Example #1
0
static struct vport *vxlan_tnl_create(const struct vport_parms *parms)
{
	struct net *net = ovs_dp_get_net(parms->dp);
	struct nlattr *options = parms->options;
	struct vxlan_port *vxlan_port;
	struct vxlan_sock *vs;
	struct vport *vport;
	struct nlattr *a;
	u16 dst_port;
	int err;

	if (!options) {
		err = -EINVAL;
		goto error;
	}
	a = nla_find_nested(options, OVS_TUNNEL_ATTR_DST_PORT);
	if (a && nla_len(a) == sizeof(u16)) {
		dst_port = nla_get_u16(a);
	} else {
		/* Require destination port from userspace. */
		err = -EINVAL;
		goto error;
	}

	vport = ovs_vport_alloc(sizeof(struct vxlan_port),
				&ovs_vxlan_vport_ops, parms);
	if (IS_ERR(vport))
		return vport;

	vxlan_port = vxlan_vport(vport);
	strncpy(vxlan_port->name, parms->name, IFNAMSIZ);

	a = nla_find_nested(options, OVS_TUNNEL_ATTR_EXTENSION);
	if (a) {
		err = vxlan_configure_exts(vport, a);
		if (err) {
			ovs_vport_free(vport);
			goto error;
		}
	}

	vs = vxlan_sock_add(net, htons(dst_port), vxlan_rcv, vport, true,
			    vxlan_port->exts);
	if (IS_ERR(vs)) {
		ovs_vport_free(vport);
		return (void *)vs;
	}
	vxlan_port->vs = vs;

	return vport;

error:
	return ERR_PTR(err);
}
struct nlattr *drbd_nla_find_nested(int maxtype, struct nlattr *nla, int attrtype)
{
	int err;
	/*
	 * If any nested attribute has the DRBD_GENLA_F_MANDATORY flag set and
	 * we don't know about that attribute, reject all the nested
	 * attributes.
	 */
	err = drbd_nla_check_mandatory(maxtype, nla);
	if (err)
		return ERR_PTR(err);
	return nla_find_nested(nla, attrtype);
}
Example #3
0
static struct vport *geneve_tnl_create(const struct vport_parms *parms)
{
	struct net *net = ovs_dp_get_net(parms->dp);
	struct nlattr *options = parms->options;
	struct geneve_port *geneve_port;
	struct net_device *dev;
	struct vport *vport;
	struct nlattr *a;
	u16 dst_port;
	int err;

	if (!options) {
		err = -EINVAL;
		goto error;
	}

	a = nla_find_nested(options, OVS_TUNNEL_ATTR_DST_PORT);
	if (a && nla_len(a) == sizeof(u16)) {
		dst_port = nla_get_u16(a);
	} else {
		/* Require destination port from userspace. */
		err = -EINVAL;
		goto error;
	}

	vport = ovs_vport_alloc(sizeof(struct geneve_port),
				&ovs_geneve_vport_ops, parms);
	if (IS_ERR(vport))
		return vport;

	geneve_port = geneve_vport(vport);
	geneve_port->dst_port = dst_port;

	rtnl_lock();
	dev = geneve_dev_create_fb(net, parms->name, NET_NAME_USER, dst_port);
	if (IS_ERR(dev)) {
		rtnl_unlock();
		ovs_vport_free(vport);
		return ERR_CAST(dev);
	}

	dev_change_flags(dev, dev->flags | IFF_UP);
	rtnl_unlock();
	return vport;
error:
	return ERR_PTR(err);
}
Example #4
0
static struct vport *stt_tnl_create(const struct vport_parms *parms)
{
	struct net *net = ovs_dp_get_net(parms->dp);
	struct nlattr *options = parms->options;
	struct stt_port *stt_port;
	struct stt_sock *stt_sock;
	struct vport *vport;
	struct nlattr *a;
	int err;
	u16 dst_port;

	if (!options) {
		err = -EINVAL;
		goto error;
	}

	a = nla_find_nested(options, OVS_TUNNEL_ATTR_DST_PORT);
	if (a && nla_len(a) == sizeof(u16)) {
		dst_port = nla_get_u16(a);
	} else {
		/* Require destination port from userspace. */
		err = -EINVAL;
		goto error;
	}

	vport = ovs_vport_alloc(sizeof(struct stt_port),
				&ovs_stt_vport_ops, parms);
	if (IS_ERR(vport))
		return vport;

	stt_port = stt_vport(vport);
	strncpy(stt_port->name, parms->name, IFNAMSIZ);

	stt_sock = stt_sock_add(net, htons(dst_port), stt_rcv, vport);
	if (IS_ERR(stt_sock)) {
		ovs_vport_free(vport);
		return ERR_CAST(stt_sock);
	}
	stt_port->stt_sock = stt_sock;

	return vport;
error:
	return ERR_PTR(err);
}
Example #5
0
static u64 __skb_get_nlattr_nest(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
{
	struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
	struct nlattr *nla;

	if (skb_is_nonlinear(skb))
		return 0;

	if (skb->len < sizeof(struct nlattr))
		return 0;

	if (a > skb->len - sizeof(struct nlattr))
		return 0;

	nla = (struct nlattr *) &skb->data[a];
	if (nla->nla_len > skb->len - a)
		return 0;

	nla = nla_find_nested(nla, x);
	if (nla)
		return (void *) nla - (void *) skb->data;

	return 0;
}
Example #6
0
/**
 *	sk_run_filter - run a filter on a socket
 *	@skb: buffer to run the filter on
 *	@filter: filter to apply
 *
 * Decode and apply filter instructions to the skb->data.
 * Return length to keep, 0 for none. @skb is the data we are
 * filtering, @filter is the array of filter instructions.
 * Because all jumps are guaranteed to be before last instruction,
 * and last instruction guaranteed to be a RET, we dont need to check
 * flen. (We used to pass to this function the length of filter)
 */
unsigned int sk_run_filter(const struct sk_buff *skb,
			   const struct sock_filter *fentry)
{
	void *ptr;
	u32 A = 0;			/* Accumulator */
	u32 X = 0;			/* Index Register */
	u32 mem[BPF_MEMWORDS];		/* Scratch Memory Store */
	unsigned long memvalid = 0;
	u32 tmp;
	int k;

	BUILD_BUG_ON(BPF_MEMWORDS > BITS_PER_LONG);
	/*
	 * Process array of filter instructions.
	 */
	for (;; fentry++) {
#if defined(CONFIG_X86_32)
#define	K (fentry->k)
#else
		const u32 K = fentry->k;
#endif

		switch (fentry->code) {
		case BPF_S_ALU_ADD_X:
			A += X;
			continue;
		case BPF_S_ALU_ADD_K:
			A += K;
			continue;
		case BPF_S_ALU_SUB_X:
			A -= X;
			continue;
		case BPF_S_ALU_SUB_K:
			A -= K;
			continue;
		case BPF_S_ALU_MUL_X:
			A *= X;
			continue;
		case BPF_S_ALU_MUL_K:
			A *= K;
			continue;
		case BPF_S_ALU_DIV_X:
			if (X == 0)
				return 0;
			A /= X;
			continue;
		case BPF_S_ALU_DIV_K:
			A /= K;
			continue;
		case BPF_S_ALU_AND_X:
			A &= X;
			continue;
		case BPF_S_ALU_AND_K:
			A &= K;
			continue;
		case BPF_S_ALU_OR_X:
			A |= X;
			continue;
		case BPF_S_ALU_OR_K:
			A |= K;
			continue;
		case BPF_S_ALU_LSH_X:
			A <<= X;
			continue;
		case BPF_S_ALU_LSH_K:
			A <<= K;
			continue;
		case BPF_S_ALU_RSH_X:
			A >>= X;
			continue;
		case BPF_S_ALU_RSH_K:
			A >>= K;
			continue;
		case BPF_S_ALU_NEG:
			A = -A;
			continue;
		case BPF_S_JMP_JA:
			fentry += K;
			continue;
		case BPF_S_JMP_JGT_K:
			fentry += (A > K) ? fentry->jt : fentry->jf;
			continue;
		case BPF_S_JMP_JGE_K:
			fentry += (A >= K) ? fentry->jt : fentry->jf;
			continue;
		case BPF_S_JMP_JEQ_K:
			fentry += (A == K) ? fentry->jt : fentry->jf;
			continue;
		case BPF_S_JMP_JSET_K:
			fentry += (A & K) ? fentry->jt : fentry->jf;
			continue;
		case BPF_S_JMP_JGT_X:
			fentry += (A > X) ? fentry->jt : fentry->jf;
			continue;
		case BPF_S_JMP_JGE_X:
			fentry += (A >= X) ? fentry->jt : fentry->jf;
			continue;
		case BPF_S_JMP_JEQ_X:
			fentry += (A == X) ? fentry->jt : fentry->jf;
			continue;
		case BPF_S_JMP_JSET_X:
			fentry += (A & X) ? fentry->jt : fentry->jf;
			continue;
		case BPF_S_LD_W_ABS:
			k = K;
load_w:
			ptr = load_pointer(skb, k, 4, &tmp);
			if (ptr != NULL) {
				A = get_unaligned_be32(ptr);
				continue;
			}
			break;
		case BPF_S_LD_H_ABS:
			k = K;
load_h:
			ptr = load_pointer(skb, k, 2, &tmp);
			if (ptr != NULL) {
				A = get_unaligned_be16(ptr);
				continue;
			}
			break;
		case BPF_S_LD_B_ABS:
			k = K;
load_b:
			ptr = load_pointer(skb, k, 1, &tmp);
			if (ptr != NULL) {
				A = *(u8 *)ptr;
				continue;
			}
			break;
		case BPF_S_LD_W_LEN:
			A = skb->len;
			continue;
		case BPF_S_LDX_W_LEN:
			X = skb->len;
			continue;
		case BPF_S_LD_W_IND:
			k = X + K;
			goto load_w;
		case BPF_S_LD_H_IND:
			k = X + K;
			goto load_h;
		case BPF_S_LD_B_IND:
			k = X + K;
			goto load_b;
		case BPF_S_LDX_B_MSH:
			ptr = load_pointer(skb, K, 1, &tmp);
			if (ptr != NULL) {
				X = (*(u8 *)ptr & 0xf) << 2;
				continue;
			}
			return 0;
		case BPF_S_LD_IMM:
			A = K;
			continue;
		case BPF_S_LDX_IMM:
			X = K;
			continue;
		case BPF_S_LD_MEM:
			A = (memvalid & (1UL << K)) ?
				mem[K] : 0;
			continue;
		case BPF_S_LDX_MEM:
			X = (memvalid & (1UL << K)) ?
				mem[K] : 0;
			continue;
		case BPF_S_MISC_TAX:
			X = A;
			continue;
		case BPF_S_MISC_TXA:
			A = X;
			continue;
		case BPF_S_RET_K:
			return K;
		case BPF_S_RET_A:
			return A;
		case BPF_S_ST:
			memvalid |= 1UL << K;
			mem[K] = A;
			continue;
		case BPF_S_STX:
			memvalid |= 1UL << K;
			mem[K] = X;
			continue;
		default:
			WARN_RATELIMIT(1, "Unknown code:%u jt:%u tf:%u k:%u\n",
				       fentry->code, fentry->jt,
				       fentry->jf, fentry->k);
			return 0;
		}

		/*
		 * Handle ancillary data, which are impossible
		 * (or very difficult) to get parsing packet contents.
		 */
		switch (k-SKF_AD_OFF) {
		case SKF_AD_PROTOCOL:
			A = ntohs(skb->protocol);
			continue;
		case SKF_AD_PKTTYPE:
			A = skb->pkt_type;
			continue;
		case SKF_AD_IFINDEX:
			if (!skb->dev)
				return 0;
			A = skb->dev->ifindex;
			continue;
		case SKF_AD_MARK:
			A = skb->mark;
			continue;
		case SKF_AD_QUEUE:
			A = skb->queue_mapping;
			continue;
		case SKF_AD_HATYPE:
			if (!skb->dev)
				return 0;
			A = skb->dev->type;
			continue;
#if 0
		case SKF_AD_RXHASH:
			A = skb->rxhash;
			continue;
#endif
		case SKF_AD_CPU:
			A = raw_smp_processor_id();
			continue;
		case SKF_AD_NLATTR: {
			struct nlattr *nla;

			if (skb_is_nonlinear(skb))
				return 0;
			if (A > skb->len - sizeof(struct nlattr))
				return 0;

			nla = nla_find((struct nlattr *)&skb->data[A],
				       skb->len - A, X);
			if (nla)
				A = (void *)nla - (void *)skb->data;
			else
				A = 0;
			continue;
		}
		case SKF_AD_NLATTR_NEST: {
			struct nlattr *nla;

			if (skb_is_nonlinear(skb))
				return 0;
			if (A > skb->len - sizeof(struct nlattr))
				return 0;

			nla = (struct nlattr *)&skb->data[A];
			if (nla->nla_len > A - skb->len)
				return 0;

			nla = nla_find_nested(nla, X);
			if (nla)
				A = (void *)nla - (void *)skb->data;
			else
				A = 0;
			continue;
		}
		default:
			return 0;
		}
	}

	return 0;
}
Example #7
0
/**
 *	sk_run_filter - run a filter on a socket
 *	@skb: buffer to run the filter on
 *	@fentry: filter to apply
 *
 * Decode and apply filter instructions to the skb->data.
 * Return length to keep, 0 for none. @skb is the data we are
 * filtering, @filter is the array of filter instructions.
 * Because all jumps are guaranteed to be before last instruction,
 * and last instruction guaranteed to be a RET, we dont need to check
 * flen. (We used to pass to this function the length of filter)
 */
unsigned int sk_run_filter(const struct sk_buff *skb,
			   const struct sock_filter *fentry)
{
	void *ptr;
	u32 A = 0;			/* Accumulator */
	u32 X = 0;			/* Index Register */
	u32 mem[BPF_MEMWORDS];		/* Scratch Memory Store */
	u32 tmp;
	int k;

	/*
	 * Process array of filter instructions.
	 */
	for (;; fentry++) {
#if defined(CONFIG_X86_32)
#define	K (fentry->k)
#else
		const u32 K = fentry->k;
#endif

		switch (fentry->code) {
		case BPF_S_ALU_ADD_X:
			A += X;
			continue;
		case BPF_S_ALU_ADD_K:
			A += K;
			continue;
		case BPF_S_ALU_SUB_X:
			A -= X;
			continue;
		case BPF_S_ALU_SUB_K:
			A -= K;
			continue;
		case BPF_S_ALU_MUL_X:
			A *= X;
			continue;
		case BPF_S_ALU_MUL_K:
			A *= K;
			continue;
		case BPF_S_ALU_DIV_X:
			if (X == 0)
				return 0;
			A /= X;
			continue;
		case BPF_S_ALU_DIV_K:
			A = reciprocal_divide(A, K);
			continue;
		case BPF_S_ALU_AND_X:
			A &= X;
			continue;
		case BPF_S_ALU_AND_K:
			A &= K;
			continue;
		case BPF_S_ALU_OR_X:
			A |= X;
			continue;
		case BPF_S_ALU_OR_K:
			A |= K;
			continue;
		case BPF_S_ALU_LSH_X:
			A <<= X;
			continue;
		case BPF_S_ALU_LSH_K:
			A <<= K;
			continue;
		case BPF_S_ALU_RSH_X:
			A >>= X;
			continue;
		case BPF_S_ALU_RSH_K:
			A >>= K;
			continue;
		case BPF_S_ALU_NEG:
			A = -A;
			continue;
		case BPF_S_JMP_JA:
			fentry += K;
			continue;
		case BPF_S_JMP_JGT_K:
			fentry += (A > K) ? fentry->jt : fentry->jf;
			continue;
		case BPF_S_JMP_JGE_K:
			fentry += (A >= K) ? fentry->jt : fentry->jf;
			continue;
		case BPF_S_JMP_JEQ_K:
			fentry += (A == K) ? fentry->jt : fentry->jf;
			continue;
		case BPF_S_JMP_JSET_K:
			fentry += (A & K) ? fentry->jt : fentry->jf;
			continue;
		case BPF_S_JMP_JGT_X:
			fentry += (A > X) ? fentry->jt : fentry->jf;
			continue;
		case BPF_S_JMP_JGE_X:
			fentry += (A >= X) ? fentry->jt : fentry->jf;
			continue;
		case BPF_S_JMP_JEQ_X:
			fentry += (A == X) ? fentry->jt : fentry->jf;
			continue;
		case BPF_S_JMP_JSET_X:
			fentry += (A & X) ? fentry->jt : fentry->jf;
			continue;
		case BPF_S_LD_W_ABS:
			k = K;
load_w:
			ptr = load_pointer(skb, k, 4, &tmp);
			if (ptr != NULL) {
				A = get_unaligned_be32(ptr);
				continue;
			}
			return 0;
		case BPF_S_LD_H_ABS:
			k = K;
load_h:
			ptr = load_pointer(skb, k, 2, &tmp);
			if (ptr != NULL) {
				A = get_unaligned_be16(ptr);
				continue;
			}
			return 0;
		case BPF_S_LD_B_ABS:
			k = K;
load_b:
			ptr = load_pointer(skb, k, 1, &tmp);
			if (ptr != NULL) {
				A = *(u8 *)ptr;
				continue;
			}
			return 0;
		case BPF_S_LD_W_LEN:
			A = skb->len;
			continue;
		case BPF_S_LDX_W_LEN:
			X = skb->len;
			continue;
		case BPF_S_LD_W_IND:
			k = X + K;
			goto load_w;
		case BPF_S_LD_H_IND:
			k = X + K;
			goto load_h;
		case BPF_S_LD_B_IND:
			k = X + K;
			goto load_b;
		case BPF_S_LDX_B_MSH:
			ptr = load_pointer(skb, K, 1, &tmp);
			if (ptr != NULL) {
				X = (*(u8 *)ptr & 0xf) << 2;
				continue;
			}
			return 0;
		case BPF_S_LD_IMM:
			A = K;
			continue;
		case BPF_S_LDX_IMM:
			X = K;
			continue;
		case BPF_S_LD_MEM:
			A = mem[K];
			continue;
		case BPF_S_LDX_MEM:
			X = mem[K];
			continue;
		case BPF_S_MISC_TAX:
			X = A;
			continue;
		case BPF_S_MISC_TXA:
			A = X;
			continue;
		case BPF_S_RET_K:
			return K;
		case BPF_S_RET_A:
			return A;
		case BPF_S_ST:
			mem[K] = A;
			continue;
		case BPF_S_STX:
			mem[K] = X;
			continue;
		case BPF_S_ANC_PROTOCOL:
			A = ntohs(skb->protocol);
			continue;
		case BPF_S_ANC_PKTTYPE:
			A = skb->pkt_type;
			continue;
		case BPF_S_ANC_IFINDEX:
			if (!skb->dev)
				return 0;
			A = skb->dev->ifindex;
			continue;
		case BPF_S_ANC_MARK:
			A = skb->mark;
			continue;
		case BPF_S_ANC_QUEUE:
			A = skb->queue_mapping;
			continue;
		case BPF_S_ANC_HATYPE:
			if (!skb->dev)
				return 0;
			A = skb->dev->type;
			continue;
		case BPF_S_ANC_RXHASH:
			A = skb->rxhash;
			continue;
		case BPF_S_ANC_CPU:
			A = raw_smp_processor_id();
			continue;
		case BPF_S_ANC_NLATTR: {
			struct nlattr *nla;

			if (skb_is_nonlinear(skb))
				return 0;
			if (A > skb->len - sizeof(struct nlattr))
				return 0;

			nla = nla_find((struct nlattr *)&skb->data[A],
				       skb->len - A, X);
			if (nla)
				A = (void *)nla - (void *)skb->data;
			else
				A = 0;
			continue;
		}
		case BPF_S_ANC_NLATTR_NEST: {
			struct nlattr *nla;

			if (skb_is_nonlinear(skb))
				return 0;
			if (A > skb->len - sizeof(struct nlattr))
				return 0;

			nla = (struct nlattr *)&skb->data[A];
			if (nla->nla_len > A - skb->len)
				return 0;

			nla = nla_find_nested(nla, X);
			if (nla)
				A = (void *)nla - (void *)skb->data;
			else
				A = 0;
			continue;
		}
#ifdef CONFIG_SECCOMP_FILTER
		case BPF_S_ANC_SECCOMP_LD_W:
			A = seccomp_bpf_load(fentry->k);
			continue;
#endif
		default:
			WARN_RATELIMIT(1, "Unknown code:%u jt:%u tf:%u k:%u\n",
				       fentry->code, fentry->jt,
				       fentry->jf, fentry->k);
			return 0;
		}
	}

	return 0;
}
Example #8
0
/**
 *	sk_run_filter - run a filter on a socket
 *	@skb: buffer to run the filter on
 *	@filter: filter to apply
 *	@flen: length of filter
 *
 * Decode and apply filter instructions to the skb->data.
 * Return length to keep, 0 for none. skb is the data we are
 * filtering, filter is the array of filter instructions, and
 * len is the number of filter blocks in the array.
 */
unsigned int sk_run_filter(struct sk_buff *skb, struct sock_filter *filter, int flen)
{
	void *ptr;
	u32 A = 0;			/* Accumulator */
	u32 X = 0;			/* Index Register */
	u32 mem[BPF_MEMWORDS];		/* Scratch Memory Store */
	unsigned long memvalid = 0;
	u32 tmp;
	int k;
	int pc;

	BUILD_BUG_ON(BPF_MEMWORDS > BITS_PER_LONG);
	/*
	 * Process array of filter instructions.
	 */
	for (pc = 0; pc < flen; pc++) {
		const struct sock_filter *fentry = &filter[pc];
		u32 f_k = fentry->k;

		switch (fentry->code) {
		case BPF_ALU|BPF_ADD|BPF_X:
			A += X;
			continue;
		case BPF_ALU|BPF_ADD|BPF_K:
			A += f_k;
			continue;
		case BPF_ALU|BPF_SUB|BPF_X:
			A -= X;
			continue;
		case BPF_ALU|BPF_SUB|BPF_K:
			A -= f_k;
			continue;
		case BPF_ALU|BPF_MUL|BPF_X:
			A *= X;
			continue;
		case BPF_ALU|BPF_MUL|BPF_K:
			A *= f_k;
			continue;
		case BPF_ALU|BPF_DIV|BPF_X:
			if (X == 0)
				return 0;
			A /= X;
			continue;
		case BPF_ALU|BPF_DIV|BPF_K:
			A /= f_k;
			continue;
		case BPF_ALU|BPF_AND|BPF_X:
			A &= X;
			continue;
		case BPF_ALU|BPF_AND|BPF_K:
			A &= f_k;
			continue;
		case BPF_ALU|BPF_OR|BPF_X:
			A |= X;
			continue;
		case BPF_ALU|BPF_OR|BPF_K:
			A |= f_k;
			continue;
		case BPF_ALU|BPF_LSH|BPF_X:
			A <<= X;
			continue;
		case BPF_ALU|BPF_LSH|BPF_K:
			A <<= f_k;
			continue;
		case BPF_ALU|BPF_RSH|BPF_X:
			A >>= X;
			continue;
		case BPF_ALU|BPF_RSH|BPF_K:
			A >>= f_k;
			continue;
		case BPF_ALU|BPF_NEG:
			A = -A;
			continue;
		case BPF_JMP|BPF_JA:
			pc += f_k;
			continue;
		case BPF_JMP|BPF_JGT|BPF_K:
			pc += (A > f_k) ? fentry->jt : fentry->jf;
			continue;
		case BPF_JMP|BPF_JGE|BPF_K:
			pc += (A >= f_k) ? fentry->jt : fentry->jf;
			continue;
		case BPF_JMP|BPF_JEQ|BPF_K:
			pc += (A == f_k) ? fentry->jt : fentry->jf;
			continue;
		case BPF_JMP|BPF_JSET|BPF_K:
			pc += (A & f_k) ? fentry->jt : fentry->jf;
			continue;
		case BPF_JMP|BPF_JGT|BPF_X:
			pc += (A > X) ? fentry->jt : fentry->jf;
			continue;
		case BPF_JMP|BPF_JGE|BPF_X:
			pc += (A >= X) ? fentry->jt : fentry->jf;
			continue;
		case BPF_JMP|BPF_JEQ|BPF_X:
			pc += (A == X) ? fentry->jt : fentry->jf;
			continue;
		case BPF_JMP|BPF_JSET|BPF_X:
			pc += (A & X) ? fentry->jt : fentry->jf;
			continue;
		case BPF_LD|BPF_W|BPF_ABS:
			k = f_k;
load_w:
			ptr = load_pointer(skb, k, 4, &tmp);
			if (ptr != NULL) {
				A = get_unaligned_be32(ptr);
				continue;
			}
			break;
		case BPF_LD|BPF_H|BPF_ABS:
			k = f_k;
load_h:
			ptr = load_pointer(skb, k, 2, &tmp);
			if (ptr != NULL) {
				A = get_unaligned_be16(ptr);
				continue;
			}
			break;
		case BPF_LD|BPF_B|BPF_ABS:
			k = f_k;
load_b:
			ptr = load_pointer(skb, k, 1, &tmp);
			if (ptr != NULL) {
				A = *(u8 *)ptr;
				continue;
			}
			break;
		case BPF_LD|BPF_W|BPF_LEN:
			A = skb->len;
			continue;
		case BPF_LDX|BPF_W|BPF_LEN:
			X = skb->len;
			continue;
		case BPF_LD|BPF_W|BPF_IND:
			k = X + f_k;
			goto load_w;
		case BPF_LD|BPF_H|BPF_IND:
			k = X + f_k;
			goto load_h;
		case BPF_LD|BPF_B|BPF_IND:
			k = X + f_k;
			goto load_b;
		case BPF_LDX|BPF_B|BPF_MSH:
			ptr = load_pointer(skb, f_k, 1, &tmp);
			if (ptr != NULL) {
				X = (*(u8 *)ptr & 0xf) << 2;
				continue;
			}
			return 0;
		case BPF_LD|BPF_IMM:
			A = f_k;
			continue;
		case BPF_LDX|BPF_IMM:
			X = f_k;
			continue;
		case BPF_LD|BPF_MEM:
			A = (memvalid & (1UL << f_k)) ?
				mem[f_k] : 0;
			continue;
		case BPF_LDX|BPF_MEM:
			X = (memvalid & (1UL << f_k)) ?
				mem[f_k] : 0;
			continue;
		case BPF_MISC|BPF_TAX:
			X = A;
			continue;
		case BPF_MISC|BPF_TXA:
			A = X;
			continue;
		case BPF_RET|BPF_K:
			return f_k;
		case BPF_RET|BPF_A:
			return A;
		case BPF_ST:
			memvalid |= 1UL << f_k;
			mem[f_k] = A;
			continue;
		case BPF_STX:
			memvalid |= 1UL << f_k;
			mem[f_k] = X;
			continue;
		default:
			WARN_ON(1);
			return 0;
		}

		/*
		 * Handle ancillary data, which are impossible
		 * (or very difficult) to get parsing packet contents.
		 */
		switch (k-SKF_AD_OFF) {
		case SKF_AD_PROTOCOL:
			A = ntohs(skb->protocol);
			continue;
		case SKF_AD_PKTTYPE:
			A = skb->pkt_type;
			continue;
		case SKF_AD_IFINDEX:
			A = skb->dev->ifindex;
			continue;
		case SKF_AD_NLATTR: {
			struct nlattr *nla;

			if (skb_is_nonlinear(skb))
				return 0;
			if (A > skb->len - sizeof(struct nlattr))
				return 0;

			nla = nla_find((struct nlattr *)&skb->data[A],
				       skb->len - A, X);
			if (nla)
				A = (void *)nla - (void *)skb->data;
			else
				A = 0;
			continue;
		}
		case SKF_AD_NLATTR_NEST: {
			struct nlattr *nla;

			if (skb_is_nonlinear(skb))
				return 0;
			if (A > skb->len - sizeof(struct nlattr))
				return 0;

			nla = (struct nlattr *)&skb->data[A];
			if (nla->nla_len > A - skb->len)
				return 0;

			nla = nla_find_nested(nla, X);
			if (nla)
				A = (void *)nla - (void *)skb->data;
			else
				A = 0;
			continue;
		}
		default:
			return 0;
		}
	}

	return 0;
}
Example #9
0
/**
 *	sk_run_filter - run a filter on a socket
 *	@skb: buffer to run the filter on
 *	@filter: filter to apply
 *	@flen: length of filter
 *
 * Decode and apply filter instructions to the skb->data.
 * Return length to keep, 0 for none. skb is the data we are
 * filtering, filter is the array of filter instructions, and
 * len is the number of filter blocks in the array.
 */
unsigned int sk_run_filter(struct sk_buff *skb, struct sock_filter *filter, int flen)
{
	struct sock_filter *fentry;	/* We walk down these */
	void *ptr;
	u32 A = 0;			/* Accumulator */
	u32 X = 0;			/* Index Register */
	u32 mem[BPF_MEMWORDS];		/* Scratch Memory Store */
	u32 tmp;
	int k;
	int pc;

	/*
	 * Process array of filter instructions.
	 */
	for (pc = 0; pc < flen; pc++) {
		fentry = &filter[pc];

		switch (fentry->code) {
		case BPF_S_ALU_ADD_X:
			A += X;
			continue;
		case BPF_S_ALU_ADD_K:
			A += fentry->k;
			continue;
		case BPF_S_ALU_SUB_X:
			A -= X;
			continue;
		case BPF_S_ALU_SUB_K:
			A -= fentry->k;
			continue;
		case BPF_S_ALU_MUL_X:
			A *= X;
			continue;
		case BPF_S_ALU_MUL_K:
			A *= fentry->k;
			continue;
		case BPF_S_ALU_DIV_X:
			if (X == 0)
				return 0;
			A /= X;
			continue;
		case BPF_S_ALU_DIV_K:
			A /= fentry->k;
			continue;
		case BPF_S_ALU_AND_X:
			A &= X;
			continue;
		case BPF_S_ALU_AND_K:
			A &= fentry->k;
			continue;
		case BPF_S_ALU_OR_X:
			A |= X;
			continue;
		case BPF_S_ALU_OR_K:
			A |= fentry->k;
			continue;
		case BPF_S_ALU_LSH_X:
			A <<= X;
			continue;
		case BPF_S_ALU_LSH_K:
			A <<= fentry->k;
			continue;
		case BPF_S_ALU_RSH_X:
			A >>= X;
			continue;
		case BPF_S_ALU_RSH_K:
			A >>= fentry->k;
			continue;
		case BPF_S_ALU_NEG:
			A = -A;
			continue;
		case BPF_S_JMP_JA:
			pc += fentry->k;
			continue;
		case BPF_S_JMP_JGT_K:
			pc += (A > fentry->k) ? fentry->jt : fentry->jf;
			continue;
		case BPF_S_JMP_JGE_K:
			pc += (A >= fentry->k) ? fentry->jt : fentry->jf;
			continue;
		case BPF_S_JMP_JEQ_K:
			pc += (A == fentry->k) ? fentry->jt : fentry->jf;
			continue;
		case BPF_S_JMP_JSET_K:
			pc += (A & fentry->k) ? fentry->jt : fentry->jf;
			continue;
		case BPF_S_JMP_JGT_X:
			pc += (A > X) ? fentry->jt : fentry->jf;
			continue;
		case BPF_S_JMP_JGE_X:
			pc += (A >= X) ? fentry->jt : fentry->jf;
			continue;
		case BPF_S_JMP_JEQ_X:
			pc += (A == X) ? fentry->jt : fentry->jf;
			continue;
		case BPF_S_JMP_JSET_X:
			pc += (A & X) ? fentry->jt : fentry->jf;
			continue;
		case BPF_S_LD_W_ABS:
			k = fentry->k;
load_w:
			ptr = load_pointer(skb, k, 4, &tmp);
			if (ptr != NULL) {
				A = get_unaligned_be32(ptr);
				continue;
			}
			break;
		case BPF_S_LD_H_ABS:
			k = fentry->k;
load_h:
			ptr = load_pointer(skb, k, 2, &tmp);
			if (ptr != NULL) {
				A = get_unaligned_be16(ptr);
				continue;
			}
			break;
		case BPF_S_LD_B_ABS:
			k = fentry->k;
load_b:
			ptr = load_pointer(skb, k, 1, &tmp);
			if (ptr != NULL) {
				A = *(u8 *)ptr;
				continue;
			}
			break;
		case BPF_S_LD_W_LEN:
			A = skb->len;
			continue;
		case BPF_S_LDX_W_LEN:
			X = skb->len;
			continue;
		case BPF_S_LD_W_IND:
			k = X + fentry->k;
			goto load_w;
		case BPF_S_LD_H_IND:
			k = X + fentry->k;
			goto load_h;
		case BPF_S_LD_B_IND:
			k = X + fentry->k;
			goto load_b;
		case BPF_S_LDX_B_MSH:
			ptr = load_pointer(skb, fentry->k, 1, &tmp);
			if (ptr != NULL) {
				X = (*(u8 *)ptr & 0xf) << 2;
				continue;
			}
			return 0;
		case BPF_S_LD_IMM:
			A = fentry->k;
			continue;
		case BPF_S_LDX_IMM:
			X = fentry->k;
			continue;
		case BPF_S_LD_MEM:
			A = mem[fentry->k];
			continue;
		case BPF_S_LDX_MEM:
			X = mem[fentry->k];
			continue;
		case BPF_S_MISC_TAX:
			X = A;
			continue;
		case BPF_S_MISC_TXA:
			A = X;
			continue;
		case BPF_S_RET_K:
			return fentry->k;
		case BPF_S_RET_A:
			return A;
		case BPF_S_ST:
			mem[fentry->k] = A;
			continue;
		case BPF_S_STX:
			mem[fentry->k] = X;
			continue;
		default:
			WARN_ON(1);
			return 0;
		}

		/*
		 * Handle ancillary data, which are impossible
		 * (or very difficult) to get parsing packet contents.
		 */
		switch (k-SKF_AD_OFF) {
		case SKF_AD_PROTOCOL:
			A = ntohs(skb->protocol);
			continue;
		case SKF_AD_PKTTYPE:
			A = skb->pkt_type;
			continue;
		case SKF_AD_IFINDEX:
			A = skb->dev->ifindex;
			continue;
		case SKF_AD_MARK:
			A = skb->mark;
			continue;
		case SKF_AD_NLATTR: {
			struct nlattr *nla;

			if (skb_is_nonlinear(skb))
				return 0;
			if (A > skb->len - sizeof(struct nlattr))
				return 0;

			nla = nla_find((struct nlattr *)&skb->data[A],
				       skb->len - A, X);
			if (nla)
				A = (void *)nla - (void *)skb->data;
			else
				A = 0;
			continue;
		}
		case SKF_AD_NLATTR_NEST: {
			struct nlattr *nla;

			if (skb_is_nonlinear(skb))
				return 0;
			if (A > skb->len - sizeof(struct nlattr))
				return 0;

			nla = (struct nlattr *)&skb->data[A];
			if (nla->nla_len > A - skb->len)
				return 0;

			nla = nla_find_nested(nla, X);
			if (nla)
				A = (void *)nla - (void *)skb->data;
			else
				A = 0;
			continue;
		}
		default:
			return 0;
		}
	}

	return 0;
}
Example #10
0
static struct vport *vxlan_tnl_create(const struct vport_parms *parms)
{
	struct net *net = ovs_dp_get_net(parms->dp);
	struct nlattr *options = parms->options;
	struct net_device *dev;
	struct vport *vport;
	struct nlattr *a;
	int err;
	struct vxlan_config conf = {
		.no_share = true,
		.flags = VXLAN_F_COLLECT_METADATA,
	};

	if (!options) {
		err = -EINVAL;
		goto error;
	}

	a = nla_find_nested(options, OVS_TUNNEL_ATTR_DST_PORT);
	if (a && nla_len(a) == sizeof(u16)) {
		conf.dst_port = htons(nla_get_u16(a));
	} else {
		/* Require destination port from userspace. */
		err = -EINVAL;
		goto error;
	}

	vport = ovs_vport_alloc(0, &ovs_vxlan_netdev_vport_ops, parms);
	if (IS_ERR(vport))
		return vport;

	a = nla_find_nested(options, OVS_TUNNEL_ATTR_EXTENSION);
	if (a) {
		err = vxlan_configure_exts(vport, a, &conf);
		if (err) {
			ovs_vport_free(vport);
			goto error;
		}
	}

	rtnl_lock();
	dev = vxlan_dev_create(net, parms->name, NET_NAME_USER, &conf);
	if (IS_ERR(dev)) {
		rtnl_unlock();
		ovs_vport_free(vport);
		return ERR_CAST(dev);
	}

	dev_change_flags(dev, dev->flags | IFF_UP);
	rtnl_unlock();
	return vport;
error:
	return ERR_PTR(err);
}

static struct vport *vxlan_create(const struct vport_parms *parms)
{
	struct vport *vport;

	vport = vxlan_tnl_create(parms);
	if (IS_ERR(vport))
		return vport;

	return ovs_netdev_link(vport, parms->name);
}

static int vxlan_get_egress_tun_info(struct vport *vport, struct sk_buff *skb,
				     struct dp_upcall_info *upcall)
{
	struct vxlan_dev *vxlan = netdev_priv(vport->dev);
	struct net *net = ovs_dp_get_net(vport->dp);
	unsigned short family = ip_tunnel_info_af(upcall->egress_tun_info);
	__be16 dst_port = vxlan_dev_dst_port(vxlan, family);
	__be16 src_port;
	int port_min;
	int port_max;

	inet_get_local_port_range(net, &port_min, &port_max);
	src_port = udp_flow_src_port(net, skb, 0, 0, true);

	return ovs_tunnel_get_egress_info(upcall, net,
					  skb, IPPROTO_UDP,
					  src_port, dst_port);
}

static struct vport_ops ovs_vxlan_netdev_vport_ops = {
	.type			= OVS_VPORT_TYPE_VXLAN,
	.create			= vxlan_create,
	.destroy		= ovs_netdev_tunnel_destroy,
	.get_options		= vxlan_get_options,
	.send			= ovs_netdev_send,
	.get_egress_tun_info	= vxlan_get_egress_tun_info,
};

static int __init ovs_vxlan_tnl_init(void)
{
	return ovs_vport_ops_register(&ovs_vxlan_netdev_vport_ops);
}

static void __exit ovs_vxlan_tnl_exit(void)
{
	ovs_vport_ops_unregister(&ovs_vxlan_netdev_vport_ops);
}