tcp_state seen = {};

			ct->proto.tcp.last_flags =
			ct->proto.tcp.last_wscale = 0;
			tcp_options(skb, dataoff, th, &seen);
			if (seen.flags & IP_CT_TCP_FLAG_WINDOW_SCALE) {
				ct->proto.tcp.last_flags |=
					IP_CT_TCP_FLAG_WINDOW_SCALE;
				ct->proto.tcp.last_wscale = seen.td_scale;
			}
			if (seen.flags & IP_CT_TCP_FLAG_SACK_PERM) {
				ct->proto.tcp.last_flags |=
					IP_CT_TCP_FLAG_SACK_PERM;
			}
			/* Mark the potential for RFC5961 challenge ACK,
			 * this pose a special problem for LAST_ACK state
			 * as ACK is intrepretated as ACKing last FIN.
			 */
			if (old_state == TCP_CONNTRACK_LAST_ACK)
				ct->proto.tcp.last_flags |=
					IP_CT_EXP_CHALLENGE_ACK;
		}
		spin_unlock_bh(&ct->lock);
		nf_ct_l4proto_log_invalid(skb, ct, "invalid packet ignored in "
					  "state %s ", tcp_conntrack_names[old_state]);
		return NF_ACCEPT;
	case TCP_CONNTRACK_MAX:
		/* Special case for SYN proxy: when the SYN to the server or
		 * the SYN/ACK from the server is lost, the client may transmit
		 * a keep-alive packet while in SYN_SENT state. This needs to
		 * be associated with the original conntrack entry in order to
		 * generate a new SYN with the correct sequence number.
		 */
		if (nfct_synproxy(ct) && old_state == TCP_CONNTRACK_SYN_SENT &&
		    index == TCP_ACK_SET && dir == IP_CT_DIR_ORIGINAL &&
		    ct->proto.tcp.last_dir == IP_CT_DIR_ORIGINAL &&
		    ct->proto.tcp.seen[dir].td_end - 1 == ntohl(th->seq)) {
			pr_debug("nf_ct_tcp: SYN proxy client keep alive\n");
			spin_unlock_bh(&ct->lock);
			return NF_ACCEPT;
		}

		/* Invalid packet */
		pr_debug("nf_ct_tcp: Invalid dir=%i index=%u ostate=%u\n",
			 dir, get_conntrack_index(th), old_state);
		spin_unlock_bh(&ct->lock);
		nf_ct_l4proto_log_invalid(skb, ct, "invalid state");
		return -NF_ACCEPT;
	case TCP_CONNTRACK_TIME_WAIT:
		/* RFC5961 compliance cause stack to send "challenge-ACK"
		 * e.g. in response to spurious SYNs.  Conntrack MUST
		 * not believe this ACK is acking last FIN.
		 */
		if (old_state == TCP_CONNTRACK_LAST_ACK &&
		    index == TCP_ACK_SET &&
		    ct->proto.tcp.last_dir != dir &&
		    ct->proto.tcp.last_index == TCP_SYN_SET &&
		    (ct->proto.tcp.last_flags & IP_CT_EXP_CHALLENGE_ACK)) {
			/* Detected RFC5961 challenge ACK */
			ct->proto.tcp.last_flags &= ~IP_CT_EXP_CHALLENGE_ACK;
			spin_unlock_bh(&ct->lock);
			nf_ct_l4proto_log_invalid(skb, ct, "challenge-ack ignored");
			return NF_ACCEPT; /* Don't change state */
		}
		break;
	case TCP_CONNTRACK_SYN_SENT2:
		/* tcp_conntracks table is not smart enough to handle
		 * simultaneous open.
		 */
		ct->proto.tcp.last_flags |= IP_CT_TCP_SIMULTANEOUS_OPEN;
		break;
	case TCP_CONNTRACK_SYN_RECV:
		if (dir == IP_CT_DIR_REPLY && index == TCP_ACK_SET &&
		    ct->proto.tcp.last_flags & IP_CT_TCP_SIMULTANEOUS_OPEN)
			new_state = TCP_CONNTRACK_ESTABLISHED;
		break;
	case TCP_CONNTRACK_CLOSE:
		if (index == TCP_RST_SET
		    && (ct->proto.tcp.seen[!dir].flags & IP_CT_TCP_FLAG_MAXACK_SET)
		    && before(ntohl(th->seq), ct->proto.tcp.seen[!dir].td_maxack)) {
			/* Invalid RST  */
			spin_unlock_bh(&ct->lock);
			nf_ct_l4proto_log_invalid(skb, ct, "invalid rst");
			return -NF_ACCEPT;
		}
		if (index == TCP_RST_SET
		    && ((test_bit(IPS_SEEN_REPLY_BIT, &ct->status)
			 && ct->proto.tcp.last_index == TCP_SYN_SET)
			|| (!test_bit(IPS_ASSURED_BIT, &ct->status)
			    && ct->proto.tcp.last_index == TCP_ACK_SET))
		    && ntohl(th->ack_seq) == ct->proto.tcp.last_end) {
			/* RST sent to invalid SYN or ACK we had let through
			 * at a) and c) above:
			 *
			 * a) SYN was in window then
			 * c) we hold a half-open connection.
			 *
			 * Delete our connection entry.
			 * We skip window checking, because packet might ACK
			 * segments we ignored. */
			goto in_window;
		}
		/* Just fall through */
	default:
		/* Keep compilers happy. */
		break;
	}

	if (!tcp_in_window(ct, &ct->proto.tcp, dir, index,
			   skb, dataoff, th)) {
		spin_unlock_bh(&ct->lock);
		return -NF_ACCEPT;
	}
     in_window:
	/* From now on we have got in-window packets */
	ct->proto.tcp.last_index = index;
	ct->proto.tcp.last_dir = dir;

	pr_debug("tcp_conntracks: ");
	nf_ct_dump_tuple(tuple);
	pr_debug("syn=%i ack=%i fin=%i rst=%i old=%i new=%i\n",
		 (th->syn ? 1 : 0), (th->ack ? 1 : 0),
		 (th->fin ? 1 : 0), (th->rst ? 1 : 0),
		 old_state, new_state);

	ct->proto.tcp.state = new_state;
	if (old_state != new_state
	    && new_state == TCP_CONNTRACK_FIN_WAIT)
		ct->proto.tcp.seen[dir].flags |= IP_CT_TCP_FLAG_CLOSE_INIT;

	timeouts = nf_ct_timeout_lookup(ct);
	if (!timeouts)
		timeouts = tn->timeouts;

	if (ct->proto.tcp.retrans >= tn->tcp_max_retrans &&
	    timeouts[new_state] > timeouts[TCP_CONNTRACK_RETRANS])
		timeout = timeouts[TCP_CONNTRACK_RETRANS];
	else if ((ct->proto.tcp.seen[0].flags | ct->proto.tcp.seen[1].flags) &
		 IP_CT_TCP_FLAG_DATA_UNACKNOWLEDGED &&
		 timeouts[new_state] > timeouts[TCP_CONNTRACK_UNACK])
		timeout = timeouts[TCP_CONNTRACK_UNACK];
	else if (ct->proto.tcp.last_win == 0 &&
		 timeouts[new_state] > timeouts[TCP_CONNTRACK_RETRANS])
		timeout = timeouts[TCP_CONNTRACK_RETRANS];
	else
		timeout = timeouts[new_state];
	spin_unlock_bh(&ct->lock);

	if (new_state != old_state)
		nf_conntrack_event_cache(IPCT_PROTOINFO, ct);

	if (!test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
		/* If only reply is a RST, we can consider ourselves not to
		   have an established connection: this is a fairly common
		   problem case, so we can delete the conntrack
		   immediately.  --RR */
		if (th->rst) {
			nf_ct_kill_acct(ct, ctinfo, skb);
			return NF_ACCEPT;
		}
		/* ESTABLISHED without SEEN_REPLY, i.e. mid-connection
		 * pickup with loose=1. Avoid large ESTABLISHED timeout.
		 */
		if (new_state == TCP_CONNTRACK_ESTABLISHED &&
		    timeout > timeouts[TCP_CONNTRACK_UNACK])
			timeout = timeouts[TCP_CONNTRACK_UNACK];
	} else if (!test_bit(IPS_ASSURED_BIT, &ct->status)
		   && (old_state == TCP_CONNTRACK_SYN_RECV
		       || old_state == TCP_CONNTRACK_ESTABLISHED)
		   && new_state == TCP_CONNTRACK_ESTABLISHED) {
		/* Set ASSURED if we see see valid ack in ESTABLISHED
		   after SYN_RECV or a valid answer for a picked up
		   connection. */
		set_bit(IPS_ASSURED_BIT, &ct->status);
		nf_conntrack_event_cache(IPCT_ASSURED, ct);
	}
	nf_ct_refresh_acct(ct, ctinfo, skb, timeout);

	return NF_ACCEPT;
}
static bool tcp_in_window(const struct nf_conn *ct,
			  struct ip_ct_tcp *state,
			  enum ip_conntrack_dir dir,
			  unsigned int index,
			  const struct sk_buff *skb,
			  unsigned int dataoff,
			  const struct tcphdr *tcph,
			  u_int8_t pf)
{
	struct net *net = nf_ct_net(ct);
	struct ip_ct_tcp_state *sender = &state->seen[dir];
	struct ip_ct_tcp_state *receiver = &state->seen[!dir];
	const struct nf_conntrack_tuple *tuple = &ct->tuplehash[dir].tuple;
	__u32 seq, ack, sack, end, win, swin;
	s16 receiver_offset;
	bool res;

	seq = ntohl(tcph->seq);
	ack = sack = ntohl(tcph->ack_seq);
	win = ntohs(tcph->window);
	end = segment_seq_plus_len(seq, skb->len, dataoff, tcph);

	if (receiver->flags & IP_CT_TCP_FLAG_SACK_PERM)
		tcp_sack(skb, dataoff, tcph, &sack);

	
	receiver_offset = NAT_OFFSET(pf, ct, !dir, ack - 1);
	ack -= receiver_offset;
	sack -= receiver_offset;

	pr_debug("tcp_in_window: START\n");
	pr_debug("tcp_in_window: ");
	nf_ct_dump_tuple(tuple);
	pr_debug("seq=%u ack=%u+(%d) sack=%u+(%d) win=%u end=%u\n",
		 seq, ack, receiver_offset, sack, receiver_offset, win, end);
	pr_debug("tcp_in_window: sender end=%u maxend=%u maxwin=%u scale=%i "
		 "receiver end=%u maxend=%u maxwin=%u scale=%i\n",
		 sender->td_end, sender->td_maxend, sender->td_maxwin,
		 sender->td_scale,
		 receiver->td_end, receiver->td_maxend, receiver->td_maxwin,
		 receiver->td_scale);

	if (sender->td_maxwin == 0) {
		if (tcph->syn) {
			sender->td_end =
			sender->td_maxend = end;
			sender->td_maxwin = (win == 0 ? 1 : win);

			tcp_options(skb, dataoff, tcph, sender);
			if (!(sender->flags & IP_CT_TCP_FLAG_WINDOW_SCALE
			      && receiver->flags & IP_CT_TCP_FLAG_WINDOW_SCALE))
				sender->td_scale =
				receiver->td_scale = 0;
			if (!tcph->ack)
				
				return true;
		} else {
			sender->td_end = end;
			swin = win << sender->td_scale;
			sender->td_maxwin = (swin == 0 ? 1 : swin);
			sender->td_maxend = end + sender->td_maxwin;
			if (receiver->td_maxwin == 0)
				receiver->td_end = receiver->td_maxend = sack;
		}
	} else if (((state->state == TCP_CONNTRACK_SYN_SENT
		     && dir == IP_CT_DIR_ORIGINAL)
		   || (state->state == TCP_CONNTRACK_SYN_RECV
		     && dir == IP_CT_DIR_REPLY))
		   && after(end, sender->td_end)) {
		sender->td_end =
		sender->td_maxend = end;
		sender->td_maxwin = (win == 0 ? 1 : win);

		tcp_options(skb, dataoff, tcph, sender);
	}

	if (!(tcph->ack)) {
		ack = sack = receiver->td_end;
	} else if (((tcp_flag_word(tcph) & (TCP_FLAG_ACK|TCP_FLAG_RST)) ==
		    (TCP_FLAG_ACK|TCP_FLAG_RST))
		   && (ack == 0)) {
		ack = sack = receiver->td_end;
	}

	if (seq == end
	    && (!tcph->rst
		|| (seq == 0 && state->state == TCP_CONNTRACK_SYN_SENT)))
		seq = end = sender->td_end;

	pr_debug("tcp_in_window: ");
	nf_ct_dump_tuple(tuple);
	pr_debug("seq=%u ack=%u+(%d) sack=%u+(%d) win=%u end=%u\n",
		 seq, ack, receiver_offset, sack, receiver_offset, win, end);
	pr_debug("tcp_in_window: sender end=%u maxend=%u maxwin=%u scale=%i "
		 "receiver end=%u maxend=%u maxwin=%u scale=%i\n",
		 sender->td_end, sender->td_maxend, sender->td_maxwin,
		 sender->td_scale,
		 receiver->td_end, receiver->td_maxend, receiver->td_maxwin,
		 receiver->td_scale);

	pr_debug("tcp_in_window: I=%i II=%i III=%i IV=%i\n",
		 before(seq, sender->td_maxend + 1),
		 after(end, sender->td_end - receiver->td_maxwin - 1),
		 before(sack, receiver->td_end + 1),
		 after(sack, receiver->td_end - MAXACKWINDOW(sender) - 1));

	if (before(seq, sender->td_maxend + 1) &&
	    after(end, sender->td_end - receiver->td_maxwin - 1) &&
	    before(sack, receiver->td_end + 1) &&
	    after(sack, receiver->td_end - MAXACKWINDOW(sender) - 1)) {
		if (!tcph->syn)
			win <<= sender->td_scale;

		swin = win + (sack - ack);
		if (sender->td_maxwin < swin)
			sender->td_maxwin = swin;
		if (after(end, sender->td_end)) {
			sender->td_end = end;
			sender->flags |= IP_CT_TCP_FLAG_DATA_UNACKNOWLEDGED;
		}
		if (tcph->ack) {
			if (!(sender->flags & IP_CT_TCP_FLAG_MAXACK_SET)) {
				sender->td_maxack = ack;
				sender->flags |= IP_CT_TCP_FLAG_MAXACK_SET;
			} else if (after(ack, sender->td_maxack))
				sender->td_maxack = ack;
		}

		if (receiver->td_maxwin != 0 && after(end, sender->td_maxend))
			receiver->td_maxwin += end - sender->td_maxend;
		if (after(sack + win, receiver->td_maxend - 1)) {
			receiver->td_maxend = sack + win;
			if (win == 0)
				receiver->td_maxend++;
		}
		if (ack == receiver->td_end)
			receiver->flags &= ~IP_CT_TCP_FLAG_DATA_UNACKNOWLEDGED;

		if (index == TCP_ACK_SET) {
			if (state->last_dir == dir
			    && state->last_seq == seq
			    && state->last_ack == ack
			    && state->last_end == end
			    && state->last_win == win)
				state->retrans++;
			else {
				state->last_dir = dir;
				state->last_seq = seq;
				state->last_ack = ack;
				state->last_end = end;
				state->last_win = win;
				state->retrans = 0;
			}
		}
		res = true;
	} else {
		res = false;
		if (sender->flags & IP_CT_TCP_FLAG_BE_LIBERAL ||
		    nf_ct_tcp_be_liberal)
			res = true;
		if (!res && LOG_INVALID(net, IPPROTO_TCP))
			nf_log_packet(pf, 0, skb, NULL, NULL, NULL,
			"nf_ct_tcp: %s ",
			before(seq, sender->td_maxend + 1) ?
			after(end, sender->td_end - receiver->td_maxwin - 1) ?
			before(sack, receiver->td_end + 1) ?
			after(sack, receiver->td_end - MAXACKWINDOW(sender) - 1) ? "BUG"
			: "ACK is under the lower bound (possible overly delayed ACK)"
			: "ACK is over the upper bound (ACKed data not seen yet)"
			: "SEQ is under the lower bound (already ACKed data retransmitted)"
			: "SEQ is over the upper bound (over the window of the receiver)");
	}

	pr_debug("tcp_in_window: res=%u sender end=%u maxend=%u maxwin=%u "
		 "receiver end=%u maxend=%u maxwin=%u\n",
		 res, sender->td_end, sender->td_maxend, sender->td_maxwin,
		 receiver->td_end, receiver->td_maxend, receiver->td_maxwin);

	return res;
}
static int help(struct sk_buff *skb,
		unsigned int protoff,
		struct nf_conn *ct,
		enum ip_conntrack_info ctinfo)
{
	unsigned int dataoff, datalen;
	const struct tcphdr *th;
	struct tcphdr _tcph;
	void *sb_ptr;
	int ret = NF_ACCEPT;
	int dir = CTINFO2DIR(ctinfo);
	struct nf_ct_sane_master *ct_sane_info;
	struct nf_conntrack_expect *exp;
	struct nf_conntrack_tuple *tuple;
	struct sane_request *req;
	struct sane_reply_net_start *reply;

	ct_sane_info = &nfct_help(ct)->help.ct_sane_info;
	/* Until there's been traffic both ways, don't look in packets. */
	if (ctinfo != IP_CT_ESTABLISHED &&
	    ctinfo != IP_CT_ESTABLISHED+IP_CT_IS_REPLY)
		return NF_ACCEPT;

	/* Not a full tcp header? */
	th = skb_header_pointer(skb, protoff, sizeof(_tcph), &_tcph);
	if (th == NULL)
		return NF_ACCEPT;

	/* No data? */
	dataoff = protoff + th->doff * 4;
	if (dataoff >= skb->len)
		return NF_ACCEPT;

	datalen = skb->len - dataoff;

	spin_lock_bh(&nf_sane_lock);
	sb_ptr = skb_header_pointer(skb, dataoff, datalen, sane_buffer);
	BUG_ON(sb_ptr == NULL);

	if (dir == IP_CT_DIR_ORIGINAL) {
		if (datalen != sizeof(struct sane_request))
			goto out;

		req = sb_ptr;
		if (req->RPC_code != htonl(SANE_NET_START)) {
			/* Not an interesting command */
			ct_sane_info->state = SANE_STATE_NORMAL;
			goto out;
		}

		/* We're interested in the next reply */
		ct_sane_info->state = SANE_STATE_START_REQUESTED;
		goto out;
	}

	/* Is it a reply to an uninteresting command? */
	if (ct_sane_info->state != SANE_STATE_START_REQUESTED)
		goto out;

	/* It's a reply to SANE_NET_START. */
	ct_sane_info->state = SANE_STATE_NORMAL;

	if (datalen < sizeof(struct sane_reply_net_start)) {
		pr_debug("nf_ct_sane: NET_START reply too short\n");
		goto out;
	}

	reply = sb_ptr;
	if (reply->status != htonl(SANE_STATUS_SUCCESS)) {
		/* saned refused the command */
		pr_debug("nf_ct_sane: unsuccessful SANE_STATUS = %u\n",
			 ntohl(reply->status));
		goto out;
	}

	/* Invalid saned reply? Ignore it. */
	if (reply->zero != 0)
		goto out;

	exp = nf_ct_expect_alloc(ct);
	if (exp == NULL) {
		ret = NF_DROP;
		goto out;
	}

	tuple = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
	nf_ct_expect_init(exp, NF_CT_EXPECT_CLASS_DEFAULT, nf_ct_l3num(ct),
			  &tuple->src.u3, &tuple->dst.u3,
			  IPPROTO_TCP, NULL, &reply->port);

	pr_debug("nf_ct_sane: expect: ");
	nf_ct_dump_tuple(&exp->tuple);

	/* Can't expect this?  Best to drop packet now. */
	if (nf_ct_expect_related(exp) != 0)
		ret = NF_DROP;

	nf_ct_expect_put(exp);

out:
	spin_unlock_bh(&nf_sane_lock);
	return ret;
}
Example #21
0
static int help(struct sk_buff *skb,
		unsigned int protoff,
		struct nf_conn *ct,
		enum ip_conntrack_info ctinfo)
{
	unsigned int dataoff, datalen;
	const struct tcphdr *th;
	struct tcphdr _tcph;
	void *sb_ptr;
	int ret = NF_ACCEPT;
	int dir = CTINFO2DIR(ctinfo);
	struct nf_ct_sane_master *ct_sane_info;
	struct nf_conntrack_expect *exp;
	struct nf_conntrack_tuple *tuple;
	struct sane_request *req;
	struct sane_reply_net_start *reply;

	ct_sane_info = &nfct_help(ct)->help.ct_sane_info;
	
	if (ctinfo != IP_CT_ESTABLISHED &&
	    ctinfo != IP_CT_ESTABLISHED+IP_CT_IS_REPLY)
		return NF_ACCEPT;

	
	th = skb_header_pointer(skb, protoff, sizeof(_tcph), &_tcph);
	if (th == NULL)
		return NF_ACCEPT;

	
	dataoff = protoff + th->doff * 4;
	if (dataoff >= skb->len)
		return NF_ACCEPT;

	datalen = skb->len - dataoff;

	spin_lock_bh(&nf_sane_lock);
	sb_ptr = skb_header_pointer(skb, dataoff, datalen, sane_buffer);
	BUG_ON(sb_ptr == NULL);

	if (dir == IP_CT_DIR_ORIGINAL) {
		if (datalen != sizeof(struct sane_request))
			goto out;

		req = sb_ptr;
		if (req->RPC_code != htonl(SANE_NET_START)) {
			
			ct_sane_info->state = SANE_STATE_NORMAL;
			goto out;
		}

		
		ct_sane_info->state = SANE_STATE_START_REQUESTED;
		goto out;
	}

	
	if (ct_sane_info->state != SANE_STATE_START_REQUESTED)
		goto out;

	
	ct_sane_info->state = SANE_STATE_NORMAL;

	if (datalen < sizeof(struct sane_reply_net_start)) {
		pr_debug("nf_ct_sane: NET_START reply too short\n");
		goto out;
	}

	reply = sb_ptr;
	if (reply->status != htonl(SANE_STATUS_SUCCESS)) {
		
		pr_debug("nf_ct_sane: unsuccessful SANE_STATUS = %u\n",
			 ntohl(reply->status));
		goto out;
	}

	
	if (reply->zero != 0)
		goto out;

	exp = nf_ct_expect_alloc(ct);
	if (exp == NULL) {
		ret = NF_DROP;
		goto out;
	}

	tuple = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
	nf_ct_expect_init(exp, NF_CT_EXPECT_CLASS_DEFAULT, nf_ct_l3num(ct),
			  &tuple->src.u3, &tuple->dst.u3,
			  IPPROTO_TCP, NULL, &reply->port);

	pr_debug("nf_ct_sane: expect: ");
	nf_ct_dump_tuple(&exp->tuple);

	
	if (nf_ct_expect_related(exp) != 0)
		ret = NF_DROP;

	nf_ct_expect_put(exp);

out:
	spin_unlock_bh(&nf_sane_lock);
	return ret;
}
Example #22
0
static int
cone_nat_help(struct sk_buff *skb, unsigned int protoff,
    struct nf_conn *ct, enum ip_conntrack_info ctinfo)
{
	int dir = CTINFO2DIR(ctinfo);
	struct nf_conntrack_expect *exp;
    struct nf_conntrack_tuple *tuple;
    union nf_inet_addr *src_addr = NULL;
    __be16 *src_port = NULL;
	int ret = NF_ACCEPT;

	if (ctinfo == IP_CT_ESTABLISHED || dir != IP_CT_DIR_ORIGINAL)
		return NF_ACCEPT;

	pr_debug("skb[%p] ctinfo[%d] dir[%d]\n", skb, ctinfo, dir);
	pr_debug("packet[%d bytes] "
	       "%pI4:%hu->%pI4:%hu, "
	       "reply: %pI4:%hu->%pI4:%hu\n",
	       skb->len,
	       &(ct->tuplehash[dir].tuple.src.u3.ip),
	       ntohs(ct->tuplehash[dir].tuple.src.u.udp.port),
	       &(ct->tuplehash[dir].tuple.dst.u3.ip),
	       ntohs(ct->tuplehash[dir].tuple.dst.u.udp.port),
	       &(ct->tuplehash[!dir].tuple.src.u3.ip),
	       ntohs(ct->tuplehash[!dir].tuple.src.u.udp.port),
	       &(ct->tuplehash[!dir].tuple.dst.u3.ip),
	       ntohs(ct->tuplehash[!dir].tuple.dst.u.udp.port));

	/* Create expect */
	if ((exp = nf_ct_expect_alloc(ct)) == NULL)
		return NF_ACCEPT;

    /*
      IP_CT_DIR_REPLY
      0 - symmetric nat
      1 - full,  *:* -> natip:natport -> lanip:lanport
      2 - restricted, wanip:* -> natip:natport -> lanip:lanport
      3 - port restricted, wanip:wanport -> natip:natport -> lanip:lanport
    */
    tuple = &ct->tuplehash[!dir].tuple;
    switch (conenat_type)
    {
	case 1:
	    src_addr = NULL;
	    src_port = NULL;
	    break;
        case 2:
            src_addr = &tuple->src.u3;
            src_port = NULL;
            break;
        case 3:
            src_addr = &tuple->src.u3;
            src_port = &tuple->src.u.udp.port;
            break;
        default:
            src_addr = NULL;
            src_port = NULL;
            break;
    }
    nf_ct_expect_init(exp, NF_CT_EXPECT_CLASS_DEFAULT,
    			  nf_ct_l3num(ct),
    			  src_addr, &tuple->dst.u3,
    			  tuple->dst.protonum,
    			  src_port, &tuple->dst.u.udp.port);
    exp->dir = !dir;
    exp->flags = NF_CT_EXPECT_PERMANENT;
    exp->saved_ip = ct->tuplehash[dir].tuple.src.u3.ip;
    exp->saved_proto = ct->tuplehash[dir].tuple.src.u;
    exp->expectfn = cone_nat_expect;

    pr_debug("save %pI4:%hu, ",
        &exp->saved_ip, ntohs(exp->saved_proto.udp.port));
	nf_ct_dump_tuple(&exp->tuple);

    /* Setup expect */
    ret = nf_ct_expect_related(exp);
    nf_ct_expect_put(exp);
    if (ret == 0)
    {
        pr_debug("expect setup, skb=%p, ret=%d.\n", skb, ret);
    }
    else
    {
        pr_debug("expect setup failed.\n");
    }


	return NF_ACCEPT;
}
Example #23
0
static int expect_rtp_rtcp(struct sk_buff *skb, struct nf_conn *ct,
			   enum ip_conntrack_info ctinfo,
			   unsigned char **data, int dataoff,
			   H245_TransportAddress *taddr)
{
	int dir = CTINFO2DIR(ctinfo);
	int ret = 0;
	__be16 port;
	__be16 rtp_port, rtcp_port;
	union nf_inet_addr addr;
	struct nf_conntrack_expect *rtp_exp;
	struct nf_conntrack_expect *rtcp_exp;
	typeof(nat_rtp_rtcp_hook) nat_rtp_rtcp;

	
	if (!get_h245_addr(ct, *data, taddr, &addr, &port) ||
	    memcmp(&addr, &ct->tuplehash[dir].tuple.src.u3, sizeof(addr)) ||
	    port == 0)
		return 0;

	
	port &= htons(~1);
	rtp_port = port;
	rtcp_port = htons(ntohs(port) + 1);

	
	if ((rtp_exp = nf_ct_expect_alloc(ct)) == NULL)
		return -1;
	nf_ct_expect_init(rtp_exp, NF_CT_EXPECT_CLASS_DEFAULT, nf_ct_l3num(ct),
			  &ct->tuplehash[!dir].tuple.src.u3,
			  &ct->tuplehash[!dir].tuple.dst.u3,
			  IPPROTO_UDP, NULL, &rtp_port);

	
	if ((rtcp_exp = nf_ct_expect_alloc(ct)) == NULL) {
		nf_ct_expect_put(rtp_exp);
		return -1;
	}
	nf_ct_expect_init(rtcp_exp, NF_CT_EXPECT_CLASS_DEFAULT, nf_ct_l3num(ct),
			  &ct->tuplehash[!dir].tuple.src.u3,
			  &ct->tuplehash[!dir].tuple.dst.u3,
			  IPPROTO_UDP, NULL, &rtcp_port);

	if (memcmp(&ct->tuplehash[dir].tuple.src.u3,
		   &ct->tuplehash[!dir].tuple.dst.u3,
		   sizeof(ct->tuplehash[dir].tuple.src.u3)) &&
		   (nat_rtp_rtcp = rcu_dereference(nat_rtp_rtcp_hook)) &&
		   ct->status & IPS_NAT_MASK) {
		
		ret = nat_rtp_rtcp(skb, ct, ctinfo, data, dataoff,
				   taddr, port, rtp_port, rtp_exp, rtcp_exp);
	} else {		
		if (nf_ct_expect_related(rtp_exp) == 0) {
			if (nf_ct_expect_related(rtcp_exp) == 0) {
				pr_debug("nf_ct_h323: expect RTP ");
				nf_ct_dump_tuple(&rtp_exp->tuple);
				pr_debug("nf_ct_h323: expect RTCP ");
				nf_ct_dump_tuple(&rtcp_exp->tuple);
			} else {
				nf_ct_unexpect_related(rtp_exp);
				ret = -1;
			}
		} else
			ret = -1;
	}

	nf_ct_expect_put(rtp_exp);
	nf_ct_expect_put(rtcp_exp);

	return ret;
}