Example #1
0
//*******************************************************
//function name: sinKP 
// construct single vector of PK for each (point, element)pair
// note: need to consider factors such as whether the point is in the element and whether it's related to the shape function
// being processed
//*******************************************************
void Tri3Cell::sinKP(BEM& bem, int isIn, int isFirst)
{
	if (isIn == 0)
		numInt(bem, isFirst);
	else
		sinInt();
}
Example #2
0
returnValue DiscreteTimeExport::setup( )
{
	int useOMP;
	get(CG_USE_OPENMP, useOMP);
	ExportStruct structWspace;
	structWspace = useOMP ? ACADO_LOCAL : ACADO_WORKSPACE;

	// non equidistant integration grids not implemented for NARX integrators
	if( !equidistant ) return ACADOERROR( RET_INVALID_OPTION );

	String fileName( "integrator.c" );

	int printLevel;
	get( PRINTLEVEL,printLevel );

	if ( (PrintLevel)printLevel >= HIGH )
		acadoPrintf( "--> Preparing to export %s... ",fileName.getName() );

	ExportIndex run( "run" );
	ExportIndex i( "i" );
	ExportIndex j( "j" );
	ExportIndex k( "k" );
	ExportIndex tmp_index("tmp_index");
	uint diffsDim = NX*(NX+NU);
	uint inputDim = NX*(NX+NU+1) + NU + NP;
	// setup INTEGRATE function
	rk_index = ExportVariable( "rk_index", 1, 1, INT, ACADO_LOCAL, BT_TRUE );
	rk_eta = ExportVariable( "rk_eta", 1, inputDim, REAL );
	if( equidistantControlGrid() ) {
		integrate = ExportFunction( "integrate", rk_eta, reset_int );
	}
	else {
		integrate = ExportFunction( "integrate", rk_eta, reset_int, rk_index );
	}
	integrate.setReturnValue( error_code );
	integrate.addIndex( run );
	integrate.addIndex( i );
	integrate.addIndex( j );
	integrate.addIndex( k );
	integrate.addIndex( tmp_index );
	rhs_in = ExportVariable( "x", inputDim-diffsDim, 1, REAL, ACADO_LOCAL );
	rhs_out = ExportVariable( "f", NX, 1, REAL, ACADO_LOCAL );
	fullRhs = ExportFunction( "full_rhs", rhs_in, rhs_out );
	rk_xxx = ExportVariable( "rk_xxx", 1, inputDim-diffsDim, REAL, structWspace );
	if( grid.getNumIntervals() > 1 || !equidistantControlGrid() ) {
		rk_diffsPrev1 = ExportVariable( "rk_diffsPrev1", NX1, NX1+NU, REAL, structWspace );
		rk_diffsPrev2 = ExportVariable( "rk_diffsPrev2", NX2, NX1+NX2+NU, REAL, structWspace );
	}
	rk_diffsNew1 = ExportVariable( "rk_diffsNew1", NX1, NX1+NU, REAL, structWspace );
	rk_diffsNew2 = ExportVariable( "rk_diffsNew2", NX2, NX1+NX2+NU, REAL, structWspace );

	ExportVariable numInt( "numInts", 1, 1, INT );
	if( !equidistantControlGrid() ) {
		ExportVariable numStepsV( "numSteps", numSteps, STATIC_CONST_INT );
		integrate.addStatement( String( "int " ) << numInt.getName() << " = " << numStepsV.getName() << "[" << rk_index.getName() << "];\n" );
	}

	integrate.addStatement( rk_xxx.getCols( NX,inputDim-diffsDim ) == rk_eta.getCols( NX+diffsDim,inputDim ) );
	integrate.addLinebreak( );

	// integrator loop:
	ExportForLoop tmpLoop( run, 0, grid.getNumIntervals() );
	ExportStatementBlock *loop;
	if( equidistantControlGrid() ) {
		loop = &tmpLoop;
	}
	else {
		loop = &integrate;
		loop->addStatement( String("for(") << run.getName() << " = 0; " << run.getName() << " < " << numInt.getName() << "; " << run.getName() << "++ ) {\n" );
	}

	loop->addStatement( rk_xxx.getCols( 0,NX ) == rk_eta.getCols( 0,NX ) );

	if( grid.getNumIntervals() > 1 || !equidistantControlGrid() ) {
		// Set rk_diffsPrev:
		loop->addStatement( String("if( run > 0 ) {\n") );
		if( NX1 > 0 ) {
			ExportForLoop loopTemp1( i,0,NX1 );
			loopTemp1.addStatement( rk_diffsPrev1.getSubMatrix( i,i+1,0,NX1 ) == rk_eta.getCols( i*NX+NX+NXA,i*NX+NX+NXA+NX1 ) );
			if( NU > 0 ) loopTemp1.addStatement( rk_diffsPrev1.getSubMatrix( i,i+1,NX1,NX1+NU ) == rk_eta.getCols( i*NU+(NX+NXA)*(NX+1),i*NU+(NX+NXA)*(NX+1)+NU ) );
			loop->addStatement( loopTemp1 );
		}
		if( NX2 > 0 ) {
			ExportForLoop loopTemp2( i,0,NX2 );
			loopTemp2.addStatement( rk_diffsPrev2.getSubMatrix( i,i+1,0,NX1+NX2 ) == rk_eta.getCols( i*NX+NX+NXA+NX1*NX,i*NX+NX+NXA+NX1*NX+NX1+NX2 ) );
			if( NU > 0 ) loopTemp2.addStatement( rk_diffsPrev2.getSubMatrix( i,i+1,NX1+NX2,NX1+NX2+NU ) == rk_eta.getCols( i*NU+(NX+NXA)*(NX+1)+NX1*NU,i*NU+(NX+NXA)*(NX+1)+NX1*NU+NU ) );
			loop->addStatement( loopTemp2 );
		}
		loop->addStatement( String("}\n") );
	}

	// evaluate states:
	if( NX1 > 0 ) {
		loop->addFunctionCall( lin_input.getName(), rk_xxx, rk_eta.getAddress(0,0) );
	}
	if( NX2 > 0 ) {
		loop->addFunctionCall( getNameRHS(), rk_xxx, rk_eta.getAddress(0,NX1) );
	}

	// evaluate sensitivities:
	if( NX1 > 0 ) {
		for( uint i1 = 0; i1 < NX1; i1++ ) {
			for( uint i2 = 0; i2 < NX1; i2++ ) {
				loop->addStatement( rk_diffsNew1.getSubMatrix(i1,i1+1,i2,i2+1) == A11(i1,i2) );
			}
			for( uint i2 = 0; i2 < NU; i2++ ) {
				loop->addStatement( rk_diffsNew1.getSubMatrix(i1,i1+1,NX1+i2,NX1+i2+1) == B11(i1,i2) );
			}
		}
	}
	if( NX2 > 0 ) {
		loop->addFunctionCall( getNameDiffsRHS(), rk_xxx, rk_diffsNew2.getAddress(0,0) );
	}

	// computation of the sensitivities using chain rule:
	if( grid.getNumIntervals() > 1 || !equidistantControlGrid() ) {
		loop->addStatement( String( "if( run == 0 ) {\n" ) );
	}
	// PART 1
	updateInputSystem(loop, i, j, tmp_index);
	// PART 2
	updateImplicitSystem(loop, i, j, tmp_index);

	if( grid.getNumIntervals() > 1 || !equidistantControlGrid() ) {
		loop->addStatement( String( "}\n" ) );
		loop->addStatement( String( "else {\n" ) );
		// PART 1
		propagateInputSystem(loop, i, j, k, tmp_index);
		// PART 2
		propagateImplicitSystem(loop, i, j, k, tmp_index);
		loop->addStatement( String( "}\n" ) );
	}

	// end of the integrator loop.
	if( !equidistantControlGrid() ) {
		loop->addStatement( "}\n" );
	}
	else {
		integrate.addStatement( *loop );
	}
	// PART 1
	if( NX1 > 0 ) {
		Matrix zeroR = zeros(1, NX2);
		ExportForLoop loop1( i,0,NX1 );
		loop1.addStatement( rk_eta.getCols( i*NX+NX+NXA+NX1,i*NX+NX+NXA+NX ) == zeroR );
		integrate.addStatement( loop1 );
	}

	if ( (PrintLevel)printLevel >= HIGH )
		acadoPrintf( "done.\n" );

	return SUCCESSFUL_RETURN;
}