void nmod_poly_factor_cantor_zassenhaus(nmod_poly_factor_t res, const nmod_poly_t f) { nmod_poly_t h, v, g, x; slong i, j, num; nmod_poly_init_preinv(h, f->mod.n, f->mod.ninv); nmod_poly_init_preinv(g, f->mod.n, f->mod.ninv); nmod_poly_init_preinv(v, f->mod.n, f->mod.ninv); nmod_poly_init_preinv(x, f->mod.n, f->mod.ninv); nmod_poly_set_coeff_ui(h, 1, 1); nmod_poly_set_coeff_ui(x, 1, 1); nmod_poly_make_monic(v, f); i = 0; do { i++; nmod_poly_powmod_ui_binexp(h, h, f->mod.n, v); nmod_poly_sub(h, h, x); nmod_poly_gcd(g, h, v); nmod_poly_add(h, h, x); if (g->length != 1) { nmod_poly_make_monic(g, g); num = res->num; nmod_poly_factor_equal_deg(res, g, i); for (j = num; j < res->num; j++) res->exp[j] = nmod_poly_remove(v, res->p + j); } } while (v->length >= 2*i + 3); if (v->length > 1) nmod_poly_factor_insert(res, v, 1); nmod_poly_clear(g); nmod_poly_clear(h); nmod_poly_clear(v); nmod_poly_clear(x); }
void nmod_poly_factor_squarefree(nmod_poly_factor_t res, const nmod_poly_t f) { nmod_poly_t f_d, g, g_1; mp_limb_t p; slong deg, i; if (f->length <= 1) { res->num = 0; return; } if (f->length == 2) { nmod_poly_factor_insert(res, f, 1); return; } p = nmod_poly_modulus(f); deg = nmod_poly_degree(f); /* Step 1, look at f', if it is zero then we are done since f = h(x)^p for some particular h(x), clearly f(x) = sum a_k x^kp, k <= deg(f) */ nmod_poly_init(g_1, p); nmod_poly_init(f_d, p); nmod_poly_init(g, p); nmod_poly_derivative(f_d, f); /* Case 1 */ if (nmod_poly_is_zero(f_d)) { nmod_poly_factor_t new_res; nmod_poly_t h; nmod_poly_init(h, p); for (i = 0; i <= deg / p; i++) /* this will be an integer since f'=0 */ { nmod_poly_set_coeff_ui(h, i, nmod_poly_get_coeff_ui(f, i * p)); } /* Now run square-free on h, and return it to the pth power */ nmod_poly_factor_init(new_res); nmod_poly_factor_squarefree(new_res, h); nmod_poly_factor_pow(new_res, p); nmod_poly_factor_concat(res, new_res); nmod_poly_clear(h); nmod_poly_factor_clear(new_res); } else { nmod_poly_t h, z; nmod_poly_gcd(g, f, f_d); nmod_poly_div(g_1, f, g); i = 1; nmod_poly_init(h, p); nmod_poly_init(z, p); /* Case 2 */ while (!nmod_poly_is_one(g_1)) { nmod_poly_gcd(h, g_1, g); nmod_poly_div(z, g_1, h); /* out <- out.z */ if (z->length > 1) { nmod_poly_factor_insert(res, z, 1); nmod_poly_make_monic(res->p + (res->num - 1), res->p + (res->num - 1)); if (res->num) res->exp[res->num - 1] *= i; } i++; nmod_poly_set(g_1, h); nmod_poly_div(g, g, h); } nmod_poly_clear(h); nmod_poly_clear(z); nmod_poly_make_monic(g, g); if (!nmod_poly_is_one(g)) { /* so now we multiply res with square-free(g^1/p) ^ p */ nmod_poly_t g_p; /* g^(1/p) */ nmod_poly_factor_t new_res_2; nmod_poly_init(g_p, p); for (i = 0; i <= nmod_poly_degree(g) / p; i++) nmod_poly_set_coeff_ui(g_p, i, nmod_poly_get_coeff_ui(g, i*p)); nmod_poly_factor_init(new_res_2); /* square-free(g^(1/p)) */ nmod_poly_factor_squarefree(new_res_2, g_p); nmod_poly_factor_pow(new_res_2, p); nmod_poly_factor_concat(res, new_res_2); nmod_poly_clear(g_p); nmod_poly_factor_clear(new_res_2); } } nmod_poly_clear(g_1); nmod_poly_clear(f_d); nmod_poly_clear(g); }
int main(void) { int i, result; flint_rand_t state; flint_randinit(state); printf("gcd_euclidean...."); fflush(stdout); /* Find coprime polys, multiply by another poly and check the GCD is that poly */ for (i = 0; i < 1000; i++) { nmod_poly_t a, b, c, g; mp_limb_t n; do n = n_randtest_not_zero(state); while (!n_is_probabprime(n)); nmod_poly_init(a, n); nmod_poly_init(b, n); nmod_poly_init(c, n); nmod_poly_init(g, n); do { nmod_poly_randtest(a, state, n_randint(state, 200)); nmod_poly_randtest(b, state, n_randint(state, 200)); nmod_poly_gcd_euclidean(g, a, b); } while (g->length != 1); do { nmod_poly_randtest(c, state, n_randint(state, 200)); } while (c->length < 2); nmod_poly_make_monic(c, c); nmod_poly_mul(a, a, c); nmod_poly_mul(b, b, c); nmod_poly_gcd_euclidean(g, a, b); result = (nmod_poly_equal(g, c)); if (!result) { printf("FAIL:\n"); nmod_poly_print(a), printf("\n\n"); nmod_poly_print(b), printf("\n\n"); nmod_poly_print(c), printf("\n\n"); nmod_poly_print(g), printf("\n\n"); printf("n = %ld\n", n); abort(); } nmod_poly_clear(a); nmod_poly_clear(b); nmod_poly_clear(c); nmod_poly_clear(g); } /* Check aliasing of a and g */ for (i = 0; i < 1000; i++) { nmod_poly_t a, b, g; mp_limb_t n; do n = n_randtest(state); while (!n_is_probabprime(n)); nmod_poly_init(a, n); nmod_poly_init(b, n); nmod_poly_init(g, n); nmod_poly_randtest(a, state, n_randint(state, 200)); nmod_poly_randtest(b, state, n_randint(state, 200)); nmod_poly_gcd_euclidean(g, a, b); nmod_poly_gcd_euclidean(a, a, b); result = (nmod_poly_equal(a, g)); if (!result) { printf("FAIL:\n"); nmod_poly_print(a), printf("\n\n"); nmod_poly_print(b), printf("\n\n"); nmod_poly_print(g), printf("\n\n"); printf("n = %ld\n", n); abort(); } nmod_poly_clear(a); nmod_poly_clear(b); nmod_poly_clear(g); } /* Check aliasing of b and g */ for (i = 0; i < 1000; i++) { nmod_poly_t a, b, g; mp_limb_t n; do n = n_randtest(state); while (!n_is_probabprime(n)); nmod_poly_init(a, n); nmod_poly_init(b, n); nmod_poly_init(g, n); nmod_poly_randtest(a, state, n_randint(state, 200)); nmod_poly_randtest(b, state, n_randint(state, 200)); nmod_poly_gcd_euclidean(g, a, b); nmod_poly_gcd_euclidean(b, a, b); result = (nmod_poly_equal(b, g)); if (!result) { printf("FAIL:\n"); nmod_poly_print(a), printf("\n\n"); nmod_poly_print(b), printf("\n\n"); nmod_poly_print(g), printf("\n\n"); printf("n = %ld\n", n); abort(); } nmod_poly_clear(a); nmod_poly_clear(b); nmod_poly_clear(g); } flint_randclear(state); printf("PASS\n"); return 0; }
int main(void) { int iter; flint_rand_t state; flint_randinit(state); printf("factor...."); fflush(stdout); /* Default algorithm */ for (iter = 0; iter < 100; iter++) { int result = 1; nmod_poly_t pol1, poly, quot, rem, product; nmod_poly_factor_t res; mp_limb_t modulus, lead = 1; long length, num, i, j; ulong exp[5], prod1; modulus = n_randtest_prime(state, 0); nmod_poly_init(pol1, modulus); nmod_poly_init(poly, modulus); nmod_poly_init(quot, modulus); nmod_poly_init(rem, modulus); nmod_poly_zero(pol1); nmod_poly_set_coeff_ui(pol1, 0, 1); length = n_randint(state, 7) + 2; do { nmod_poly_randtest(poly, state, length); if (poly->length) nmod_poly_make_monic(poly, poly); } while ((!nmod_poly_is_irreducible(poly)) || (poly->length < 2)); exp[0] = n_randint(state, 30) + 1; prod1 = exp[0]; for (i = 0; i < exp[0]; i++) nmod_poly_mul(pol1, pol1, poly); num = n_randint(state, 5) + 1; for (i = 1; i < num; i++) { do { length = n_randint(state, 7) + 2; nmod_poly_randtest(poly, state, length); if (poly->length) { nmod_poly_make_monic(poly, poly); nmod_poly_divrem(quot, rem, pol1, poly); } } while ((!nmod_poly_is_irreducible(poly)) || (poly->length < 2) || (rem->length == 0)); exp[i] = n_randint(state, 30) + 1; prod1 *= exp[i]; for (j = 0; j < exp[i]; j++) nmod_poly_mul(pol1, pol1, poly); } nmod_poly_factor_init(res); switch (n_randint(state, 3)) { case 0: lead = nmod_poly_factor(res, pol1); break; case 1: lead = nmod_poly_factor_with_berlekamp(res, pol1); break; case 2: if (modulus == 2) lead = nmod_poly_factor(res, pol1); else lead = nmod_poly_factor_with_cantor_zassenhaus(res, pol1); break; } result &= (res->num == num); if (!result) { printf("Error: number of factors incorrect, %ld, %ld\n", res->num, num); abort(); } nmod_poly_init(product, pol1->mod.n); nmod_poly_set_coeff_ui(product, 0, 1); for (i = 0; i < res->num; i++) for (j = 0; j < res->exp[i]; j++) nmod_poly_mul(product, product, res->p + i); nmod_poly_scalar_mul_nmod(product, product, lead); result &= nmod_poly_equal(pol1, product); if (!result) { printf("Error: product of factors does not equal original polynomial\n"); nmod_poly_print(pol1); printf("\n"); nmod_poly_print(product); printf("\n"); abort(); } nmod_poly_clear(product); nmod_poly_clear(quot); nmod_poly_clear(rem); nmod_poly_clear(pol1); nmod_poly_clear(poly); nmod_poly_factor_clear(res); } /* Test deflation trick */ for (iter = 0; iter < 100; iter++) { nmod_poly_t pol1, poly, quot, rem; nmod_poly_factor_t res, res2; mp_limb_t modulus; long length, num, i, j; long exp[5], prod1; ulong inflation; int found; do { modulus = n_randtest_prime(state, 0); } while (modulus == 2); /* To compare with CZ */ nmod_poly_init(pol1, modulus); nmod_poly_init(poly, modulus); nmod_poly_init(quot, modulus); nmod_poly_init(rem, modulus); nmod_poly_zero(pol1); nmod_poly_set_coeff_ui(pol1, 0, 1); inflation = n_randint(state, 7) + 1; length = n_randint(state, 7) + 2; do { nmod_poly_randtest(poly, state, length); if (poly->length) nmod_poly_make_monic(poly, poly); } while ((!nmod_poly_is_irreducible(poly)) || (poly->length < 2)); nmod_poly_inflate(poly, poly, inflation); exp[0] = n_randint(state, 6) + 1; prod1 = exp[0]; for (i = 0; i < exp[0]; i++) nmod_poly_mul(pol1, pol1, poly); num = n_randint(state, 5) + 1; for (i = 1; i < num; i++) { do { length = n_randint(state, 6) + 2; nmod_poly_randtest(poly, state, length); if (poly->length) { nmod_poly_make_monic(poly, poly); nmod_poly_divrem(quot, rem, pol1, poly); } } while ((!nmod_poly_is_irreducible(poly)) || (poly->length < 2) || (rem->length == 0)); exp[i] = n_randint(state, 6) + 1; prod1 *= exp[i]; nmod_poly_inflate(poly, poly, inflation); for (j = 0; j < exp[i]; j++) nmod_poly_mul(pol1, pol1, poly); } nmod_poly_factor_init(res); nmod_poly_factor_init(res2); switch (n_randint(state, 3)) { case 0: nmod_poly_factor(res, pol1); break; case 1: nmod_poly_factor_with_berlekamp(res, pol1); break; case 2: nmod_poly_factor_with_cantor_zassenhaus(res, pol1); break; } nmod_poly_factor_cantor_zassenhaus(res2, pol1); if (res->num != res2->num) { printf("FAIL: different number of factors found\n"); abort(); } for (i = 0; i < res->num; i++) { found = 0; for (j = 0; j < res2->num; j++) { if (nmod_poly_equal(res->p + i, res2->p + j) && res->exp[i] == res2->exp[j]) { found = 1; break; } } if (!found) { printf("FAIL: factor not found\n"); abort(); } } nmod_poly_clear(quot); nmod_poly_clear(rem); nmod_poly_clear(pol1); nmod_poly_clear(poly); nmod_poly_factor_clear(res); nmod_poly_factor_clear(res2); } flint_randclear(state); printf("PASS\n"); return 0; }
int main(void) { int i, result; flint_rand_t state; flint_randinit(state); printf("make_monic...."); fflush(stdout); /* Check new leading coeff = gcd old leading coeff and modulus */ for (i = 0; i < 10000; i++) { nmod_poly_t a, b; mp_limb_t n = n_randtest_not_zero(state); mp_limb_t l; nmod_poly_init(a, n); nmod_poly_init(b, n); if (n == 1) continue; do { nmod_poly_randtest(a, state, n_randint(state, 100) + 1); } while (a->length == 0); nmod_poly_make_monic(b, a); l = n_gcd(a->mod.n, a->coeffs[a->length - 1]); result = (l == b->coeffs[b->length - 1]); if (!result) { printf("FAIL:\n"); printf("l = %lu, a->lead = %ld, n = %lu\n", l, a->coeffs[a->length - 1], a->mod.n); nmod_poly_print(a), printf("\n\n"); nmod_poly_print(b), printf("\n\n"); abort(); } nmod_poly_clear(a); nmod_poly_clear(b); } /* test aliasing */ for (i = 0; i < 10000; i++) { nmod_poly_t a; mp_limb_t n = n_randtest_not_zero(state); mp_limb_t l; nmod_poly_init(a, n); if (n == 1) continue; do { nmod_poly_randtest(a, state, n_randint(state, 100) + 1); } while (a->length == 0); l = n_gcd(a->mod.n, a->coeffs[a->length - 1]); nmod_poly_make_monic(a, a); result = (l == a->coeffs[a->length - 1]); if (!result) { printf("FAIL:\n"); printf("l = %lu, a->lead = %ld, n = %lu\n", l, a->coeffs[a->length - 1], a->mod.n); nmod_poly_print(a), printf("\n\n"); abort(); } nmod_poly_clear(a); } flint_randclear(state); printf("PASS\n"); return 0; }