Example #1
0
/*
 * For monitor unlock, we don't have to use ldrex/strex.  Once
 * we've determined that the lock is thin and that we own it with
 * a zero recursion count, it's safe to punch it back to the
 * initial, unlock thin state with a store word.
 */
static void genMonitorExit(CompilationUnit *cUnit, MIR *mir)
{
    RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
    ArmLIR *target;
    ArmLIR *branch;
    ArmLIR *hopTarget;
    ArmLIR *hopBranch;

    assert(LW_SHAPE_THIN == 0);
    loadValueDirectFixed(cUnit, rlSrc, r1);  // Get obj
    dvmCompilerLockAllTemps(cUnit);  // Prepare for explicit register usage
    dvmCompilerFreeTemp(cUnit, r4PC);  // Free up r4 for general use
    loadWordDisp(cUnit, rGLUE, offsetof(InterpState, self), r0); // Get self
    genNullCheck(cUnit, rlSrc.sRegLow, r1, mir->offset, NULL);
    loadWordDisp(cUnit, r1, offsetof(Object, lock), r2); // Get object->lock
    loadWordDisp(cUnit, r0, offsetof(Thread, threadId), r3); // Get threadId
    // Is lock unheld on lock or held by us (==threadId) on unlock?
    opRegRegImm(cUnit, kOpAnd, r7, r2,
                (LW_HASH_STATE_MASK << LW_HASH_STATE_SHIFT));
    opRegImm(cUnit, kOpLsl, r3, LW_LOCK_OWNER_SHIFT); // Align owner
    newLIR3(cUnit, kThumb2Bfc, r2, LW_HASH_STATE_SHIFT,
            LW_LOCK_OWNER_SHIFT - 1);
    opRegReg(cUnit, kOpSub, r2, r3);
    hopBranch = opCondBranch(cUnit, kArmCondNe);
    storeWordDisp(cUnit, r1, offsetof(Object, lock), r7);
    branch = opNone(cUnit, kOpUncondBr);

    hopTarget = newLIR0(cUnit, kArmPseudoTargetLabel);
    hopTarget->defMask = ENCODE_ALL;
    hopBranch->generic.target = (LIR *)hopTarget;

    // Export PC (part 1)
    loadConstant(cUnit, r3, (int) (cUnit->method->insns + mir->offset));

    LOAD_FUNC_ADDR(cUnit, r7, (int)dvmUnlockObject);
    // Export PC (part 2)
    newLIR3(cUnit, kThumb2StrRRI8Predec, r3, rFP,
            sizeof(StackSaveArea) -
            offsetof(StackSaveArea, xtra.currentPc));
    opReg(cUnit, kOpBlx, r7);
    opRegImm(cUnit, kOpCmp, r0, 0); /* Did we throw? */
    ArmLIR *branchOver = opCondBranch(cUnit, kArmCondNe);
    loadConstant(cUnit, r0,
                 (int) (cUnit->method->insns + mir->offset +
                        dexGetInstrWidthAbs(gDvm.instrWidth, OP_MONITOR_EXIT)));
    genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);

    // Resume here
    target = newLIR0(cUnit, kArmPseudoTargetLabel);
    target->defMask = ENCODE_ALL;
    branch->generic.target = (LIR *)target;
    branchOver->generic.target = (LIR *) target;
}
/*
 * Rebuild the interpreter frame then punt to the interpreter to execute
 * instruction at specified PC.
 *
 * Currently parameters are passed to the current frame, so we just need to
 * grow the stack save area above it, fill certain fields in StackSaveArea and
 * Thread that are skipped during whole-method invocation (specified below),
 * then return to the interpreter.
 *
 * StackSaveArea:
 *  - prevSave
 *  - prevFrame
 *  - savedPc
 *  - returnAddr
 *  - method
 *
 * Thread:
 *  - method
 *  - methodClassDex
 *  - curFrame
 */
static void genMethodInflateAndPunt(CompilationUnit *cUnit, MIR *mir,
                                    BasicBlock *bb)
{
    int oldStackSave = r0;
    int newStackSave = r1;
    int oldFP = r2;
    int savedPC = r3;
    int currentPC = r4PC;
    int returnAddr = r7;
    int method = r8;
    int pDvmDex = r9;

    /*
     * TODO: check whether to raise the stack overflow exception when growing
     * the stack save area.
     */

    /* Send everything to home location */
    dvmCompilerFlushAllRegs(cUnit);

    /* oldStackSave = r5FP + sizeof(current frame) */
    opRegRegImm(cUnit, kOpAdd, oldStackSave, r5FP,
                cUnit->method->registersSize * 4);
    /* oldFP = oldStackSave + sizeof(stackSaveArea) */
    opRegRegImm(cUnit, kOpAdd, oldFP, oldStackSave, sizeof(StackSaveArea));
    /* newStackSave = r5FP - sizeof(StackSaveArea) */
    opRegRegImm(cUnit, kOpSub, newStackSave, r5FP, sizeof(StackSaveArea));

    loadWordDisp(cUnit, r13sp, 0, savedPC);
    loadConstant(cUnit, currentPC, (int) (cUnit->method->insns + mir->offset));
    loadConstant(cUnit, method, (int) cUnit->method);
    loadConstant(cUnit, pDvmDex, (int) cUnit->method->clazz->pDvmDex);
#ifdef EASY_GDB
    /* newStackSave->prevSave = oldStackSave */
    storeWordDisp(cUnit, newStackSave, offsetof(StackSaveArea, prevSave),
                  oldStackSave);
#endif
    /* newStackSave->prevSave = oldStackSave */
    storeWordDisp(cUnit, newStackSave, offsetof(StackSaveArea, prevFrame),
                  oldFP);
    /* newStackSave->savedPc = savedPC */
    storeWordDisp(cUnit, newStackSave, offsetof(StackSaveArea, savedPc),
                  savedPC);
    /* return address */
    loadConstant(cUnit, returnAddr, 0);
    storeWordDisp(cUnit, newStackSave, offsetof(StackSaveArea, returnAddr),
                  returnAddr);
    /* newStackSave->method = method */
    storeWordDisp(cUnit, newStackSave, offsetof(StackSaveArea, method), method);
    /* thread->method = method */
    storeWordDisp(cUnit, r6SELF, offsetof(InterpSaveState, method), method);
    /* thread->interpSave.curFrame = current FP */
    storeWordDisp(cUnit, r6SELF, offsetof(Thread, interpSave.curFrame), r5FP);
    /* thread->methodClassDex = pDvmDex */
    storeWordDisp(cUnit, r6SELF, offsetof(InterpSaveState, methodClassDex),
                  pDvmDex);
    /* Restore the stack pointer */
    opRegImm(cUnit, kOpAdd, r13sp, 16);
    genPuntToInterp(cUnit, mir->offset);
}
Example #3
0
/*
 * Handle simple case (thin lock) inline.  If it's complicated, bail
 * out to the heavyweight lock/unlock routines.  We'll use dedicated
 * registers here in order to be in the right position in case we
 * to bail to dvm[Lock/Unlock]Object(self, object)
 *
 * r0 -> self pointer [arg0 for dvm[Lock/Unlock]Object
 * r1 -> object [arg1 for dvm[Lock/Unlock]Object
 * r2 -> intial contents of object->lock, later result of strex
 * r3 -> self->threadId
 * r7 -> temp to hold new lock value [unlock only]
 * r4 -> allow to be used by utilities as general temp
 *
 * The result of the strex is 0 if we acquire the lock.
 *
 * See comments in Sync.c for the layout of the lock word.
 * Of particular interest to this code is the test for the
 * simple case - which we handle inline.  For monitor enter, the
 * simple case is thin lock, held by no-one.  For monitor exit,
 * the simple case is thin lock, held by the unlocking thread with
 * a recurse count of 0.
 *
 * A minor complication is that there is a field in the lock word
 * unrelated to locking: the hash state.  This field must be ignored, but
 * preserved.
 *
 */
static void genMonitorEnter(CompilationUnit *cUnit, MIR *mir)
{
    RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
    bool enter = (mir->dalvikInsn.opCode == OP_MONITOR_ENTER);
    ArmLIR *target;
    ArmLIR *hopTarget;
    ArmLIR *branch;
    ArmLIR *hopBranch;

    assert(LW_SHAPE_THIN == 0);
    loadValueDirectFixed(cUnit, rlSrc, r1);  // Get obj
    dvmCompilerLockAllTemps(cUnit);  // Prepare for explicit register usage
    dvmCompilerFreeTemp(cUnit, r4PC);  // Free up r4 for general use
    loadWordDisp(cUnit, rGLUE, offsetof(InterpState, self), r0); // Get self
    genNullCheck(cUnit, rlSrc.sRegLow, r1, mir->offset, NULL);
    loadWordDisp(cUnit, r0, offsetof(Thread, threadId), r3); // Get threadId
    newLIR3(cUnit, kThumb2Ldrex, r2, r1,
            offsetof(Object, lock) >> 2); // Get object->lock
    opRegImm(cUnit, kOpLsl, r3, LW_LOCK_OWNER_SHIFT); // Align owner
    // Is lock unheld on lock or held by us (==threadId) on unlock?
    newLIR4(cUnit, kThumb2Bfi, r3, r2, 0, LW_LOCK_OWNER_SHIFT - 1);
    newLIR3(cUnit, kThumb2Bfc, r2, LW_HASH_STATE_SHIFT,
            LW_LOCK_OWNER_SHIFT - 1);
    hopBranch = newLIR2(cUnit, kThumb2Cbnz, r2, 0);
    newLIR4(cUnit, kThumb2Strex, r2, r3, r1, offsetof(Object, lock) >> 2);
    branch = newLIR2(cUnit, kThumb2Cbz, r2, 0);

    hopTarget = newLIR0(cUnit, kArmPseudoTargetLabel);
    hopTarget->defMask = ENCODE_ALL;
    hopBranch->generic.target = (LIR *)hopTarget;

    // Clear the lock
    ArmLIR *inst = newLIR0(cUnit, kThumb2Clrex);
    // ...and make it a scheduling barrier
    inst->defMask = ENCODE_ALL;

    // Export PC (part 1)
    loadConstant(cUnit, r3, (int) (cUnit->method->insns + mir->offset));

    /* Get dPC of next insn */
    loadConstant(cUnit, r4PC, (int)(cUnit->method->insns + mir->offset +
                                    dexGetInstrWidthAbs(gDvm.instrWidth, OP_MONITOR_ENTER)));
    // Export PC (part 2)
    newLIR3(cUnit, kThumb2StrRRI8Predec, r3, rFP,
            sizeof(StackSaveArea) -
            offsetof(StackSaveArea, xtra.currentPc));
    /* Call template, and don't return */
    genDispatchToHandler(cUnit, TEMPLATE_MONITOR_ENTER);
    // Resume here
    target = newLIR0(cUnit, kArmPseudoTargetLabel);
    target->defMask = ENCODE_ALL;
    branch->generic.target = (LIR *)target;
}
/* Handle the content in each basic block */
static bool methodBlockCodeGen(CompilationUnit *cUnit, BasicBlock *bb)
{
    MIR *mir;
    ArmLIR *labelList = (ArmLIR *) cUnit->blockLabelList;
    int blockId = bb->id;

    cUnit->curBlock = bb;
    labelList[blockId].operands[0] = bb->startOffset;

    /* Insert the block label */
    labelList[blockId].opcode = kArmPseudoNormalBlockLabel;
    dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[blockId]);

    dvmCompilerClobberAllRegs(cUnit);
    dvmCompilerResetNullCheck(cUnit);

    ArmLIR *headLIR = NULL;

    if (bb->blockType == kEntryBlock) {
        /* r0 = callsitePC */
        opImm(cUnit, kOpPush, (1 << r0 | 1 << r1 | 1 << r5FP | 1 << r14lr));
        opRegImm(cUnit, kOpSub, r5FP,
                 sizeof(StackSaveArea) + cUnit->method->registersSize * 4);

    } else if (bb->blockType == kExitBlock) {
        /* No need to pop r0 and r1 */
        opRegImm(cUnit, kOpAdd, r13sp, 8);
        opImm(cUnit, kOpPop, (1 << r5FP | 1 << r15pc));
    }

    for (mir = bb->firstMIRInsn; mir; mir = mir->next) {

        dvmCompilerResetRegPool(cUnit);
        if (gDvmJit.disableOpt & (1 << kTrackLiveTemps)) {
            dvmCompilerClobberAllRegs(cUnit);
        }

        if (gDvmJit.disableOpt & (1 << kSuppressLoads)) {
            dvmCompilerResetDefTracking(cUnit);
        }

        Opcode dalvikOpcode = mir->dalvikInsn.opcode;
        InstructionFormat dalvikFormat =
            dexGetFormatFromOpcode(dalvikOpcode);

        ArmLIR *boundaryLIR;

        /*
         * Don't generate the boundary LIR unless we are debugging this
         * trace or we need a scheduling barrier.
         */
        if (headLIR == NULL || cUnit->printMe == true) {
            boundaryLIR =
                newLIR2(cUnit, kArmPseudoDalvikByteCodeBoundary,
                        mir->offset,
                        (int) dvmCompilerGetDalvikDisassembly(
                            &mir->dalvikInsn, ""));
            /* Remember the first LIR for this block */
            if (headLIR == NULL) {
                headLIR = boundaryLIR;
                /* Set the first boundaryLIR as a scheduling barrier */
                headLIR->defMask = ENCODE_ALL;
            }
        }

        /* Don't generate the SSA annotation unless verbose mode is on */
        if (cUnit->printMe && mir->ssaRep) {
            char *ssaString = dvmCompilerGetSSAString(cUnit, mir->ssaRep);
            newLIR1(cUnit, kArmPseudoSSARep, (int) ssaString);
        }

        bool notHandled;
        switch (dalvikFormat) {
            case kFmt10t:
            case kFmt20t:
            case kFmt30t:
                notHandled = handleMethodFmt10t_Fmt20t_Fmt30t(cUnit, mir, bb,
                                                              labelList);
                break;
            case kFmt10x:
                notHandled = handleMethodFmt10x(cUnit, mir);
                break;
            case kFmt11n:
            case kFmt31i:
                notHandled = handleMethodFmt11n_Fmt31i(cUnit, mir);
                break;
            case kFmt11x:
                notHandled = handleMethodFmt11x(cUnit, mir, bb, labelList);
                break;
            case kFmt12x:
                notHandled = handleMethodFmt12x(cUnit, mir);
                break;
            case kFmt20bc:
                notHandled = handleMethodFmt20bc(cUnit, mir);
                break;
            case kFmt21c:
            case kFmt31c:
                notHandled = handleMethodFmt21c_Fmt31c(cUnit, mir);
                break;
            case kFmt21h:
                notHandled = handleMethodFmt21h(cUnit, mir);
                break;
            case kFmt21s:
                notHandled = handleMethodFmt21s(cUnit, mir);
                break;
            case kFmt21t:
                notHandled = handleMethodFmt21t(cUnit, mir, bb, labelList);
                break;
            case kFmt22b:
            case kFmt22s:
                notHandled = handleMethodFmt22b_Fmt22s(cUnit, mir);
                break;
            case kFmt22c:
                notHandled = handleMethodFmt22c(cUnit, mir);
                break;
            case kFmt22cs:
                notHandled = handleMethodFmt22cs(cUnit, mir);
                break;
            case kFmt22t:
                notHandled = handleMethodFmt22t(cUnit, mir, bb, labelList);
                break;
            case kFmt22x:
            case kFmt32x:
                notHandled = handleMethodFmt22x_Fmt32x(cUnit, mir);
                break;
            case kFmt23x:
                notHandled = handleMethodFmt23x(cUnit, mir);
                break;
            case kFmt31t:
                notHandled = handleMethodFmt31t(cUnit, mir);
                break;
            case kFmt3rc:
            case kFmt35c:
                notHandled = handleMethodFmt35c_3rc(cUnit, mir, bb, labelList);
                break;
            case kFmt3rms:
            case kFmt35ms:
                notHandled = handleMethodFmt35ms_3rms(cUnit, mir, bb,
                                                      labelList);
                break;
            case kFmt35mi:
            case kFmt3rmi:
                notHandled = handleMethodExecuteInline(cUnit, mir);
                break;
            case kFmt51l:
                notHandled = handleMethodFmt51l(cUnit, mir);
                break;
            default:
                notHandled = true;
                break;
        }

        /* FIXME - to be implemented */
        if (notHandled == true && dalvikOpcode >= kNumPackedOpcodes) {
            notHandled = false;
        }

        if (notHandled) {
            ALOGE("%#06x: Opcode %#x (%s) / Fmt %d not handled",
                 mir->offset,
                 dalvikOpcode, dexGetOpcodeName(dalvikOpcode),
                 dalvikFormat);
            dvmCompilerAbort(cUnit);
            break;
        }
    }

    if (headLIR) {
        /*
         * Eliminate redundant loads/stores and delay stores into later
         * slots
         */
        dvmCompilerApplyLocalOptimizations(cUnit, (LIR *) headLIR,
                                           cUnit->lastLIRInsn);

        /*
         * Generate an unconditional branch to the fallthrough block.
         */
        if (bb->fallThrough) {
            genUnconditionalBranch(cUnit,
                                   &labelList[bb->fallThrough->id]);
        }
    }
    return false;
}
Example #5
0
/*
 * Generate array store
 *
 */
static void genArrayPut(CompilationUnit *cUnit, MIR *mir, OpSize size,
                        RegLocation rlArray, RegLocation rlIndex,
                        RegLocation rlSrc, int scale)
{
    RegisterClass regClass = dvmCompilerRegClassBySize(size);
    int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
    int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents);

    int regPtr;
    rlArray = loadValue(cUnit, rlArray, kCoreReg);
    rlIndex = loadValue(cUnit, rlIndex, kCoreReg);

    if (dvmCompilerIsTemp(cUnit, rlArray.lowReg)) {
        dvmCompilerClobber(cUnit, rlArray.lowReg);
        regPtr = rlArray.lowReg;
    } else {
        regPtr = dvmCompilerAllocTemp(cUnit);
        genRegCopy(cUnit, regPtr, rlArray.lowReg);
    }

    /* null object? */
    ArmLIR * pcrLabel = NULL;

    if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
        pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, rlArray.lowReg,
                                mir->offset, NULL);
    }

    if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
        int regLen = dvmCompilerAllocTemp(cUnit);
        //NOTE: max live temps(4) here.
        /* Get len */
        loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen);
        /* regPtr -> array data */
        opRegImm(cUnit, kOpAdd, regPtr, dataOffset);
        genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset,
                       pcrLabel);
        dvmCompilerFreeTemp(cUnit, regLen);
    } else {
        /* regPtr -> array data */
        opRegImm(cUnit, kOpAdd, regPtr, dataOffset);
    }
    /* at this point, regPtr points to array, 2 live temps */
    if ((size == kLong) || (size == kDouble)) {
        //TODO: need specific wide routine that can handle fp regs
        if (scale) {
            int rNewIndex = dvmCompilerAllocTemp(cUnit);
            opRegRegImm(cUnit, kOpLsl, rNewIndex, rlIndex.lowReg, scale);
            opRegReg(cUnit, kOpAdd, regPtr, rNewIndex);
        } else {
            opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg);
        }
        rlSrc = loadValueWide(cUnit, rlSrc, regClass);

        HEAP_ACCESS_SHADOW(true);
        storePair(cUnit, regPtr, rlSrc.lowReg, rlSrc.highReg);
        HEAP_ACCESS_SHADOW(false);

        dvmCompilerFreeTemp(cUnit, regPtr);
    } else {
        rlSrc = loadValue(cUnit, rlSrc, regClass);

        HEAP_ACCESS_SHADOW(true);
        storeBaseIndexed(cUnit, regPtr, rlIndex.lowReg, rlSrc.lowReg,
                         scale, size);
        HEAP_ACCESS_SHADOW(false);
    }
}