Example #1
0
/**
 * Add cache to cache manager
 * @arg mngr		Cache manager.
 * @arg name		Name of cache to keep track of
 * @arg cb		Function to be called upon changes.
 * @arg data		Argument passed on to change callback
 * @arg result		Pointer to store added cache (optional)
 *
 * Allocates a new cache of the specified type and adds it to the manager.
 * The operation will trigger a full dump request from the kernel to
 * initially fill the contents of the cache. The manager will subscribe
 * to the notification group of the cache and keep track of any further
 * changes.
 *
 * The user is responsible for calling nl_cache_mngr_poll() or monitor
 * the socket and call nl_cache_mngr_data_ready() to allow the library
 * to process netlink notification events.
 *
 * @see nl_cache_mngr_poll()
 * @see nl_cache_mngr_data_ready()
 *
 * @return 0 on success or a negative error code.
 * @return -NLE_NOCACHE Unknown cache type
 * @return -NLE_PROTO_MISMATCH Protocol mismatch between cache manager and
 * 			       cache type
 * @return -NLE_OPNOTSUPP Cache type does not support updates
 * @return -NLE_EXIST Cache of this type already being managed
 */
int nl_cache_mngr_add(struct nl_cache_mngr *mngr, const char *name,
		      change_func_t cb, void *data, struct nl_cache **result)
{
	struct nl_cache_ops *ops;
	struct nl_cache *cache;
	int err;

	ops = nl_cache_ops_lookup_safe(name);
	if (!ops)
		return -NLE_NOCACHE;

	cache = nl_cache_alloc(ops);
	nl_cache_ops_put(ops);
	if (!cache)
		return -NLE_NOMEM;

	err = nl_cache_mngr_add_cache(mngr, cache, cb, data);
	if (err < 0)
		goto errout_free_cache;

	*result = cache;
	return 0;

errout_free_cache:
	nl_cache_free(cache);

	return err;
}
Example #2
0
nl_bridge::nl_bridge(switch_interface *sw, std::shared_ptr<tap_manager> tap_man,
                     cnetlink *nl, std::shared_ptr<nl_vxlan> vxlan)
    : bridge(nullptr), sw(sw), tap_man(tap_man), nl(nl), vxlan(vxlan),
      l2_cache(nl_cache_alloc(nl_cache_ops_lookup("route/neigh")),
               nl_cache_free) {
  memset(&empty_br_vlan, 0, sizeof(rtnl_link_bridge_vlan));
  memset(&vxlan_dom_bitmap, 0, sizeof(vxlan_dom_bitmap));
}
struct nl_cache *rtnl_addr_alloc_cache(struct nl_handle *handle)
{
	struct nl_cache *cache;
	
	cache = nl_cache_alloc(&rtnl_addr_ops);
	if (!cache)
		return NULL;

	if (handle && nl_cache_refill(handle, cache) < 0) {
		nl_cache_free(cache);
		return NULL;
	}

	return cache;
}
Example #4
0
File: rule.c Project: DINKIN/tuo
/**
 * Build a rule cache including all rules of the specified family currently configured in the kernel.
 * @arg handle		netlink handle
 * @arg family		address family
 *
 * Allocates a new rule cache, initializes it properly and updates it
 * to include all rules of the specified address family currently
 * configured in the kernel.
 *
 * @note The caller is responsible for destroying and freeing the
 *       cache after using it. (nl_cache_destroy_and_free())
 * @return The new cache or NULL if an error occured.
 */
struct nl_cache * rtnl_rule_alloc_cache_by_family(struct nl_handle *handle,
						  int family)
{
	struct nl_cache * cache;

	cache = nl_cache_alloc(&rtnl_rule_ops);
	if (cache == NULL)
		return NULL;

	/* XXX RULE_CACHE_FAMILY(cache) = family; */

	if (handle && nl_cache_refill(handle, cache) < 0) {
		free(cache);
		return NULL;
	}

	return cache;
}
Example #5
0
/**
 * Build a rule cache including all rules currently configured in the kernel.
 * @arg sk		Netlink socket.
 * @arg family		Address family or AF_UNSPEC.
 * @arg result		Pointer to store resulting cache.
 *
 * Allocates a new rule cache, initializes it properly and updates it
 * to include all rules currently configured in the kernel.
 *
 * @return 0 on success or a negative error code.
 */
int rtnl_rule_alloc_cache(struct nl_sock *sock, int family,
			  struct nl_cache **result)
{
	struct nl_cache * cache;
	int err;

	if (!(cache = nl_cache_alloc(&rtnl_rule_ops)))
		return -NLE_NOMEM;

	cache->c_iarg1 = family;

	if (sock && (err = nl_cache_refill(sock, cache)) < 0) {
		free(cache);
		return err;
	}

	*result = cache;
	return 0;
}
Example #6
0
/**
 * Allocate a cache and fill it with all configured classifiers
 * @arg sk		Netlink socket
 * @arg ifindex		Interface index of the network device
 * @arg parent		Parent qdisc/traffic class class
 * @arg result		Pointer to store the created cache
 *
 * Allocates a new classifier cache and fills it with a list of all
 * configured classifier attached to the specified parent qdisc/traffic
 * class on the specified network device. Release the cache with
 * nl_cache_free().
 *
 * @return 0 on success or a negative error code.
 */
int rtnl_cls_alloc_cache(struct nl_sock *sk, int ifindex, uint32_t parent,			 struct nl_cache **result)
{
	struct nl_cache * cache;
	int err;
	
	if (!(cache = nl_cache_alloc(&rtnl_cls_ops)))
		return -NLE_NOMEM;

	cache->c_iarg1 = ifindex;
	cache->c_iarg2 = parent;
	
	if (sk && (err = nl_cache_refill(sk, cache)) < 0) {
		nl_cache_free(cache);
		return err;
	}

	*result = cache;
	return 0;
}
Example #7
0
/**
 * Build an inetdiag cache to hold socket state information.
 * @arg	sk      Netlink socket
 * @arg family  The address family to query
 * @arg states  Socket states to query
 * @arg result  Result pointer
 *
 * @note The caller is responsible for destroying and free the cache after using
 *  it.
 * @return 0 on success of a negative error code.
 */
int idiagnl_msg_alloc_cache(struct nl_sock *sk, int family, int states,
		struct nl_cache **result)
{
	struct nl_cache *cache = NULL;
	int err;

	if (!(cache = nl_cache_alloc(&idiagnl_msg_ops)))
		return -NLE_NOMEM;

	cache->c_iarg1 = family;
	cache->c_iarg2 = states;

	if (sk && (err = nl_cache_refill(sk, cache)) < 0) {
		free(cache);
		return err;
	}

	*result = cache;
	return 0;
}
static void copy_cacheinfo_into_route(struct rta_cacheinfo *ci,
				      struct rtnl_route *route)
{
	struct rtnl_rtcacheinfo nci = {
		.rtci_clntref  = ci->rta_clntref,
		.rtci_last_use = ci->rta_lastuse,
		.rtci_expires  = ci->rta_expires,
		.rtci_error    = ci->rta_error,
		.rtci_used     = ci->rta_used,
		.rtci_id       = ci->rta_id,
		.rtci_ts       = ci->rta_ts,
		.rtci_tsage    = ci->rta_tsage,
	};

	rtnl_route_set_cacheinfo(route, &nci);
}

static int route_msg_parser(struct nl_cache_ops *ops, struct sockaddr_nl *who,
			    struct nlmsghdr *nlh, struct nl_parser_param *pp)
{
	struct rtmsg *rtm;
	struct rtnl_route *route;
	struct nlattr *tb[RTA_MAX + 1];
	struct nl_addr *src = NULL, *dst = NULL, *addr;
	int err;

	route = rtnl_route_alloc();
	if (!route) {
		err = nl_errno(ENOMEM);
		goto errout;
	}

	route->ce_msgtype = nlh->nlmsg_type;

	err = nlmsg_parse(nlh, sizeof(struct rtmsg), tb, RTA_MAX,
			  route_policy);
	if (err < 0)
		goto errout;

	rtm = nlmsg_data(nlh);
	rtnl_route_set_family(route, rtm->rtm_family);
	rtnl_route_set_tos(route, rtm->rtm_tos);
	rtnl_route_set_table(route, rtm->rtm_table);
	rtnl_route_set_type(route, rtm->rtm_type);
	rtnl_route_set_scope(route, rtm->rtm_scope);
	rtnl_route_set_protocol(route, rtm->rtm_protocol);
	rtnl_route_set_flags(route, rtm->rtm_flags);

	if (tb[RTA_DST]) {
		dst = nla_get_addr(tb[RTA_DST], rtm->rtm_family);
		if (dst == NULL)
			goto errout_errno;
	} else {
		dst = nl_addr_alloc(0);
		nl_addr_set_family(dst, rtm->rtm_family);
	}

	nl_addr_set_prefixlen(dst, rtm->rtm_dst_len);
	err = rtnl_route_set_dst(route, dst);
	if (err < 0)
		goto errout;

	nl_addr_put(dst);

	if (tb[RTA_SRC]) {
		src = nla_get_addr(tb[RTA_SRC], rtm->rtm_family);
		if (src == NULL)
			goto errout_errno;
	} else if (rtm->rtm_src_len)
		src = nl_addr_alloc(0);

	if (src) {
		nl_addr_set_prefixlen(src, rtm->rtm_src_len);
		rtnl_route_set_src(route, src);
		nl_addr_put(src);
	}

	if (tb[RTA_IIF])
		rtnl_route_set_iif(route, nla_get_string(tb[RTA_IIF]));

	if (tb[RTA_OIF])
		rtnl_route_set_oif(route, nla_get_u32(tb[RTA_OIF]));

	if (tb[RTA_GATEWAY]) {
		addr = nla_get_addr(tb[RTA_GATEWAY], route->rt_family);
		if (addr == NULL)
			goto errout_errno;
		rtnl_route_set_gateway(route, addr);
		nl_addr_put(addr);
	}

	if (tb[RTA_PRIORITY])
		rtnl_route_set_prio(route, nla_get_u32(tb[RTA_PRIORITY]));

	if (tb[RTA_PREFSRC]) {
		addr = nla_get_addr(tb[RTA_PREFSRC], route->rt_family);
		if (addr == NULL)
			goto errout_errno;
		rtnl_route_set_pref_src(route, addr);
		nl_addr_put(addr);
	}

	if (tb[RTA_METRICS]) {
		struct nlattr *mtb[RTAX_MAX + 1];
		int i;

		err = nla_parse_nested(mtb, RTAX_MAX, tb[RTA_METRICS], NULL);
		if (err < 0)
			goto errout;

		for (i = 1; i <= RTAX_MAX; i++) {
			if (mtb[i] && nla_len(mtb[i]) >= sizeof(uint32_t)) {
				uint32_t m = nla_get_u32(mtb[i]);
				if (rtnl_route_set_metric(route, i, m) < 0)
					goto errout_errno;
			}
		}
	}

	if (tb[RTA_MULTIPATH]) {
		struct rtnl_nexthop *nh;
		struct rtnexthop *rtnh = nla_data(tb[RTA_MULTIPATH]);
		size_t tlen = nla_len(tb[RTA_MULTIPATH]);

		while (tlen >= sizeof(*rtnh) && tlen >= rtnh->rtnh_len) {
			nh = rtnl_route_nh_alloc();
			if (!nh)
				goto errout;

			rtnl_route_nh_set_weight(nh, rtnh->rtnh_hops);
			rtnl_route_nh_set_ifindex(nh, rtnh->rtnh_ifindex);
			rtnl_route_nh_set_flags(nh, rtnh->rtnh_flags);

			if (rtnh->rtnh_len > sizeof(*rtnh)) {
				struct nlattr *ntb[RTA_MAX + 1];
				nla_parse(ntb, RTA_MAX, (struct nlattr *)
					  RTNH_DATA(rtnh),
					  rtnh->rtnh_len - sizeof(*rtnh),
					  route_policy);

				if (ntb[RTA_GATEWAY]) {
					nh->rtnh_gateway = nla_get_addr(
							ntb[RTA_GATEWAY],
							route->rt_family);
					nh->rtnh_mask = NEXTHOP_HAS_GATEWAY;
				}
			}

			rtnl_route_add_nexthop(route, nh);
			tlen -= RTNH_ALIGN(rtnh->rtnh_len);
			rtnh = RTNH_NEXT(rtnh);
		}
	}

	if (tb[RTA_FLOW])
		rtnl_route_set_realms(route, nla_get_u32(tb[RTA_FLOW]));

	if (tb[RTA_CACHEINFO])
		copy_cacheinfo_into_route(nla_data(tb[RTA_CACHEINFO]), route);

	if (tb[RTA_MP_ALGO])
		rtnl_route_set_mp_algo(route, nla_get_u32(tb[RTA_MP_ALGO]));

	err = pp->pp_cb((struct nl_object *) route, pp);
	if (err < 0)
		goto errout;

	err = P_ACCEPT;

errout:
	rtnl_route_put(route);
	return err;

errout_errno:
	err = nl_get_errno();
	goto errout;
}

static int route_request_update(struct nl_cache *c, struct nl_handle *h)
{
	return nl_rtgen_request(h, RTM_GETROUTE, AF_UNSPEC, NLM_F_DUMP);
}

/**
 * @name Cache Management
 * @{
 */

/**
 * Build a route cache holding all routes currently configured in the kernel
 * @arg handle		netlink handle
 *
 * Allocates a new cache, initializes it properly and updates it to
 * contain all routes currently configured in the kernel.
 *
 * @note The caller is responsible for destroying and freeing the
 *       cache after using it.
 * @return The cache or NULL if an error has occured.
 */
struct nl_cache *rtnl_route_alloc_cache(struct nl_handle *handle)
{
	struct nl_cache *cache;

	cache = nl_cache_alloc(&rtnl_route_ops);
	if (!cache)
		return NULL;

	if (handle && nl_cache_refill(handle, cache) < 0) {
		free(cache);
		return NULL;
	}

	return cache;
}

/** @} */

/**
 * @name Route Addition
 * @{
 */

static struct nl_msg *build_route_msg(struct rtnl_route *tmpl, int cmd,
				      int flags)
{
	struct nl_msg *msg;
	struct nl_addr *addr;
	int scope, i, oif, nmetrics = 0;
	struct nlattr *metrics;
	struct rtmsg rtmsg = {
		.rtm_family = rtnl_route_get_family(tmpl),
		.rtm_dst_len = rtnl_route_get_dst_len(tmpl),
		.rtm_src_len = rtnl_route_get_src_len(tmpl),
		.rtm_tos = rtnl_route_get_tos(tmpl),
		.rtm_table = rtnl_route_get_table(tmpl),
		.rtm_type = rtnl_route_get_type(tmpl),
		.rtm_protocol = rtnl_route_get_protocol(tmpl),
		.rtm_flags = rtnl_route_get_flags(tmpl),
	};

	if (rtmsg.rtm_family == AF_UNSPEC) {
		nl_error(EINVAL, "Cannot build route message, address " \
				 "family is unknown.");
		return NULL;
	}

	scope = rtnl_route_get_scope(tmpl);
	if (scope == RT_SCOPE_NOWHERE) {
		if (rtmsg.rtm_type == RTN_LOCAL)
			scope = RT_SCOPE_HOST;
		else {
			/* XXX Change to UNIVERSE if gw || nexthops */
			scope = RT_SCOPE_LINK;
		}
	}

	rtmsg.rtm_scope = scope;

	msg = nlmsg_alloc_simple(cmd, flags);
	if (msg == NULL)
		return NULL;

	if (nlmsg_append(msg, &rtmsg, sizeof(rtmsg), NLMSG_ALIGNTO) < 0)
		goto nla_put_failure;

	addr = rtnl_route_get_dst(tmpl);
	if (addr)
		NLA_PUT_ADDR(msg, RTA_DST, addr);

	addr = rtnl_route_get_src(tmpl);
	if (addr)
		NLA_PUT_ADDR(msg, RTA_SRC, addr);

	addr = rtnl_route_get_gateway(tmpl);
	if (addr)
		NLA_PUT_ADDR(msg, RTA_GATEWAY, addr);

	addr = rtnl_route_get_pref_src(tmpl);
	if (addr)
		NLA_PUT_ADDR(msg, RTA_PREFSRC, addr);

	NLA_PUT_U32(msg, RTA_PRIORITY, rtnl_route_get_prio(tmpl));

	oif = rtnl_route_get_oif(tmpl);
	if (oif != RTNL_LINK_NOT_FOUND)
		NLA_PUT_U32(msg, RTA_OIF, oif);

	for (i = 1; i <= RTAX_MAX; i++)
		if (rtnl_route_get_metric(tmpl, i) != UINT_MAX)
			nmetrics++;

	if (nmetrics > 0) {
		unsigned int val;

		metrics = nla_nest_start(msg, RTA_METRICS);
		if (metrics == NULL)
			goto nla_put_failure;

		for (i = 1; i <= RTAX_MAX; i++) {
			val = rtnl_route_get_metric(tmpl, i);
			if (val != UINT_MAX)
				NLA_PUT_U32(msg, i, val);
		}

		nla_nest_end(msg, metrics);
	}

#if 0
	RTA_IIF,
	RTA_MULTIPATH,
	RTA_PROTOINFO,
	RTA_FLOW,
	RTA_CACHEINFO,
	RTA_SESSION,
	RTA_MP_ALGO,
#endif

	return msg;

nla_put_failure:
	nlmsg_free(msg);
	return NULL;
}

struct nl_msg *rtnl_route_build_add_request(struct rtnl_route *tmpl, int flags)
{
	return build_route_msg(tmpl, RTM_NEWROUTE, NLM_F_CREATE | flags);
}

int rtnl_route_add(struct nl_handle *handle, struct rtnl_route *route,
		   int flags)
{
	struct nl_msg *msg;
	int err;

	msg = rtnl_route_build_add_request(route, flags);
	if (!msg)
		return nl_get_errno();

	err = nl_send_auto_complete(handle, msg);
	nlmsg_free(msg);
	if (err < 0)
		return err;

	return nl_wait_for_ack(handle);
}

struct nl_msg *rtnl_route_build_del_request(struct rtnl_route *tmpl, int flags)
{
	return build_route_msg(tmpl, RTM_DELROUTE, flags);
}

int rtnl_route_del(struct nl_handle *handle, struct rtnl_route *route,
		   int flags)
{
	struct nl_msg *msg;
	int err;

	msg = rtnl_route_build_del_request(route, flags);
	if (!msg)
		return nl_get_errno();

	err = nl_send_auto_complete(handle, msg);
	nlmsg_free(msg);
	if (err < 0)
		return err;

	return nl_wait_for_ack(handle);
}

/** @} */

static struct nl_af_group route_groups[] = {
	{ AF_INET,	RTNLGRP_IPV4_ROUTE },
	{ AF_INET6,	RTNLGRP_IPV6_ROUTE },
	{ AF_DECnet,	RTNLGRP_DECnet_ROUTE },
	{ END_OF_GROUP_LIST },
};

static struct nl_cache_ops rtnl_route_ops = {
	.co_name		= "route/route",
	.co_hdrsize		= sizeof(struct rtmsg),
	.co_msgtypes		= {
					{ RTM_NEWROUTE, NL_ACT_NEW, "new" },
					{ RTM_DELROUTE, NL_ACT_DEL, "del" },
					{ RTM_GETROUTE, NL_ACT_GET, "get" },
					END_OF_MSGTYPES_LIST,
				  },
	.co_protocol		= NETLINK_ROUTE,
	.co_groups		= route_groups,
	.co_request_update	= route_request_update,
	.co_msg_parser		= route_msg_parser,
	.co_obj_ops		= &route_obj_ops,
};

static void __init route_init(void)
{
	nl_cache_mngt_register(&rtnl_route_ops);
}

static void __exit route_exit(void)
{
	nl_cache_mngt_unregister(&rtnl_route_ops);
}
static int route_request_update(struct nl_cache *c, struct nl_sock *h)
{
	struct rtmsg rhdr = {
		.rtm_family = c->c_iarg1,
	};

	if (c->c_iarg2 & ROUTE_CACHE_CONTENT)
		rhdr.rtm_flags |= RTM_F_CLONED;

	return nl_send_simple(h, RTM_GETROUTE, NLM_F_DUMP, &rhdr, sizeof(rhdr));
}

/**
 * @name Cache Management
 * @{
 */

/**
 * Build a route cache holding all routes currently configured in the kernel
 * @arg sk		Netlink socket.
 * @arg family		Address family of routes to cover or AF_UNSPEC
 * @arg flags		Flags
 *
 * Allocates a new cache, initializes it properly and updates it to
 * contain all routes currently configured in the kernel.
 *
 * @note The caller is responsible for destroying and freeing the
 *       cache after using it.
 * @return The cache or NULL if an error has occured.
 */
int rtnl_route_alloc_cache(struct nl_sock *sk, int family, int flags,
			   struct nl_cache **result)
{
	struct nl_cache *cache;
	int err;

	if (!(cache = nl_cache_alloc(&rtnl_route_ops)))
		return -NLE_NOMEM;

	cache->c_iarg1 = family;
	cache->c_iarg2 = flags;

	if (sk && (err = nl_cache_refill(sk, cache)) < 0) {
		free(cache);
		return err;
	}

	*result = cache;
	return 0;
}

/** @} */

/**
 * @name Route Addition
 * @{
 */

static int build_route_msg(struct rtnl_route *tmpl, int cmd, int flags,
			   struct nl_msg **result)
{
	struct nl_msg *msg;
	int err;

	if (!(msg = nlmsg_alloc_simple(cmd, flags)))
		return -NLE_NOMEM;

	if ((err = rtnl_route_build_msg(msg, tmpl)) < 0) {
		nlmsg_free(msg);
		return err;
	}

	*result = msg;
	return 0;
}

int rtnl_route_build_add_request(struct rtnl_route *tmpl, int flags,
				 struct nl_msg **result)
{
	return build_route_msg(tmpl, RTM_NEWROUTE, NLM_F_CREATE | flags,
			       result);
}

int rtnl_route_add(struct nl_sock *sk, struct rtnl_route *route, int flags)
{
	struct nl_msg *msg;
	int err;

	if ((err = rtnl_route_build_add_request(route, flags, &msg)) < 0)
		return err;

	err = nl_send_auto_complete(sk, msg);
	nlmsg_free(msg);
	if (err < 0)
		return err;

	return wait_for_ack(sk);
}

int rtnl_route_build_del_request(struct rtnl_route *tmpl, int flags,
				 struct nl_msg **result)
{
	return build_route_msg(tmpl, RTM_DELROUTE, flags, result);
}

int rtnl_route_delete(struct nl_sock *sk, struct rtnl_route *route, int flags)
{
	struct nl_msg *msg;
	int err;

	if ((err = rtnl_route_build_del_request(route, flags, &msg)) < 0)
		return err;

	err = nl_send_auto_complete(sk, msg);
	nlmsg_free(msg);
	if (err < 0)
		return err;

	return wait_for_ack(sk);
}

/** @} */

static struct nl_af_group route_groups[] = {
	{ AF_INET,	RTNLGRP_IPV4_ROUTE },
	{ AF_INET6,	RTNLGRP_IPV6_ROUTE },
	{ AF_DECnet,	RTNLGRP_DECnet_ROUTE },
	{ END_OF_GROUP_LIST },
};

static struct nl_cache_ops rtnl_route_ops = {
	.co_name		= "route/route",
	.co_hdrsize		= sizeof(struct rtmsg),
	.co_msgtypes		= {
					{ RTM_NEWROUTE, NL_ACT_NEW, "new" },
					{ RTM_DELROUTE, NL_ACT_DEL, "del" },
					{ RTM_GETROUTE, NL_ACT_GET, "get" },
					END_OF_MSGTYPES_LIST,
				  },
	.co_protocol		= NETLINK_ROUTE,
	.co_groups		= route_groups,
	.co_request_update	= route_request_update,
	.co_msg_parser		= route_msg_parser,
	.co_obj_ops		= &route_obj_ops,
};

static void __init route_init(void)
{
	nl_cache_mngt_register(&rtnl_route_ops);
}

static void __exit route_exit(void)
{
	nl_cache_mngt_unregister(&rtnl_route_ops);
}
static int cls_request_update(struct nl_cache *cache, struct nl_sock *sk)
{
	struct tcmsg tchdr = {
		.tcm_family = AF_UNSPEC,
		.tcm_ifindex = cache->c_iarg1,
		.tcm_parent = cache->c_iarg2,
	};

	return nl_send_simple(sk, RTM_GETTFILTER, NLM_F_DUMP, &tchdr,
			      sizeof(tchdr));
}


static int cls_build(struct rtnl_cls *cls, int type, int flags,
		     struct nl_msg **result)
{
	struct rtnl_cls_ops *cops;
	int err, prio, proto;
	struct tcmsg *tchdr;

	err = tca_build_msg((struct rtnl_tca *) cls, type, flags, result);
	if (err < 0)
		return err;

	tchdr = nlmsg_data(nlmsg_hdr(*result));
	prio = rtnl_cls_get_prio(cls);
	proto = rtnl_cls_get_protocol(cls);
	tchdr->tcm_info = TC_H_MAKE(prio << 16, htons(proto));

	cops = rtnl_cls_lookup_ops(cls);
	if (cops && cops->co_get_opts) {
		struct nl_msg *opts;

		if (!(opts = nlmsg_alloc())) {
			err = -NLE_NOMEM;
			goto errout;
		}

		if (!(err = cops->co_get_opts(cls, opts)))
			err = nla_put_nested(*result, TCA_OPTIONS, opts);

		nlmsg_free(opts);
		if (err < 0)
			goto errout;
	}

	return 0;
errout:
	nlmsg_free(*result);
	return err;
}

/**
 * @name Classifier Addition/Modification/Deletion
 * @{
 */

/**
 * Build a netlink message to add a new classifier
 * @arg cls		classifier to add
 * @arg flags		additional netlink message flags
 * @arg result		Pointer to store resulting message.
 *
 * Builds a new netlink message requesting an addition of a classifier
 * The netlink message header isn't fully equipped with all relevant
 * fields and must be sent out via nl_send_auto_complete() or
 * supplemented as needed. \a classifier must contain the attributes of
 * the new classifier set via \c rtnl_cls_set_* functions. \a opts
 * may point to the clsasifier specific options.
 *
 * @return 0 on success or a negative error code.
 */
int rtnl_cls_build_add_request(struct rtnl_cls *cls, int flags,
			       struct nl_msg **result)
{
	return cls_build(cls, RTM_NEWTFILTER, NLM_F_CREATE | flags, result);
}

/**
 * Add a new classifier
 * @arg sk		Netlink socket.
 * @arg cls 		classifier to add
 * @arg flags		additional netlink message flags
 *
 * Builds a netlink message by calling rtnl_cls_build_add_request(),
 * sends the request to the kernel and waits for the next ACK to be
 * received and thus blocks until the request has been processed.
 *
 * @return 0 on sucess or a negative error if an error occured.
 */
int rtnl_cls_add(struct nl_sock *sk, struct rtnl_cls *cls, int flags)
{
	struct nl_msg *msg;
	int err;
	
	if ((err = rtnl_cls_build_add_request(cls, flags, &msg)) < 0)
		return err;
	
	err = nl_send_auto_complete(sk, msg);
	nlmsg_free(msg);
	if (err < 0)
		return err;

	return nl_wait_for_ack(sk);
}

/**
 * Build a netlink message to change classifier attributes
 * @arg cls		classifier to change
 * @arg flags		additional netlink message flags
 * @arg result		Pointer to store resulting message.
 *
 * Builds a new netlink message requesting a change of a neigh
 * attributes. The netlink message header isn't fully equipped with
 * all relevant fields and must thus be sent out via nl_send_auto_complete()
 * or supplemented as needed.
 *
 * @return 0 on success or a negative error code.
 */
int rtnl_cls_build_change_request(struct rtnl_cls *cls, int flags,
				  struct nl_msg **result)
{
	return cls_build(cls, RTM_NEWTFILTER, NLM_F_REPLACE | flags, result);
}

/**
 * Change a classifier
 * @arg sk		Netlink socket.
 * @arg cls		classifier to change
 * @arg flags		additional netlink message flags
 *
 * Builds a netlink message by calling rtnl_cls_build_change_request(),
 * sends the request to the kernel and waits for the next ACK to be
 * received and thus blocks until the request has been processed.
 *
 * @return 0 on sucess or a negative error if an error occured.
 */
int rtnl_cls_change(struct nl_sock *sk, struct rtnl_cls *cls, int flags)
{
	struct nl_msg *msg;
	int err;
	
	if ((err = rtnl_cls_build_change_request(cls, flags, &msg)) < 0)
		return err;
	
	err = nl_send_auto_complete(sk, msg);
	nlmsg_free(msg);
	if (err < 0)
		return err;

	return nl_wait_for_ack(sk);
}

/**
 * Build a netlink request message to delete a classifier
 * @arg cls		classifier to delete
 * @arg flags		additional netlink message flags
 * @arg result		Pointer to store resulting message.
 *
 * Builds a new netlink message requesting a deletion of a classifier.
 * The netlink message header isn't fully equipped with all relevant
 * fields and must thus be sent out via nl_send_auto_complete()
 * or supplemented as needed.
 *
 * @return 0 on success or a negative error code.
 */
int rtnl_cls_build_delete_request(struct rtnl_cls *cls, int flags,
				  struct nl_msg **result)
{
	return cls_build(cls, RTM_DELTFILTER, flags, result);
}


/**
 * Delete a classifier
 * @arg sk		Netlink socket.
 * @arg cls		classifier to delete
 * @arg flags		additional netlink message flags
 *
 * Builds a netlink message by calling rtnl_cls_build_delete_request(),
 * sends the request to the kernel and waits for the next ACK to be
 * received and thus blocks until the request has been processed.
 *
 * @return 0 on sucess or a negative error if an error occured.
 */
int rtnl_cls_delete(struct nl_sock *sk, struct rtnl_cls *cls, int flags)
{
	struct nl_msg *msg;
	int err;
	
	if ((err = rtnl_cls_build_delete_request(cls, flags, &msg)) < 0)
		return err;
	
	err = nl_send_auto_complete(sk, msg);
	nlmsg_free(msg);
	if (err < 0)
		return err;

	return nl_wait_for_ack(sk);
}

/** @} */

/**
 * @name Cache Management
 * @{
 */

/**
 * Build a classifier cache including all classifiers attached to the
 * specified class/qdisc on eht specified interface.
 * @arg sk		Netlink socket.
 * @arg ifindex		interface index of the link the classes are
 *                      attached to.
 * @arg parent          parent qdisc/class
 * @arg result		Pointer to store resulting cache.
 *
 * Allocates a new cache, initializes it properly and updates it to
 * include all classes attached to the specified interface.
 *
 * @note The caller is responsible for destroying and freeing the
 *       cache after using it.
 * @return 0 on success or a negative error code.
 */
int rtnl_cls_alloc_cache(struct nl_sock *sk, int ifindex, uint32_t parent,			 struct nl_cache **result)
{
	struct nl_cache * cache;
	int err;
	
	if (!(cache = nl_cache_alloc(&rtnl_cls_ops)))
		return -NLE_NOMEM;

	cache->c_iarg1 = ifindex;
	cache->c_iarg2 = parent;
	
	if (sk && (err = nl_cache_refill(sk, cache)) < 0) {
		nl_cache_free(cache);
		return err;
	}

	*result = cache;
	return 0;
}

/** @} */

static struct nl_cache_ops rtnl_cls_ops = {
	.co_name		= "route/cls",
	.co_hdrsize		= sizeof(struct tcmsg),
	.co_msgtypes		= {
					{ RTM_NEWTFILTER, NL_ACT_NEW, "new" },
					{ RTM_DELTFILTER, NL_ACT_DEL, "del" },
					{ RTM_GETTFILTER, NL_ACT_GET, "get" },
					END_OF_MSGTYPES_LIST,
				  },
	.co_protocol		= NETLINK_ROUTE,
	.co_request_update	= cls_request_update,
	.co_msg_parser		= cls_msg_parser,
	.co_obj_ops		= &cls_obj_ops,
};

static void __init cls_init(void)
{
	nl_cache_mngt_register(&rtnl_cls_ops);
}

static void __exit cls_exit(void)
{
	nl_cache_mngt_unregister(&rtnl_cls_ops);
}
Example #11
0
/**
 * Add cache responsibility to cache manager
 * @arg mngr		Cache manager.
 * @arg name		Name of cache to keep track of
 * @arg cb		Function to be called upon changes.
 * @arg data		Argument passed on to change callback
 * @arg result		Pointer to store added cache (optional)
 *
 * Allocates a new cache of the specified type and adds it to the manager.
 * The operation will trigger a full dump request from the kernel to
 * initially fill the contents of the cache. The manager will subscribe
 * to the notification group of the cache and keep track of any further
 * changes.
 *
 * The user is responsible for calling nl_cache_mngr_poll() or monitor
 * the socket and call nl_cache_mngr_data_ready() to allow the library
 * to process netlink notification events.
 *
 * @see nl_cache_mngr_poll()
 * @see nl_cache_mngr_data_ready()
 *
 * @return 0 on success or a negative error code.
 * @return -NLE_NOCACHE Unknown cache type
 * @return -NLE_PROTO_MISMATCH Protocol mismatch between cache manager and
 * 			       cache type
 * @return -NLE_OPNOTSUPP Cache type does not support updates
 * @return -NLE_EXIST Cache of this type already being managed
 */
int nl_cache_mngr_add(struct nl_cache_mngr *mngr, const char *name,
                      change_func_t cb, void *data, struct nl_cache **result)
{
    struct nl_cache_ops *ops;
    struct nl_cache *cache;
    struct nl_af_group *grp;
    int err, i;

    ops = nl_cache_ops_lookup(name);
    if (!ops)
        return -NLE_NOCACHE;

    if (ops->co_protocol != mngr->cm_protocol)
        return -NLE_PROTO_MISMATCH;

    if (ops->co_groups == NULL)
        return -NLE_OPNOTSUPP;

    for (i = 0; i < mngr->cm_nassocs; i++)
        if (mngr->cm_assocs[i].ca_cache &&
                mngr->cm_assocs[i].ca_cache->c_ops == ops)
            return -NLE_EXIST;

retry:
    for (i = 0; i < mngr->cm_nassocs; i++)
        if (!mngr->cm_assocs[i].ca_cache)
            break;

    if (i >= mngr->cm_nassocs) {
        mngr->cm_nassocs += NASSOC_EXPAND;
        mngr->cm_assocs = realloc(mngr->cm_assocs,
                                  mngr->cm_nassocs *
                                  sizeof(struct nl_cache_assoc));
        if (mngr->cm_assocs == NULL)
            return -NLE_NOMEM;

        memset(mngr->cm_assocs + (mngr->cm_nassocs - NASSOC_EXPAND), 0,
               NASSOC_EXPAND * sizeof(struct nl_cache_assoc));

        NL_DBG(1, "Increased capacity of cache manager %p " \
               "to %d\n", mngr, mngr->cm_nassocs);
        goto retry;
    }

    cache = nl_cache_alloc(ops);
    if (!cache)
        return -NLE_NOMEM;

    for (grp = ops->co_groups; grp->ag_group; grp++) {
        err = nl_socket_add_membership(mngr->cm_sock, grp->ag_group);
        if (err < 0)
            goto errout_free_cache;
    }

    err = nl_cache_refill(mngr->cm_sock, cache);
    if (err < 0)
        goto errout_drop_membership;

    mngr->cm_assocs[i].ca_cache = cache;
    mngr->cm_assocs[i].ca_change = cb;
    mngr->cm_assocs[i].ca_change_data = data;

    if (mngr->cm_flags & NL_AUTO_PROVIDE)
        nl_cache_mngt_provide(cache);

    NL_DBG(1, "Added cache %p <%s> to cache manager %p\n",
           cache, nl_cache_name(cache), mngr);

    if (result)
        *result = cache;
    return 0;

errout_drop_membership:
    for (grp = ops->co_groups; grp->ag_group; grp++)
        nl_socket_drop_membership(mngr->cm_sock, grp->ag_group);
errout_free_cache:
    nl_cache_free(cache);

    return err;
}
Example #12
0
/**
 * Allocate lookup result cache.
 *
 * Allocates a new lookup result cache and initializes it properly.
 *
 * @note Free the memory after usage using nl_cache_destroy_and_free().
 * @return Newly allocated cache or NULL if an error occured.
 */
struct nl_cache *flnl_result_alloc_cache(void)
{
	return nl_cache_alloc(&fib_lookup_ops);
}