Example #1
0
int main(int argc, char **argv)
{
  // OP initialisation
  op_init(argc,argv,5);

  int   nnode, nedge, n, e;
  float dx;

  nnode = (NN-1)*(NN-1);
  nedge = (NN-1)*(NN-1) + 4*(NN-1)*(NN-2);
  dx    = 1.0f / ((float) NN);

  int    *pp = (int *)malloc(sizeof(int)*2*nedge);
  int    *p1 = (int *)malloc(sizeof(int)*nedge);
  int    *p2 = (int *)malloc(sizeof(int)*nedge);

  float  *xe = (float *)malloc(sizeof(float)*2*nedge);
  float  *xn = (float *)malloc(sizeof(float)*2*nnode);

  double *A  = (double *)malloc(sizeof(double)*3*nedge);
  float  *r  = (float *)malloc(sizeof(float)*2*nnode);
  float  *u  = (float *)malloc(sizeof(float)*2*nnode);
  float  *du = (float *)malloc(sizeof(float)*3*nnode);

  // create matrix and r.h.s., and set coordinates needed for renumbering / partitioning

  e = 0;

  for (int i=1; i<NN; i++) {
    for (int j=1; j<NN; j++) {
      n         = i-1 + (j-1)*(NN-1);
      r[2*n]      = 0.0f;
      u[2*n]      = 0.0f;
      du[3*n]     = 0.0f;
      xn[2*n  ] = i*dx;
      xn[2*n+1] = j*dx;

      p1[e]     = n;
      p2[e]     = n;
      pp[2*e]   = p1[e];
      pp[2*e+1] = p2[e];
      A[3*e]      = -1.0f;
      xe[2*e  ] = i*dx;
      xe[2*e+1] = j*dx;
      e++;

      for (int pass=0; pass<4; pass++) {
        int i2 = i;
        int j2 = j;
        if (pass==0) i2 += -1;
        if (pass==1) i2 +=  1;
        if (pass==2) j2 += -1;
        if (pass==3) j2 +=  1;

        if ( (i2==0) || (i2==NN) || (j2==0) || (j2==NN) ) {
          r[2*n] += 0.25f;
        }
        else {
          p1[e]     = n;
          p2[e]     = i2-1 + (j2-1)*(NN-1);
          pp[2*e]   = p1[e];
          pp[2*e+1] = p2[e];
          A[3*e]      = 0.25f;
          xe[2*e  ] = i*dx;
          xe[2*e+1] = j*dx;
          e++;
        }
      }
    }
  }

  // declare sets, pointers, and datasets

  op_set nodes = op_decl_set(nnode, "nodes");
  op_set edges = op_decl_set(nedge, "edges");

  op_map ppedge = op_decl_map(edges,nodes,2,pp, "ppedge");

  op_dat p_A  = op_decl_dat(edges,3,"double",A,  "p_A" );
  op_dat p_r  = op_decl_dat(nodes,2,"float", r,  "p_r" );
  op_dat p_u  = op_decl_dat(nodes,2,"float", u,  "p_u" );
  op_dat p_du = op_decl_dat(nodes,3,"float", du, "p_du");

  alpha = 2.0f;
  op_decl_const2("alpha",1,"float",&alpha);
  alpha = 1.0f;
  op_decl_const2("alpha",1,"float",&alpha);

  op_diagnostic_output();

  // main iteration loop

  float u_sum, u_max, beta = 1.0f;

  for (int iter=0; iter<NITER; iter++) {
    op_par_loop_res("res",edges,
               op_arg_dat(p_A,-1,OP_ID,3,"double",OP_READ),
               op_arg_dat(p_u,1,ppedge,2,"float",OP_READ),
               op_arg_dat(p_du,0,ppedge,3,"float",OP_INC),
               op_arg_gbl(&beta,1,"float",OP_READ));

    u_sum = 0.0f;
    u_max = 0.0f;
    op_par_loop_update("update",nodes,
               op_arg_dat(p_r,-1,OP_ID,2,"float",OP_READ),
               op_arg_dat(p_du,-1,OP_ID,3,"float",OP_RW),
               op_arg_dat(p_u,-1,OP_ID,2,"float",OP_INC),
               op_arg_gbl(&u_sum,1,"float",OP_INC),
               op_arg_gbl(&u_max,1,"float",OP_MAX));
    op_printf("\n u max/rms = %f %f \n\n",u_max, sqrt(u_sum/nnode));
  }

  // print out results

  op_printf("\n  Results after %d iterations:\n\n",NITER);

  op_fetch_data(p_u);

  for (int pass=0; pass<1; pass++) {
    for (int j=NN-1; j>0; j--) {
      for (int i=1; i<NN; i++) {
        if (pass==0)
          op_printf(" %7.4f",u[2*(i-1 + (j-1)*(NN-1))]);
        else if (pass==1)
          op_printf(" %7.4f",du[i-1 + (j-1)*(NN-1)]);
        else if (pass==2)
          op_printf(" %7.4f",r[2*(i-1 + (j-1)*(NN-1))]);
      }
      op_printf("\n");
    }
    op_printf("\n");
  }

  op_timing_output();
  op_exit();

  free(pp);
  free(A);
  free(u);
  free(du);
  free(r);
}
Example #2
0
int main(int argc, char **argv) {
  // OP initialisation
  op_init(argc, argv, 2);

  // MPI for user I/O
  int my_rank;
  int comm_size;
  MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
  MPI_Comm_size(MPI_COMM_WORLD, &comm_size);

  // timer
  double cpu_t1, cpu_t2, wall_t1, wall_t2;

  int *becell, *ecell, *bound, *bedge, *edge, *cell;
  double *x, *q, *qold, *adt, *res;

  int nnode, ncell, nedge, nbedge, niter;

  /**------------------------BEGIN I/O and PARTITIONING -------------------**/

  op_timers(&cpu_t1, &wall_t1);

  /* read in grid from disk on root processor */
  FILE *fp;

  if ((fp = fopen("new_grid.dat", "r")) == NULL) {
    op_printf("can't open file new_grid.dat\n");
    exit(-1);
  }

  int g_nnode, g_ncell, g_nedge, g_nbedge;

  check_scan(
      fscanf(fp, "%d %d %d %d \n", &g_nnode, &g_ncell, &g_nedge, &g_nbedge), 4);

  int *g_becell = 0, *g_ecell = 0, *g_bound = 0, *g_bedge = 0, *g_edge = 0,
      *g_cell = 0;
  double *g_x = 0, *g_q = 0, *g_qold = 0, *g_adt = 0, *g_res = 0;

  op_printf("reading in grid \n");
  op_printf("Global number of nodes, cells, edges, bedges = %d, %d, %d, %d\n",
            g_nnode, g_ncell, g_nedge, g_nbedge);

  if (my_rank == MPI_ROOT) {
    g_cell = (int *)malloc(4 * g_ncell * sizeof(int));
    g_edge = (int *)malloc(2 * g_nedge * sizeof(int));
    g_ecell = (int *)malloc(2 * g_nedge * sizeof(int));
    g_bedge = (int *)malloc(2 * g_nbedge * sizeof(int));
    g_becell = (int *)malloc(g_nbedge * sizeof(int));
    g_bound = (int *)malloc(g_nbedge * sizeof(int));

    g_x = (double *)malloc(2 * g_nnode * sizeof(double));
    g_q = (double *)malloc(4 * g_ncell * sizeof(double));
    g_qold = (double *)malloc(4 * g_ncell * sizeof(double));
    g_res = (double *)malloc(4 * g_ncell * sizeof(double));
    g_adt = (double *)malloc(g_ncell * sizeof(double));

    for (int n = 0; n < g_nnode; n++) {
      check_scan(fscanf(fp, "%lf %lf \n", &g_x[2 * n], &g_x[2 * n + 1]), 2);
    }

    for (int n = 0; n < g_ncell; n++) {
      check_scan(fscanf(fp, "%d %d %d %d \n", &g_cell[4 * n],
                        &g_cell[4 * n + 1], &g_cell[4 * n + 2],
                        &g_cell[4 * n + 3]),
                 4);
    }

    for (int n = 0; n < g_nedge; n++) {
      check_scan(fscanf(fp, "%d %d %d %d \n", &g_edge[2 * n],
                        &g_edge[2 * n + 1], &g_ecell[2 * n],
                        &g_ecell[2 * n + 1]),
                 4);
    }

    for (int n = 0; n < g_nbedge; n++) {
      check_scan(fscanf(fp, "%d %d %d %d \n", &g_bedge[2 * n],
                        &g_bedge[2 * n + 1], &g_becell[n], &g_bound[n]),
                 4);
    }

    // initialise flow field and residual
  }

  fclose(fp);

  nnode = compute_local_size(g_nnode, comm_size, my_rank);
  ncell = compute_local_size(g_ncell, comm_size, my_rank);
  nedge = compute_local_size(g_nedge, comm_size, my_rank);
  nbedge = compute_local_size(g_nbedge, comm_size, my_rank);

  op_printf(
      "Number of nodes, cells, edges, bedges on process %d = %d, %d, %d, %d\n",
      my_rank, nnode, ncell, nedge, nbedge);

  /*Allocate memory to hold local sets, mapping tables and data*/
  cell = (int *)malloc(4 * ncell * sizeof(int));
  edge = (int *)malloc(2 * nedge * sizeof(int));
  ecell = (int *)malloc(2 * nedge * sizeof(int));
  bedge = (int *)malloc(2 * nbedge * sizeof(int));
  becell = (int *)malloc(nbedge * sizeof(int));
  bound = (int *)malloc(nbedge * sizeof(int));

  x = (double *)malloc(2 * nnode * sizeof(double));
  q = (double *)malloc(4 * ncell * sizeof(double));
  qold = (double *)malloc(4 * ncell * sizeof(double));
  res = (double *)malloc(4 * ncell * sizeof(double));
  adt = (double *)malloc(ncell * sizeof(double));

  /* scatter sets, mappings and data on sets*/
  scatter_int_array(g_cell, cell, comm_size, g_ncell, ncell, 4);
  scatter_int_array(g_edge, edge, comm_size, g_nedge, nedge, 2);
  scatter_int_array(g_ecell, ecell, comm_size, g_nedge, nedge, 2);
  scatter_int_array(g_bedge, bedge, comm_size, g_nbedge, nbedge, 2);
  scatter_int_array(g_becell, becell, comm_size, g_nbedge, nbedge, 1);
  scatter_int_array(g_bound, bound, comm_size, g_nbedge, nbedge, 1);

  scatter_double_array(g_x, x, comm_size, g_nnode, nnode, 2);
  scatter_double_array(g_q, q, comm_size, g_ncell, ncell, 4);
  scatter_double_array(g_qold, qold, comm_size, g_ncell, ncell, 4);
  scatter_double_array(g_res, res, comm_size, g_ncell, ncell, 4);
  scatter_double_array(g_adt, adt, comm_size, g_ncell, ncell, 1);

  /*Freeing memory allocated to gloabal arrays on rank 0
    after scattering to all processes*/
  if (my_rank == MPI_ROOT) {
    free(g_cell);
    free(g_edge);
    free(g_ecell);
    free(g_bedge);
    free(g_becell);
    free(g_bound);
    free(g_x);
    free(g_q);
    free(g_qold);
    free(g_adt);
    free(g_res);
  }

  op_timers(&cpu_t2, &wall_t2);
  op_printf("Max total file read time = %f\n", wall_t2 - wall_t1);

  /**------------------------END I/O and PARTITIONING -----------------------**/

  op_set edges = op_decl_set(nedge, "edges");
  op_set cells = op_decl_set(ncell, "cells");

  op_map pecell = op_decl_map(edges, cells, 2, ecell, "pecell");
  op_dat p_res = op_decl_dat(cells, 4, "double", res, "p_res");

  int count;

  // trigger partitioning and halo creation routines
  op_partition("PTSCOTCH", "KWAY", cells, pecell, NULL);

  op_diagnostic_output();

  // initialise timers for total execution wall time
  op_timers(&cpu_t1, &wall_t1);

  // indirect reduction
  count = 0;
  op_par_loop_res_calc("res_calc", edges,
                       op_arg_dat(p_res, 0, pecell, 4, "double", OP_INC),
                       op_arg_gbl(&count, 1, "int", OP_INC));
  op_printf("number of edges:: %d should be: %d \n", count, g_nedge);
  if (count != g_nedge)
    op_printf("indirect reduction FAILED\n");
  else
    op_printf("indirect reduction PASSED\n");
  // direct reduction
  count = 0;
  op_par_loop_update("update", cells,
                     op_arg_dat(p_res, -1, OP_ID, 4, "double", OP_RW),
                     op_arg_gbl(&count, 1, "int", OP_INC));
  op_printf("number of cells: %d should be: %d \n", count, g_ncell);
  if (count != g_ncell)
    op_printf("direct reduction FAILED\n");
  else
    op_printf("direct reduction PASSED\n");

  op_timers(&cpu_t2, &wall_t2);

  op_timing_output();

  op_exit();

  free(cell);
  free(edge);
  free(ecell);
  free(bedge);
  free(becell);
  free(bound);
  free(x);
  free(q);
  free(qold);
  free(res);
  free(adt);
}
Example #3
0
int main(int argc, char **argv)
{
  // OP initialisation

  op_init(argc,argv,2);

  int    *bnode, *cell;
  double  *xm;//, *q;

  int    nnode,ncell,nbnodes,niter;
  double  rms = 1;

  // set constants and initialise flow field and residual

  op_printf("initialising flow field \n");

  double gam = 1.4;
  gm1 = gam - 1.0;
  gm1i = 1.0/gm1;

  wtg1[0] = 0.5;
  wtg1[1] = 0.5;
  xi1[0] = 0.211324865405187;
  xi1[1] = 0.788675134594813;
  Ng1[0] = 0.788675134594813;
  Ng1[1] = 0.211324865405187;
  Ng1[2] = 0.211324865405187;
  Ng1[3] = 0.788675134594813;
  Ng1_xi[0] = -1;
  Ng1_xi[1] = -1;
  Ng1_xi[2] = 1;
  Ng1_xi[3] = 1;
  wtg2[0] = 0.25;
  wtg2[1] = 0.25;
  wtg2[2] = 0.25;
  wtg2[3] = 0.25;
  Ng2[0] = 0.622008467928146; Ng2[1] = 0.166666666666667; Ng2[2] = 0.166666666666667; Ng2[3] = 0.044658198738520;
  Ng2[4] = 0.166666666666667; Ng2[5] = 0.622008467928146; Ng2[6] = 0.044658198738520; Ng2[7] = 0.166666666666667;
  Ng2[8] = 0.166666666666667; Ng2[9] = 0.044658198738520; Ng2[10] = 0.622008467928146; Ng2[11] = 0.166666666666667;
  Ng2[12] = 0.044658198738520; Ng2[13] = 0.166666666666667; Ng2[14] = 0.166666666666667; Ng2[15] = 0.622008467928146;
  Ng2_xi[0] = -0.788675134594813;  Ng2_xi[1] = 0.788675134594813;  Ng2_xi[2] = -0.211324865405187;Ng2_xi[3] = 0.211324865405187;
  Ng2_xi[4] = -0.788675134594813;  Ng2_xi[5] = 0.788675134594813;  Ng2_xi[6] = -0.211324865405187; Ng2_xi[7] = 0.211324865405187;
  Ng2_xi[8] = -0.211324865405187;  Ng2_xi[9] = 0.211324865405187;  Ng2_xi[10] = -0.788675134594813; Ng2_xi[11] = 0.788675134594813;
  Ng2_xi[12] = -0.211324865405187;  Ng2_xi[13] = 0.211324865405187;  Ng2_xi[14] = -0.788675134594813; Ng2_xi[15] = 0.788675134594813;
  Ng2_xi[16] = -0.788675134594813;  Ng2_xi[17] = -0.211324865405187;  Ng2_xi[18] = 0.788675134594813; Ng2_xi[19] = 0.211324865405187;
  Ng2_xi[20] = -0.211324865405187;  Ng2_xi[21] = -0.788675134594813;  Ng2_xi[22] = 0.211324865405187; Ng2_xi[23] = 0.788675134594813;
  Ng2_xi[24] = -0.788675134594813;  Ng2_xi[25] = -0.211324865405187;  Ng2_xi[26] = 0.788675134594813; Ng2_xi[27] = 0.211324865405187;
  Ng2_xi[28] = -0.211324865405187;  Ng2_xi[29] = -0.788675134594813;  Ng2_xi[30] = 0.211324865405187; Ng2_xi[31] = 0.788675134594813;

  minf = 0.1;
  m2 = minf*minf;
  freq = 1;
  kappa = 1;
  nmode = 0;

  mfan = 1.0;

  char file[] = "FE_grid.h5";


  // declare sets, pointers, datasets and global constants

  op_set nodes  = op_decl_set_hdf5(file,  "nodes");
  op_set bnodes = op_decl_set_hdf5(file, "bedges");
  op_set cells  = op_decl_set_hdf5(file,  "cells");

  op_map pbnodes = op_decl_map_hdf5(bnodes,nodes,1,file, "pbedge");
  op_map pcell   = op_decl_map_hdf5(cells, nodes,4,file,  "pcell");

  op_dat p_xm    = op_decl_dat_hdf5(nodes ,2,"double",  file, "p_x");
  op_dat p_phim  = op_decl_dat_hdf5(nodes, 1, "double", file, "p_phim");
  op_dat p_resm  = op_decl_dat_hdf5(nodes, 1, "double", file, "p_resm");
  op_dat p_K     = op_decl_dat_hdf5(cells, 16, "double:soa",file, "p_K");
  op_dat p_V     = op_decl_dat_hdf5(nodes, 1, "double", file, "p_V");
  op_dat p_P     = op_decl_dat_hdf5(nodes, 1, "double", file, "p_P");
  op_dat p_U     = op_decl_dat_hdf5(nodes, 1, "double", file, "p_U");

  op_decl_const2("gam",1,"double",&gam  );
  op_decl_const2("gm1",1,"double",&gm1  );
  op_decl_const2("gm1i",1,"double",&gm1i  );
  op_decl_const2("m2",1,"double",&m2  );
  op_decl_const2("wtg1",2,"double",wtg1  );
  op_decl_const2("xi1",2,"double",xi1  );
  op_decl_const2("Ng1",4,"double",Ng1  );
  op_decl_const2("Ng1_xi",4,"double",Ng1_xi  );
  op_decl_const2("wtg2",4,"double",wtg2  );
  op_decl_const2("Ng2",16,"double",Ng2  );
  op_decl_const2("Ng2_xi",32,"double",Ng2_xi  );
  op_decl_const2("minf",1,"double",&minf  );
  op_decl_const2("freq",1,"double",&freq  );
  op_decl_const2("kappa",1,"double",&kappa  );
  op_decl_const2("nmode",1,"double",&nmode  );
  op_decl_const2("mfan",1,"double",&mfan  );

  op_diagnostic_output();

  op_partition("PTSCOTCH", "KWAY", cells, pcell, p_xm);

  op_printf("nodes: %d cells: %d bnodes: %d\n", nodes->size, cells->size, bnodes->size);
  nnode = op_get_size(nodes);
  ncell = op_get_size(cells);
  nbnodes = op_get_size(bnodes);

  double cpu_t1, cpu_t2, wall_t1, wall_t2;
  op_timers(&cpu_t1, &wall_t1);

  // main time-marching loop

  niter = 20;

  for(int iter=1; iter<=niter; iter++) {

    op_par_loop_res_calc("res_calc",cells,
               op_arg_dat(p_xm,-4,pcell,2,"double",OP_READ),
               op_arg_dat(p_phim,-4,pcell,1,"double",OP_READ),
               op_arg_dat(p_K,-1,OP_ID,16,"double:soa",OP_WRITE),
               op_arg_dat(p_resm,-4,pcell,1,"double",OP_INC));

    op_par_loop_dirichlet("dirichlet",bnodes,
               op_arg_dat(p_resm,0,pbnodes,1,"double",OP_WRITE));

    double c1 = 0;
    double c2 = 0;
    double c3 = 0;
    double alpha = 0;
    double beta = 0;

    //c1 = R'*R;
    op_par_loop_init_cg("init_cg",nodes,
               op_arg_dat(p_resm,-1,OP_ID,1,"double",OP_READ),
               op_arg_gbl(&c1,1,"double",OP_INC),
               op_arg_dat(p_U,-1,OP_ID,1,"double",OP_WRITE),
               op_arg_dat(p_V,-1,OP_ID,1,"double",OP_WRITE),
               op_arg_dat(p_P,-1,OP_ID,1,"double",OP_WRITE));

    //set up stopping conditions
    double res0 = sqrt(c1);
    double res = res0;
    int iter = 0;
    int maxiter = 200;
    while (res > 0.1*res0 && iter < maxiter) {
      //V = Stiffness*P
      op_par_loop_spMV("spMV",cells,
                 op_arg_dat(p_V,-4,pcell,1,"double",OP_INC),
                 op_arg_dat(p_K,-1,OP_ID,16,"double:soa",OP_READ),
                 op_arg_dat(p_P,-4,pcell,1,"double",OP_READ));

      op_par_loop_dirichlet("dirichlet",bnodes,
                 op_arg_dat(p_V,0,pbnodes,1,"double",OP_WRITE));

      c2 = 0;

      //c2 = P'*V;
      op_par_loop_dotPV("dotPV",nodes,
                 op_arg_dat(p_P,-1,OP_ID,1,"double",OP_READ),
                 op_arg_dat(p_V,-1,OP_ID,1,"double",OP_READ),
                 op_arg_gbl(&c2,1,"double",OP_INC));

      alpha = c1/c2;

      //U = U + alpha*P;
      //resm = resm-alpha*V;
      op_par_loop_updateUR("updateUR",nodes,
                 op_arg_dat(p_U,-1,OP_ID,1,"double",OP_INC),
                 op_arg_dat(p_resm,-1,OP_ID,1,"double",OP_INC),
                 op_arg_dat(p_P,-1,OP_ID,1,"double",OP_READ),
                 op_arg_dat(p_V,-1,OP_ID,1,"double",OP_RW),
                 op_arg_gbl(&alpha,1,"double",OP_READ));

      c3 = 0;

      //c3 = resm'*resm;
      op_par_loop_dotR("dotR",nodes,
                 op_arg_dat(p_resm,-1,OP_ID,1,"double",OP_READ),
                 op_arg_gbl(&c3,1,"double",OP_INC));
      beta = c3/c1;
      //P = beta*P+resm;
      op_par_loop_updateP("updateP",nodes,
                 op_arg_dat(p_resm,-1,OP_ID,1,"double",OP_READ),
                 op_arg_dat(p_P,-1,OP_ID,1,"double",OP_RW),
                 op_arg_gbl(&beta,1,"double",OP_READ));
      c1 = c3;
      res = sqrt(c1);
      iter++;
    }
    rms = 0;
    //phim = phim - Stiffness\Load;
    op_par_loop_update("update",nodes,
               op_arg_dat(p_phim,-1,OP_ID,1,"double",OP_RW),
               op_arg_dat(p_resm,-1,OP_ID,1,"double",OP_WRITE),
               op_arg_dat(p_U,-1,OP_ID,1,"double",OP_READ),
               op_arg_gbl(&rms,1,"double",OP_INC));
    op_printf("rms = %10.5e iter: %d\n", sqrt(rms)/sqrt(nnode), iter);
  }

  op_timing_output();
  op_timers(&cpu_t2, &wall_t2);
  op_printf("Max total runtime = %f\n",wall_t2-wall_t1);
  op_exit();
}
Example #4
0
int main(int argc, char **argv)
{
  // OP initialisation
  op_init(argc,argv,2);

  //MPI for user I/O
  int my_rank;
  int comm_size;
  MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
  MPI_Comm_size(MPI_COMM_WORLD, &comm_size);

  //timer
  double cpu_t1, cpu_t2, wall_t1, wall_t2;

  int    *becell, *ecell,  *bound, *bedge, *edge, *cell;
  double  *x, *q, *qold, *adt, *res;

  int    nnode,ncell,nedge,nbedge,niter;
  double  rms;

  /**------------------------BEGIN I/O and PARTITIONING -------------------**/

  op_timers(&cpu_t1, &wall_t1);

  /* read in grid from disk on root processor */
  FILE *fp;

  if ( (fp = fopen("new_grid.dat","r")) == NULL) {
    op_printf("can't open file new_grid.dat\n"); exit(-1);
  }

  int   g_nnode,g_ncell,g_nedge,g_nbedge;

  check_scan(fscanf(fp,"%d %d %d %d \n",&g_nnode, &g_ncell, &g_nedge, &g_nbedge), 4);

  int *g_becell = 0, *g_ecell = 0, *g_bound = 0, *g_bedge = 0, *g_edge = 0, *g_cell = 0;
  double *g_x = 0,*g_q = 0, *g_qold = 0, *g_adt = 0, *g_res = 0;

  // set constants

  op_printf("initialising flow field\n");
  gam = 1.4f;
  gm1 = gam - 1.0f;
  cfl = 0.9f;
  eps = 0.05f;

  double mach  = 0.4f;
  double alpha = 3.0f*atan(1.0f)/45.0f;
  double p     = 1.0f;
  double r     = 1.0f;
  double u     = sqrt(gam*p/r)*mach;
  double e     = p/(r*gm1) + 0.5f*u*u;

  qinf[0] = r;
  qinf[1] = r*u;
  qinf[2] = 0.0f;
  qinf[3] = r*e;

  op_printf("reading in grid \n");
  op_printf("Global number of nodes, cells, edges, bedges = %d, %d, %d, %d\n"
      ,g_nnode,g_ncell,g_nedge,g_nbedge);

  if(my_rank == MPI_ROOT) {
    g_cell   = (int *) malloc(4*g_ncell*sizeof(int));
    g_edge   = (int *) malloc(2*g_nedge*sizeof(int));
    g_ecell  = (int *) malloc(2*g_nedge*sizeof(int));
    g_bedge  = (int *) malloc(2*g_nbedge*sizeof(int));
    g_becell = (int *) malloc(  g_nbedge*sizeof(int));
    g_bound  = (int *) malloc(  g_nbedge*sizeof(int));

    g_x      = (double *) malloc(2*g_nnode*sizeof(double));
    g_q      = (double *) malloc(4*g_ncell*sizeof(double));
    g_qold   = (double *) malloc(4*g_ncell*sizeof(double));
    g_res    = (double *) malloc(4*g_ncell*sizeof(double));
    g_adt    = (double *) malloc(  g_ncell*sizeof(double));

    for (int n=0; n<g_nnode; n++){
      check_scan(fscanf(fp,"%lf %lf \n",&g_x[2*n], &g_x[2*n+1]), 2);
    }

    for (int n=0; n<g_ncell; n++) {
      check_scan(fscanf(fp,"%d %d %d %d \n",&g_cell[4*n  ], &g_cell[4*n+1],
            &g_cell[4*n+2], &g_cell[4*n+3]), 4);
    }

    for (int n=0; n<g_nedge; n++) {
      check_scan(fscanf(fp,"%d %d %d %d \n",&g_edge[2*n],&g_edge[2*n+1],
            &g_ecell[2*n],&g_ecell[2*n+1]), 4);
    }

    for (int n=0; n<g_nbedge; n++) {
      check_scan(fscanf(fp,"%d %d %d %d \n",&g_bedge[2*n],&g_bedge[2*n+1],
            &g_becell[n],&g_bound[n]), 4);
    }

    //initialise flow field and residual

    for (int n=0; n<g_ncell; n++) {
      for (int m=0; m<4; m++) {
        g_q[4*n+m] = qinf[m];
        g_res[4*n+m] = 0.0f;
      }
    }
  }

  fclose(fp);

  nnode = compute_local_size (g_nnode, comm_size, my_rank);
  ncell = compute_local_size (g_ncell, comm_size, my_rank);
  nedge = compute_local_size (g_nedge, comm_size, my_rank);
  nbedge = compute_local_size (g_nbedge, comm_size, my_rank);

  op_printf("Number of nodes, cells, edges, bedges on process %d = %d, %d, %d, %d\n"
      ,my_rank,nnode,ncell,nedge,nbedge);

  /*Allocate memory to hold local sets, mapping tables and data*/
  cell   = (int *) malloc(4*ncell*sizeof(int));
  edge   = (int *) malloc(2*nedge*sizeof(int));
  ecell  = (int *) malloc(2*nedge*sizeof(int));
  bedge  = (int *) malloc(2*nbedge*sizeof(int));
  becell = (int *) malloc(  nbedge*sizeof(int));
  bound  = (int *) malloc(  nbedge*sizeof(int));

  x      = (double *) malloc(2*nnode*sizeof(double));
  q      = (double *) malloc(4*ncell*sizeof(double));
  qold   = (double *) malloc(4*ncell*sizeof(double));
  res    = (double *) malloc(4*ncell*sizeof(double));
  adt    = (double *) malloc(  ncell*sizeof(double));

  /* scatter sets, mappings and data on sets*/
  scatter_int_array(g_cell, cell, comm_size, g_ncell,ncell, 4);
  scatter_int_array(g_edge, edge, comm_size, g_nedge,nedge, 2);
  scatter_int_array(g_ecell, ecell, comm_size, g_nedge,nedge, 2);
  scatter_int_array(g_bedge, bedge, comm_size, g_nbedge,nbedge, 2);
  scatter_int_array(g_becell, becell, comm_size, g_nbedge,nbedge, 1);
  scatter_int_array(g_bound, bound, comm_size, g_nbedge,nbedge, 1);

  scatter_double_array(g_x, x, comm_size, g_nnode,nnode, 2);
  scatter_double_array(g_q, q, comm_size, g_ncell,ncell, 4);
  scatter_double_array(g_qold, qold, comm_size, g_ncell,ncell, 4);
  scatter_double_array(g_res, res, comm_size, g_ncell,ncell, 4);
  scatter_double_array(g_adt, adt, comm_size, g_ncell,ncell, 1);

  /*Freeing memory allocated to gloabal arrays on rank 0
    after scattering to all processes*/
  if(my_rank == MPI_ROOT) {
    free(g_cell);
    free(g_edge);
    free(g_ecell);
    free(g_bedge);
    free(g_becell);
    free(g_bound);
    free(g_x );
    free(g_q);
    free(g_qold);
    free(g_adt);
    free(g_res);
  }

  op_timers(&cpu_t2, &wall_t2);
  op_printf("Max total file read time = %f\n", wall_t2-wall_t1);

  /**------------------------END I/O and PARTITIONING -----------------------**/

  // declare sets, pointers, datasets and global constants

  op_set nodes  = op_decl_set(nnode,  "nodes");
  op_set edges  = op_decl_set(nedge,  "edges");
  op_set bedges = op_decl_set(nbedge, "bedges");
  op_set cells  = op_decl_set(ncell,  "cells");

  op_map pedge   = op_decl_map(edges, nodes,2,edge,  "pedge");
  op_map pecell  = op_decl_map(edges, cells,2,ecell, "pecell");
  op_map pbedge  = op_decl_map(bedges,nodes,2,bedge, "pbedge");
  op_map pbecell = op_decl_map(bedges,cells,1,becell,"pbecell");
  op_map pcell   = op_decl_map(cells, nodes,4,cell,  "pcell");

  op_dat p_bound = op_decl_dat(bedges,1,"int"  ,bound,"p_bound");
  op_dat p_x     = op_decl_dat(nodes ,2,"double",x    ,"p_x");
  op_dat p_q     = op_decl_dat(cells ,4,"double",q    ,"p_q");
  op_dat p_qold  = op_decl_dat(cells ,4,"double",qold ,"p_qold");
  op_dat p_adt   = op_decl_dat(cells ,1,"double",adt  ,"p_adt");
  op_dat p_res   = op_decl_dat(cells ,4,"double",res  ,"p_res");

  op_decl_const2("gam",1,"double",&gam);
  op_decl_const2("gm1",1,"double",&gm1);
  op_decl_const2("cfl",1,"double",&cfl);
  op_decl_const2("eps",1,"double",&eps);
  op_decl_const2("mach",1,"double",&mach);
  op_decl_const2("alpha",1,"double",&alpha);
  op_decl_const2("qinf",4,"double",qinf);

  op_diagnostic_output();

  //trigger partitioning and halo creation routines
  op_partition("PTSCOTCH", "KWAY", cells, pecell, p_x);
  //op_partition("PARMETIS", "KWAY", cells, pecell, p_x);

  //initialise timers for total execution wall time
  op_timers(&cpu_t1, &wall_t1);

  niter = 1000;
  for(int iter=1; iter<=niter; iter++) {

    //save old flow solution
    op_par_loop_save_soln("save_soln",cells,
                op_arg_dat(p_q,-1,OP_ID,4,"double",OP_READ),
                op_arg_dat(p_qold,-1,OP_ID,4,"double",OP_WRITE));

    //  predictor/corrector update loop

    for(int k=0; k<2; k++) {

      //    calculate area/timstep
      op_par_loop_adt_calc("adt_calc",cells,
                  op_arg_dat(p_x,0,pcell,2,"double",OP_READ),
                  op_arg_dat(p_x,1,pcell,2,"double",OP_READ),
                  op_arg_dat(p_x,2,pcell,2,"double",OP_READ),
                  op_arg_dat(p_x,3,pcell,2,"double",OP_READ),
                  op_arg_dat(p_q,-1,OP_ID,4,"double",OP_READ),
                  op_arg_dat(p_adt,-1,OP_ID,1,"double",OP_WRITE));

      //    calculate flux residual
      op_par_loop_res_calc("res_calc",edges,
                  op_arg_dat(p_x,0,pedge,2,"double",OP_READ),
                  op_arg_dat(p_x,1,pedge,2,"double",OP_READ),
                  op_arg_dat(p_q,0,pecell,4,"double",OP_READ),
                  op_arg_dat(p_q,1,pecell,4,"double",OP_READ),
                  op_arg_dat(p_adt,0,pecell,1,"double",OP_READ),
                  op_arg_dat(p_adt,1,pecell,1,"double",OP_READ),
                  op_arg_dat(p_res,0,pecell,4,"double",OP_INC),
                  op_arg_dat(p_res,1,pecell,4,"double",OP_INC));

      op_par_loop_bres_calc("bres_calc",bedges,
                  op_arg_dat(p_x,0,pbedge,2,"double",OP_READ),
                  op_arg_dat(p_x,1,pbedge,2,"double",OP_READ),
                  op_arg_dat(p_q,0,pbecell,4,"double",OP_READ),
                  op_arg_dat(p_adt,0,pbecell,1,"double",OP_READ),
                  op_arg_dat(p_res,0,pbecell,4,"double",OP_INC),
                  op_arg_dat(p_bound,-1,OP_ID,1,"int",OP_READ));

      //    update flow field

      rms = 0.0;

      op_par_loop_update("update",cells,
                  op_arg_dat(p_qold,-1,OP_ID,4,"double",OP_READ),
                  op_arg_dat(p_q,-1,OP_ID,4,"double",OP_WRITE),
                  op_arg_dat(p_res,-1,OP_ID,4,"double",OP_RW),
                  op_arg_dat(p_adt,-1,OP_ID,1,"double",OP_READ),
                  op_arg_gbl(&rms,1,"double",OP_INC));
    }

    //print iteration history
    rms = sqrt(rms/(double) g_ncell);
    if (iter%100 == 0)
      op_printf("%d  %10.5e \n",iter,rms);
  }

  op_timers(&cpu_t2, &wall_t2);

  //output the result dat array to files
  op_print_dat_to_txtfile(p_q, "out_grid_mpi.dat"); //ASCI
  op_print_dat_to_binfile(p_q, "out_grid_mpi.bin"); //Binary

  //write given op_dat's indicated segment of data to a memory block in the order it was originally
  //arranged (i.e. before partitioning and reordering)
  double* q_part = (double *)op_malloc(sizeof(double)*op_get_size(cells)*4);
  op_fetch_data_idx(p_q, q_part, 0, op_get_size(cells)-1);
  free(q_part);

  op_timing_output();
  op_printf("Max total runtime = %f\n",wall_t2-wall_t1);

  op_exit();

  free(cell);
  free(edge);
  free(ecell);
  free(bedge);
  free(becell);
  free(bound);
  free(x);
  free(q);
  free(qold);
  free(res);
  free(adt);
}
Example #5
0
static void check_scan(int items_received, int items_expected) {
  if (items_received != items_expected) {
    op_printf("error reading from new_grid.dat\n");
    exit(-1);
  }
}
Example #6
0
int main(int argc, char **argv)
{
  // OP initialisation
  op_init(argc,argv,2);

  int    *becell, *ecell,  *bound, *bedge, *edge, *cell;
  double  *x, *q, *qold, *adt, *res;

  int    nnode,ncell,nedge,nbedge,niter;
  double  rms;

  //timer
  double cpu_t1, cpu_t2, wall_t1, wall_t2;

  // read in grid

  op_printf("reading in grid \n");

  FILE *fp;
  if ( (fp = fopen("./new_grid.dat","r")) == NULL) {
    op_printf("can't open file new_grid.dat\n"); exit(-1);
  }

  if (fscanf(fp,"%d %d %d %d \n",&nnode, &ncell, &nedge, &nbedge) != 4) {
    op_printf("error reading from new_grid.dat\n"); exit(-1);
  }

  cell   = (int *) malloc(4*ncell*sizeof(int));
  edge   = (int *) malloc(2*nedge*sizeof(int));
  ecell  = (int *) malloc(2*nedge*sizeof(int));
  bedge  = (int *) malloc(2*nbedge*sizeof(int));
  becell = (int *) malloc(  nbedge*sizeof(int));
  bound  = (int *) malloc(  nbedge*sizeof(int));

  x      = (double *) malloc(2*nnode*sizeof(double));
  q      = (double *) malloc(4*ncell*sizeof(double));
  qold   = (double *) malloc(4*ncell*sizeof(double));
  res    = (double *) malloc(4*ncell*sizeof(double));
  adt    = (double *) malloc(  ncell*sizeof(double));

  for (int n=0; n<nnode; n++) {
    if (fscanf(fp,"%lf %lf \n",&x[2*n], &x[2*n+1]) != 2) {
      op_printf("error reading from new_grid.dat\n"); exit(-1);
    }
  }

  for (int n=0; n<ncell; n++) {
    if (fscanf(fp,"%d %d %d %d \n",&cell[4*n  ], &cell[4*n+1],
                                   &cell[4*n+2], &cell[4*n+3]) != 4) {
      op_printf("error reading from new_grid.dat\n"); exit(-1);
    }
  }

  for (int n=0; n<nedge; n++) {
    if (fscanf(fp,"%d %d %d %d \n",&edge[2*n], &edge[2*n+1],
                                   &ecell[2*n],&ecell[2*n+1]) != 4) {
      op_printf("error reading from new_grid.dat\n"); exit(-1);
    }
  }

  for (int n=0; n<nbedge; n++) {
    if (fscanf(fp,"%d %d %d %d \n",&bedge[2*n],&bedge[2*n+1],
                                   &becell[n], &bound[n]) != 4) {
      op_printf("error reading from new_grid.dat\n"); exit(-1);
    }
  }

  fclose(fp);

  // set constants and initialise flow field and residual

  op_printf("initialising flow field \n");

  gam = 1.4f;
  gm1 = gam - 1.0f;
  cfl = 0.9f;
  eps = 0.05f;

  double mach  = 0.4f;
  double alpha = 3.0f*atan(1.0f)/45.0f;
  double p     = 1.0f;
  double r     = 1.0f;
  double u     = sqrt(gam*p/r)*mach;
  double e     = p/(r*gm1) + 0.5f*u*u;

  qinf[0] = r;
  qinf[1] = r*u;
  qinf[2] = 0.0f;
  qinf[3] = r*e;

  for (int n=0; n<ncell; n++) {
    for (int m=0; m<4; m++) {
        q[4*n+m] = qinf[m];
      res[4*n+m] = 0.0f;
    }
  }

  // declare sets, pointers, datasets and global constants

  op_set nodes  = op_decl_set(nnode,  "nodes");
  op_set edges  = op_decl_set(nedge,  "edges");
  op_set bedges = op_decl_set(nbedge, "bedges");
  op_set cells  = op_decl_set(ncell,  "cells");

  op_map pedge   = op_decl_map(edges, nodes,2,edge,  "pedge");
  op_map pecell  = op_decl_map(edges, cells,2,ecell, "pecell");
  op_map pbedge  = op_decl_map(bedges,nodes,2,bedge, "pbedge");
  op_map pbecell = op_decl_map(bedges,cells,1,becell,"pbecell");
  op_map pcell   = op_decl_map(cells, nodes,4,cell,  "pcell");

  op_dat p_bound = op_decl_dat(bedges,1,"int"  ,bound,"p_bound");
  op_dat p_x     = op_decl_dat(nodes ,2,"double",x    ,"p_x");
  op_dat p_q     = op_decl_dat(cells ,4,"double",q    ,"p_q");
  //op_dat p_qold  = op_decl_dat(cells ,4,"double",qold ,"p_qold");
  //op_dat p_adt   = op_decl_dat(cells ,1,"double",adt  ,"p_adt");
  //op_dat p_res   = op_decl_dat(cells ,4,"double",res  ,"p_res");

  // p_res, p_adt and p_qold  now declared as a temp op_dats during
  // the execution of the time-marching loop

  op_decl_const2("gam",1,"double",&gam);
  op_decl_const2("gm1",1,"double",&gm1);
  op_decl_const2("cfl",1,"double",&cfl);
  op_decl_const2("eps",1,"double",&eps);
  op_decl_const2("mach",1,"double",&mach);
  op_decl_const2("alpha",1,"double",&alpha);
  op_decl_const2("qinf",4,"double",qinf);

  op_diagnostic_output();

  double g_ncell = op_get_size(cells);

  //initialise timers for total execution wall time
  op_timers(&cpu_t1, &wall_t1);

  // main time-marching loop

  niter = 1000;

  for(int iter=1; iter<=niter; iter++) {

    double* tmp_elem = NULL;
    op_dat p_res   = op_decl_dat_temp(cells ,4,"double",tmp_elem,"p_res");
    op_dat p_adt   = op_decl_dat_temp(cells ,1,"double",tmp_elem,"p_adt");
    op_dat p_qold  = op_decl_dat_temp(cells ,4,"double",qold ,"p_qold");

    // save old flow solution

    op_par_loop_save_soln("save_soln",cells,
                op_arg_dat(p_q,-1,OP_ID,4,"double",OP_READ),
                op_arg_dat(p_qold,-1,OP_ID,4,"double",OP_WRITE));

    // predictor/corrector update loop

    for(int k=0; k<2; k++) {

      // calculate area/timstep

      op_par_loop_adt_calc("adt_calc",cells,
                  op_arg_dat(p_x,0,pcell,2,"double",OP_READ),
                  op_arg_dat(p_x,1,pcell,2,"double",OP_READ),
                  op_arg_dat(p_x,2,pcell,2,"double",OP_READ),
                  op_arg_dat(p_x,3,pcell,2,"double",OP_READ),
                  op_arg_dat(p_q,-1,OP_ID,4,"double",OP_READ),
                  op_arg_dat(p_adt,-1,OP_ID,1,"double",OP_WRITE));

      // calculate flux residual

      op_par_loop_res_calc("res_calc",edges,
                  op_arg_dat(p_x,0,pedge,2,"double",OP_READ),
                  op_arg_dat(p_x,1,pedge,2,"double",OP_READ),
                  op_arg_dat(p_q,0,pecell,4,"double",OP_READ),
                  op_arg_dat(p_q,1,pecell,4,"double",OP_READ),
                  op_arg_dat(p_adt,0,pecell,1,"double",OP_READ),
                  op_arg_dat(p_adt,1,pecell,1,"double",OP_READ),
                  op_arg_dat(p_res,0,pecell,4,"double",OP_INC),
                  op_arg_dat(p_res,1,pecell,4,"double",OP_INC));

      op_par_loop_bres_calc("bres_calc",bedges,
                  op_arg_dat(p_x,0,pbedge,2,"double",OP_READ),
                  op_arg_dat(p_x,1,pbedge,2,"double",OP_READ),
                  op_arg_dat(p_q,0,pbecell,4,"double",OP_READ),
                  op_arg_dat(p_adt,0,pbecell,1,"double",OP_READ),
                  op_arg_dat(p_res,0,pbecell,4,"double",OP_INC),
                  op_arg_dat(p_bound,-1,OP_ID,1,"int",OP_READ));

      // update flow field

      rms = 0.0;

      op_par_loop_update("update",cells,
                  op_arg_dat(p_qold,-1,OP_ID,4,"double",OP_READ),
                  op_arg_dat(p_q,-1,OP_ID,4,"double",OP_WRITE),
                  op_arg_dat(p_res,-1,OP_ID,4,"double",OP_RW),
                  op_arg_dat(p_adt,-1,OP_ID,1,"double",OP_READ),
                  op_arg_gbl(&rms,1,"double",OP_INC));
    }

    // print iteration history
    rms = sqrt(rms/(double)g_ncell );
    if (iter%100 == 0)
      op_printf(" %d  %10.5e \n",iter,rms);

    if (iter%1000 == 0 && g_ncell == 720000){ //defailt mesh -- for validation testing
      //op_printf(" %d  %3.16f \n",iter,rms);
      double diff=fabs((100.0*(rms/0.0001060114637578))-100.0);
      op_printf("\n\nTest problem with %d cells is within %3.15E %% of the expected solution\n",720000, diff);
      if(diff < 0.00001) {
        op_printf("This test is considered PASSED\n");
      }
      else {
        op_printf("This test is considered FAILED\n");
      }
    }

    if (op_free_dat_temp(p_res) < 0)
      op_printf("Error: temporary op_dat %s cannot be removed\n",p_res->name);
    if (op_free_dat_temp(p_adt) < 0)
      op_printf("Error: temporary op_dat %s cannot be removed\n",p_adt->name);
    if (op_free_dat_temp(p_qold) < 0)
      op_printf("Error: temporary op_dat %s cannot be removed\n",p_qold->name);
  }

  op_timers(&cpu_t2, &wall_t2);
  op_timing_output();
  op_printf("Max total runtime = %f\n",wall_t2-wall_t1);

  op_exit();

  free(cell);
  free(edge);
  free(ecell);
  free(bedge);
  free(becell);
  free(bound);
  free(x);
  free(q);
  free(qold);
  free(res);
  free(adt);
}
Example #7
0
int main(int argc, char **argv)
{
  // OP initialisation
  op_init(argc,argv,2);

  int    niter;
  double  rms;

  //timer
  double cpu_t1, cpu_t2, wall_t1, wall_t2;

  // set constants and initialise flow field and residual
  op_printf("initialising flow field \n");

  char file[] = "new_grid.h5";

  // declare sets, pointers, datasets and global constants

  op_set nodes  = op_decl_set_hdf5(file, "nodes");
  op_set edges  = op_decl_set_hdf5(file,  "edges");
  op_set bedges = op_decl_set_hdf5(file, "bedges");
  op_set cells  = op_decl_set_hdf5(file,  "cells");

  op_map pedge   = op_decl_map_hdf5(edges, nodes, 2, file, "pedge");
  op_map pecell  = op_decl_map_hdf5(edges, cells,2, file, "pecell");
  op_map pbedge  = op_decl_map_hdf5(bedges,nodes,2, file, "pbedge");
  op_map pbecell = op_decl_map_hdf5(bedges,cells,1, file, "pbecell");
  op_map pcell   = op_decl_map_hdf5(cells, nodes,4, file, "pcell");

  op_map m_test  = op_decl_map_hdf5(cells, nodes,4, file, "m_test");
  if (m_test == NULL) printf("m_test not found\n");

  op_dat p_bound = op_decl_dat_hdf5(bedges,1,"int"  ,file,"p_bound");
  op_dat p_x     = op_decl_dat_hdf5(nodes ,2,"double",file,"p_x");
  op_dat p_q     = op_decl_dat_hdf5(cells ,4,"double",file,"p_q");
  op_dat p_qold  = op_decl_dat_hdf5(cells ,4,"double",file,"p_qold");
  op_dat p_adt   = op_decl_dat_hdf5(cells ,1,"double",file,"p_adt");
  op_dat p_res   = op_decl_dat_hdf5(cells ,4,"double",file,"p_res");

  op_dat p_test  = op_decl_dat_hdf5(cells ,4,"double",file,"p_test");
  if (p_test == NULL) printf("p_test not found\n");

  op_get_const_hdf5("gam", 1, "double", (char *)&gam, "new_grid.h5");
  op_get_const_hdf5("gm1", 1, "double", (char *)&gm1, "new_grid.h5");
  op_get_const_hdf5("cfl", 1, "double", (char *)&cfl, "new_grid.h5");
  op_get_const_hdf5("eps", 1, "double", (char *)&eps, "new_grid.h5");
  op_get_const_hdf5("mach", 1, "double", (char *)&mach, "new_grid.h5");
  op_get_const_hdf5("alpha", 1, "double", (char *)&alpha, "new_grid.h5");
  op_get_const_hdf5("qinf", 4, "double", (char *)&qinf, "new_grid.h5");

  op_decl_const2("gam",1,"double",&gam);
  op_decl_const2("gm1",1,"double",&gm1);
  op_decl_const2("cfl",1,"double",&cfl);
  op_decl_const2("eps",1,"double",&eps);
  op_decl_const2("mach",1,"double",&mach);
  op_decl_const2("alpha",1,"double",&alpha);
  op_decl_const2("qinf",4,"double",qinf);

  op_diagnostic_output();

  //write back original data just to compare you read the file correctly
  //do an h5diff between new_grid_out.h5 and new_grid.h5 to
  //compare two hdf5 files
  op_dump_to_hdf5("new_grid_out.h5");

  op_write_const_hdf5("gam",1,"double",(char *)&gam,  "new_grid_out.h5");
  op_write_const_hdf5("gm1",1,"double",(char *)&gm1,  "new_grid_out.h5");
  op_write_const_hdf5("cfl",1,"double",(char *)&cfl,  "new_grid_out.h5");
  op_write_const_hdf5("eps",1,"double",(char *)&eps,  "new_grid_out.h5");
  op_write_const_hdf5("mach",1,"double",(char *)&mach,  "new_grid_out.h5");
  op_write_const_hdf5("alpha",1,"double",(char *)&alpha,  "new_grid_out.h5");
  op_write_const_hdf5("qinf",4,"double",(char *)qinf,  "new_grid_out.h5");

  //trigger partitioning and halo creation routines
  op_partition("PTSCOTCH", "KWAY", edges, pecell, p_x);
  //op_partition("PARMETIS", "KWAY", edges, pecell, p_x);

  int g_ncell = op_get_size(cells);


  //initialise timers for total execution wall time
  op_timers(&cpu_t1, &wall_t1);

  // main time-marching loop

  niter = 1000;

  for(int iter=1; iter<=niter; iter++) {

    //  save old flow solution

    op_par_loop_save_soln("save_soln",cells,
                op_arg_dat(p_q,-1,OP_ID,4,"double",OP_READ),
                op_arg_dat(p_qold,-1,OP_ID,4,"double",OP_WRITE));

    //  predictor/corrector update loop

    for(int k=0; k<2; k++) {

      //    calculate area/timstep

      op_par_loop_adt_calc("adt_calc",cells,
                  op_arg_dat(p_x,0,pcell,2,"double",OP_READ),
                  op_arg_dat(p_x,1,pcell,2,"double",OP_READ),
                  op_arg_dat(p_x,2,pcell,2,"double",OP_READ),
                  op_arg_dat(p_x,3,pcell,2,"double",OP_READ),
                  op_arg_dat(p_q,-1,OP_ID,4,"double",OP_READ),
                  op_arg_dat(p_adt,-1,OP_ID,1,"double",OP_WRITE));

      //    calculate flux residual

      op_par_loop_res_calc("res_calc",edges,
                  op_arg_dat(p_x,0,pedge,2,"double",OP_READ),
                  op_arg_dat(p_x,1,pedge,2,"double",OP_READ),
                  op_arg_dat(p_q,0,pecell,4,"double",OP_READ),
                  op_arg_dat(p_q,1,pecell,4,"double",OP_READ),
                  op_arg_dat(p_adt,0,pecell,1,"double",OP_READ),
                  op_arg_dat(p_adt,1,pecell,1,"double",OP_READ),
                  op_arg_dat(p_res,0,pecell,4,"double",OP_INC),
                  op_arg_dat(p_res,1,pecell,4,"double",OP_INC));

      op_par_loop_bres_calc("bres_calc",bedges,
                  op_arg_dat(p_x,0,pbedge,2,"double",OP_READ),
                  op_arg_dat(p_x,1,pbedge,2,"double",OP_READ),
                  op_arg_dat(p_q,0,pbecell,4,"double",OP_READ),
                  op_arg_dat(p_adt,0,pbecell,1,"double",OP_READ),
                  op_arg_dat(p_res,0,pbecell,4,"double",OP_INC),
                  op_arg_dat(p_bound,-1,OP_ID,1,"int",OP_READ));

      //    update flow field

      rms = 0.0;

      op_par_loop_update("update",cells,
                  op_arg_dat(p_qold,-1,OP_ID,4,"double",OP_READ),
                  op_arg_dat(p_q,-1,OP_ID,4,"double",OP_WRITE),
                  op_arg_dat(p_res,-1,OP_ID,4,"double",OP_RW),
                  op_arg_dat(p_adt,-1,OP_ID,1,"double",OP_READ),
                  op_arg_gbl(&rms,1,"double",OP_INC));
    }

    //  print iteration history

    rms = sqrt(rms/(double)g_ncell);

    if (iter%100 == 0)
      op_printf(" %d  %10.5e \n",iter,rms);
  }

  op_timers(&cpu_t2, &wall_t2);

  //write given op_dat's indicated segment of data to a memory block in the order it was originally
  //arranged (i.e. before partitioning and reordering)
  double* q = (double *)op_malloc(sizeof(double)*op_get_size(cells)*4);
  op_fetch_data_idx(p_q, q, 0, op_get_size(cells)-1);
  free(q);

  //write given op_dat's data to hdf5 file in the order it was originally arranged (i.e. before partitioning and reordering)
  op_fetch_data_hdf5_file(p_q, "file_name.h5");

  //printf("Root process = %d\n",op_is_root());

  //output the result dat array to files
  //op_dump_to_hdf5("new_grid_out.h5"); //writes data as it is held on each process (under MPI)

  //compress using
  // ~/hdf5/bin/h5repack -f GZIP=9 new_grid.h5 new_grid_pack.h5

  op_timing_output();
  op_printf("Max total runtime = %f\n",wall_t2-wall_t1);
  op_exit();
}
Example #8
0
int main(int argc, char **argv)
{
  // OP initialisation

  op_init(argc,argv,2);

  //MPI for user I/O
  int my_rank;
  int comm_size;
  MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
  MPI_Comm_size(MPI_COMM_WORLD, &comm_size);

  //timer
  double cpu_t1, cpu_t2, wall_t1, wall_t2;

  int    *bnode, *cell, *g_bnode, *g_cell;
  double  *xm, *g_xm;;

  int    nnode,ncell,nbnodes,niter, g_nnode, g_ncell, g_nbnodes;
  double  rms = 1;

  // read in grid

  op_printf("reading in grid \n");

  FILE *fp;
  if ( (fp = fopen("FE_grid.dat","r")) == NULL) {
    op_printf("can't open file FE_grid.dat\n"); exit(-1);
  }

  if (fscanf(fp,"%d %d %d \n",&g_nnode, &g_ncell, &g_nbnodes) != 3) {
    op_printf("error reading from new_grid.dat\n"); exit(-1);
  }

  if (my_rank == MPI_ROOT) {
    g_cell   = (int *) malloc(4*g_ncell*sizeof(int));
    g_bnode   = (int *) malloc(g_nbnodes*sizeof(int));
    g_xm      = (double *) malloc(2*g_nnode*sizeof(double));

    for (int n=0; n<g_nnode; n++) {
      if (fscanf(fp,"%lf %lf \n",&g_xm[2*n], &g_xm[2*n+1]) != 2) {
        op_printf("error reading from new_grid.dat\n"); exit(-1);
      }
    }

    for (int n=0; n<g_ncell; n++) {
      if (fscanf(fp,"%d %d %d %d \n",&g_cell[4*n  ], &g_cell[4*n+1],
      &g_cell[4*n+2], &g_cell[4*n+3]) != 4) {
        op_printf("error reading from new_grid.dat\n"); exit(-1);
      }
    }

    for (int n=0; n<g_nbnodes; n++) {
      if (fscanf(fp,"%d \n",&g_bnode[n]) != 1) {
        op_printf("error reading from new_grid.dat\n"); exit(-1);
      }
    }
  }
  fclose(fp);

  nnode = compute_local_size (g_nnode, comm_size, my_rank);
  ncell = compute_local_size (g_ncell, comm_size, my_rank);
  nbnodes = compute_local_size (g_nbnodes, comm_size, my_rank);

  cell   = (int *) malloc(4*ncell*sizeof(int));
  bnode   = (int *) malloc(nbnodes*sizeof(int));
  xm      = (double *) malloc(2*nnode*sizeof(double));

  scatter_int_array(g_cell, cell, comm_size, g_ncell,ncell, 4);
  scatter_int_array(g_bnode, bnode, comm_size, g_nbnodes,nbnodes, 1);
  scatter_double_array(g_xm, xm, comm_size, g_nnode,nnode, 2);

  if(my_rank == MPI_ROOT) {
    free(g_cell);
    free(g_xm);
    free(g_bnode);
  }

  // set constants and initialise flow field and residual

  op_printf("initialising flow field \n");

  double gam = 1.4;
  gm1 = gam - 1.0;
  gm1i = 1.0/gm1;

  wtg1[0] = 0.5;
  wtg1[1] = 0.5;
  xi1[0] = 0.211324865405187;
  xi1[1] = 0.788675134594813;
  Ng1[0] = 0.788675134594813;
  Ng1[1] = 0.211324865405187;
  Ng1[2] = 0.211324865405187;
  Ng1[3] = 0.788675134594813;
  Ng1_xi[0] = -1;
  Ng1_xi[1] = -1;
  Ng1_xi[2] = 1;
  Ng1_xi[3] = 1;
  wtg2[0] = 0.25;
  wtg2[1] = 0.25;
  wtg2[2] = 0.25;
  wtg2[3] = 0.25;
  Ng2[0] = 0.622008467928146; Ng2[1] = 0.166666666666667; Ng2[2] = 0.166666666666667; Ng2[3] = 0.044658198738520;
  Ng2[4] = 0.166666666666667; Ng2[5] = 0.622008467928146; Ng2[6] = 0.044658198738520; Ng2[7] = 0.166666666666667;
  Ng2[8] = 0.166666666666667; Ng2[9] = 0.044658198738520; Ng2[10] = 0.622008467928146; Ng2[11] = 0.166666666666667;
  Ng2[12] = 0.044658198738520; Ng2[13] = 0.166666666666667; Ng2[14] = 0.166666666666667; Ng2[15] = 0.622008467928146;
  Ng2_xi[0] = -0.788675134594813;  Ng2_xi[1] = 0.788675134594813;  Ng2_xi[2] = -0.211324865405187;Ng2_xi[3] = 0.211324865405187;
  Ng2_xi[4] = -0.788675134594813;  Ng2_xi[5] = 0.788675134594813;  Ng2_xi[6] = -0.211324865405187; Ng2_xi[7] = 0.211324865405187;
  Ng2_xi[8] = -0.211324865405187;  Ng2_xi[9] = 0.211324865405187;  Ng2_xi[10] = -0.788675134594813; Ng2_xi[11] = 0.788675134594813;
  Ng2_xi[12] = -0.211324865405187;  Ng2_xi[13] = 0.211324865405187;  Ng2_xi[14] = -0.788675134594813; Ng2_xi[15] = 0.788675134594813;
  Ng2_xi[16] = -0.788675134594813;  Ng2_xi[17] = -0.211324865405187;  Ng2_xi[18] = 0.788675134594813; Ng2_xi[19] = 0.211324865405187;
  Ng2_xi[20] = -0.211324865405187;  Ng2_xi[21] = -0.788675134594813;  Ng2_xi[22] = 0.211324865405187; Ng2_xi[23] = 0.788675134594813;
  Ng2_xi[24] = -0.788675134594813;  Ng2_xi[25] = -0.211324865405187;  Ng2_xi[26] = 0.788675134594813; Ng2_xi[27] = 0.211324865405187;
  Ng2_xi[28] = -0.211324865405187;  Ng2_xi[29] = -0.788675134594813;  Ng2_xi[30] = 0.211324865405187; Ng2_xi[31] = 0.788675134594813;

  minf = 0.1;
  m2 = minf*minf;
  freq = 1;
  kappa = 1;
  nmode = 0;

  mfan = 1.0;

  double *phim = (double *)malloc(nnode*sizeof(double));
  memset(phim,0,nnode*sizeof(double));
  for (int i = 0;i<nnode;i++) {
    phim[i] = minf*xm[2*i];
  }

  double *K = (double *)malloc(4*4*ncell*sizeof(double));
  memset(K,0,4*4*ncell*sizeof(double));
  double *resm = (double *)malloc(nnode*sizeof(double));
  memset(resm,0,nnode*sizeof(double));

  double *V = (double *)malloc(nnode*sizeof(double));
  memset(V,0,nnode*sizeof(double));
  double *P = (double *)malloc(nnode*sizeof(double));
  memset(P,0,nnode*sizeof(double));
  double *U = (double *)malloc(nnode*sizeof(double));
  memset(U,0,nnode*sizeof(double));

  // declare sets, pointers, datasets and global constants

  op_set nodes  = op_decl_set(nnode,  "nodes");
  op_set bnodes = op_decl_set(nbnodes, "bedges");
  op_set cells  = op_decl_set(ncell,  "cells");

  op_map pbnodes  = op_decl_map(bnodes,nodes,1,bnode, "pbedge");
  op_map pcell   = op_decl_map(cells, nodes,4,cell,  "pcell");

  op_dat p_xm     = op_decl_dat(nodes ,2,"double",xm    ,"p_x");
  op_dat p_phim  = op_decl_dat(nodes, 1, "double", phim, "p_phim");
  op_dat p_resm  = op_decl_dat(nodes, 1, "double", resm, "p_resm");
  op_dat p_K  = op_decl_dat(cells, 16, "double:soa", K, "p_K");

  op_dat p_V = op_decl_dat(nodes, 1, "double", V, "p_V");
  op_dat p_P = op_decl_dat(nodes, 1, "double", P, "p_P");
  op_dat p_U = op_decl_dat(nodes, 1, "double", U, "p_U");

  op_decl_const(1,"double",&gam  );
  op_decl_const(1,"double",&gm1  );
  op_decl_const(1,"double",&gm1i  );
  op_decl_const(1,"double",&m2  );
  op_decl_const(2,"double",wtg1  );
  op_decl_const(2,"double",xi1  );
  op_decl_const(4,"double",Ng1  );
  op_decl_const(4,"double",Ng1_xi  );
  op_decl_const(4,"double",wtg2  );
  op_decl_const(16,"double",Ng2  );
  op_decl_const(32,"double",Ng2_xi  );
  op_decl_const(1,"double",&minf  );
  op_decl_const(1,"double",&freq  );
  op_decl_const(1,"double",&kappa  );
  op_decl_const(1,"double",&nmode  );
  op_decl_const(1,"double",&mfan  );

  op_diagnostic_output();

  op_partition("PTSCOTCH", "KWAY", cells, pcell, NULL);

  // main time-marching loop

  niter = 20;
  //initialise timers for total execution wall time
  op_timers(&cpu_t1, &wall_t1);
  for(int iter=1; iter<=niter; iter++) {

   op_par_loop(res_calc,"res_calc",cells,
                op_arg_dat(p_xm,    -4, pcell, 2,"double",OP_READ),
                op_arg_dat(p_phim,  -4, pcell, 1,"double",OP_READ),
                op_arg_dat(p_K,     -1,     OP_ID, 16,"double:soa",OP_WRITE),
                op_arg_dat(p_resm,  -4, pcell, 1,"double",OP_INC)
                );

    op_par_loop(dirichlet,"dirichlet",bnodes,
                op_arg_dat(p_resm,  0, pbnodes, 1,"double",OP_WRITE));

    double c1 = 0;
    double c2 = 0;
    double c3 = 0;
    double alpha = 0;
    double beta = 0;

    //c1 = R'*R;
    op_par_loop(init_cg, "init_cg", nodes,
                op_arg_dat(p_resm, -1, OP_ID, 1, "double", OP_READ),
                op_arg_gbl(&c1, 1, "double", OP_INC),
                op_arg_dat(p_U, -1, OP_ID, 1, "double", OP_WRITE),
                op_arg_dat(p_V, -1, OP_ID, 1, "double", OP_WRITE),
                op_arg_dat(p_P, -1, OP_ID, 1, "double", OP_WRITE));

    //set up stopping conditions
    double res0 = sqrt(c1);
    double res = res0;
    int inner_iter = 0;
    int maxiter = 200;
    while (res > 0.1*res0 && inner_iter < maxiter) {
      //V = Stiffness*P
      op_par_loop(spMV, "spMV", cells,
                  op_arg_dat(p_V, -4, pcell, 1, "double", OP_INC),
                  op_arg_dat(p_K, -1, OP_ID, 16, "double:soa", OP_READ),
                  op_arg_dat(p_P, -4, pcell, 1, "double", OP_READ));

      op_par_loop(dirichlet,"dirichlet",bnodes,
                  op_arg_dat(p_V,  0, pbnodes, 1,"double",OP_WRITE));

      c2 = 0;

      //c2 = P'*V;
      op_par_loop(dotPV, "dotPV", nodes,
                  op_arg_dat(p_P, -1, OP_ID, 1, "double", OP_READ),
                  op_arg_dat(p_V, -1, OP_ID, 1, "double", OP_READ),
                  op_arg_gbl(&c2, 1, "double", OP_INC));

      alpha = c1/c2;

      //U = U + alpha*P;
      //resm = resm-alpha*V;
      op_par_loop(updateUR, "updateUR", nodes,
                  op_arg_dat(p_U, -1, OP_ID, 1, "double", OP_INC),
                  op_arg_dat(p_resm, -1, OP_ID, 1, "double", OP_INC),
                  op_arg_dat(p_P, -1, OP_ID, 1, "double", OP_READ),
                  op_arg_dat(p_V, -1, OP_ID, 1, "double", OP_RW),
                  op_arg_gbl(&alpha, 1, "double", OP_READ));

      c3 = 0;

      //c3 = resm'*resm;
      op_par_loop(dotR, "dotR", nodes,
                  op_arg_dat(p_resm, -1, OP_ID, 1, "double", OP_READ),
                  op_arg_gbl(&c3, 1, "double", OP_INC));
      beta = c3/c1;
      //P = beta*P+resm;
      op_par_loop(updateP, "updateP", nodes,
                  op_arg_dat(p_resm, -1, OP_ID, 1, "double", OP_READ),
                  op_arg_dat(p_P, -1, OP_ID, 1, "double", OP_RW),
                  op_arg_gbl(&beta, 1, "double", OP_READ));
      c1 = c3;
      res = sqrt(c1);
      inner_iter++;
    }
    rms = 0;
    //phim = phim - Stiffness\Load;
    op_par_loop(update, "update", nodes,
                op_arg_dat(p_phim, -1, OP_ID, 1, "double", OP_RW),
                op_arg_dat(p_resm, -1, OP_ID, 1, "double", OP_WRITE),
                op_arg_dat(p_U, -1, OP_ID, 1, "double", OP_READ),
                op_arg_gbl(&rms, 1, "double", OP_INC));
    op_printf("rms = %10.5e iter: %d\n", sqrt(rms)/sqrt(g_nnode), inner_iter);
  }
  op_timers(&cpu_t2, &wall_t2);
  op_timing_output();
  op_printf("Max total runtime = %f\n",wall_t2-wall_t1);
  op_exit();

  /*free(cell);
  free(bnode);
  free(xm);
  free(phim);
  free(K);
  free(resm);
  free(V);
  free(P);
  free(U);*/
}
Example #9
0
int main(int argc, char **argv)
{
  // OP initialisation
  op_init(argc,argv,2);

  int    *becell, *ecell,  *bound, *bedge, *edge, *cell;
  float  *x, *q, *qold, *adt, *res;

  int    nnode,ncell,nedge,nbedge,niter;
  float  rms;

  //timer
  double cpu_t1, cpu_t2, wall_t1, wall_t2;

  // read in grid

  op_printf("reading in grid \n");

  FILE *fp;
  if ( (fp = fopen("./new_grid.dat","r")) == NULL) {
    op_printf("can't open file new_grid.dat\n"); exit(-1);
  }

  if (fscanf(fp,"%d %d %d %d \n",&nnode, &ncell, &nedge, &nbedge) != 4) {
    op_printf("error reading from new_grid.dat\n"); exit(-1);
  }

  cell   = (int *) malloc(4*ncell*sizeof(int));
  edge   = (int *) malloc(2*nedge*sizeof(int));
  ecell  = (int *) malloc(2*nedge*sizeof(int));
  bedge  = (int *) malloc(2*nbedge*sizeof(int));
  becell = (int *) malloc(  nbedge*sizeof(int));
  bound  = (int *) malloc(  nbedge*sizeof(int));

  x      = (float *) malloc(2*nnode*sizeof(float));
  q      = (float *) malloc(4*ncell*sizeof(float));
  qold   = (float *) malloc(4*ncell*sizeof(float));
  res    = (float *) malloc(4*ncell*sizeof(float));
  adt    = (float *) malloc(  ncell*sizeof(float));

  for (int n=0; n<nnode; n++) {
    if (fscanf(fp,"%f %f \n",&x[2*n], &x[2*n+1]) != 2) {
      op_printf("error reading from new_grid.dat\n"); exit(-1);
    }
  }

  for (int n=0; n<ncell; n++) {
    if (fscanf(fp,"%d %d %d %d \n",&cell[4*n  ], &cell[4*n+1],
                                   &cell[4*n+2], &cell[4*n+3]) != 4) {
      op_printf("error reading from new_grid.dat\n"); exit(-1);
    }
  }

  for (int n=0; n<nedge; n++) {
    if (fscanf(fp,"%d %d %d %d \n",&edge[2*n], &edge[2*n+1],
                                   &ecell[2*n],&ecell[2*n+1]) != 4) {
      op_printf("error reading from new_grid.dat\n"); exit(-1);
    }
  }

  for (int n=0; n<nbedge; n++) {
    if (fscanf(fp,"%d %d %d %d \n",&bedge[2*n],&bedge[2*n+1],
                                   &becell[n], &bound[n]) != 4) {
      op_printf("error reading from new_grid.dat\n"); exit(-1);
    }
  }

  fclose(fp);

  // set constants and initialise flow field and residual

  op_printf("initialising flow field \n");

  gam = 1.4f;
  gm1 = gam - 1.0f;
  cfl = 0.9f;
  eps = 0.05f;

  float mach  = 0.4f;
  float alpha = 3.0f*atan(1.0f)/45.0f;
  float p     = 1.0f;
  float r     = 1.0f;
  float u     = sqrt(gam*p/r)*mach;
  float e     = p/(r*gm1) + 0.5f*u*u;

  qinf[0] = r;
  qinf[1] = r*u;
  qinf[2] = 0.0f;
  qinf[3] = r*e;

  for (int n=0; n<ncell; n++) {
    for (int m=0; m<4; m++) {
        q[4*n+m] = qinf[m];
      res[4*n+m] = 0.0f;
    }
  }

  // declare sets, pointers, datasets and global constants

  op_set nodes  = op_decl_set(nnode,  "nodes");
  op_set edges  = op_decl_set(nedge,  "edges");
  op_set bedges = op_decl_set(nbedge, "bedges");
  op_set cells  = op_decl_set(ncell,  "cells");

  op_map pedge   = op_decl_map(edges, nodes,2,edge,  "pedge");
  op_map pecell  = op_decl_map(edges, cells,2,ecell, "pecell");
  op_map pbedge  = op_decl_map(bedges,nodes,2,bedge, "pbedge");
  op_map pbecell = op_decl_map(bedges,cells,1,becell,"pbecell");
  op_map pcell   = op_decl_map(cells, nodes,4,cell,  "pcell");

  op_dat p_bound = op_decl_dat(bedges,1,"int"  ,bound,"p_bound");
  op_dat p_x     = op_decl_dat(nodes ,2,"float",x    ,"p_x");
  op_dat p_q     = op_decl_dat(cells ,4,"float",q    ,"p_q");
  op_dat p_qold  = op_decl_dat(cells ,4,"float",qold ,"p_qold");
  op_dat p_adt   = op_decl_dat(cells ,1,"float",adt  ,"p_adt");
  op_dat p_res   = op_decl_dat(cells ,4,"float",res  ,"p_res");

  op_decl_const2("gam",1,"float",&gam);
  op_decl_const2("gm1",1,"float",&gm1);
  op_decl_const2("cfl",1,"float",&cfl);
  op_decl_const2("eps",1,"float",&eps);
  op_decl_const2("mach",1,"float",&mach);
  op_decl_const2("alpha",1,"float",&alpha);
  op_decl_const2("qinf",4,"float",qinf);

  op_diagnostic_output();

  //initialise timers for total execution wall time
  op_timers(&cpu_t1, &wall_t1);

  // main time-marching loop

  niter = 1000;

  for(int iter=1; iter<=niter; iter++) {

    // save old flow solution

    op_par_loop_save_soln("save_soln",cells,
                op_arg_dat(p_q,-1,OP_ID,4,"float",OP_READ),
                op_arg_dat(p_qold,-1,OP_ID,4,"float",OP_WRITE));

    // predictor/corrector update loop

    for(int k=0; k<2; k++) {

      // calculate area/timstep

      op_par_loop_adt_calc("adt_calc",cells,
                  op_arg_dat(p_x,0,pcell,2,"float",OP_READ),
                  op_arg_dat(p_x,1,pcell,2,"float",OP_READ),
                  op_arg_dat(p_x,2,pcell,2,"float",OP_READ),
                  op_arg_dat(p_x,3,pcell,2,"float",OP_READ),
                  op_arg_dat(p_q,-1,OP_ID,4,"float",OP_READ),
                  op_arg_dat(p_adt,-1,OP_ID,1,"float",OP_WRITE));

      // calculate flux residual

      op_par_loop_res_calc("res_calc",edges,
                  op_arg_dat(p_x,0,pedge,2,"float",OP_READ),
                  op_arg_dat(p_x,1,pedge,2,"float",OP_READ),
                  op_arg_dat(p_q,0,pecell,4,"float",OP_READ),
                  op_arg_dat(p_q,1,pecell,4,"float",OP_READ),
                  op_arg_dat(p_adt,0,pecell,1,"float",OP_READ),
                  op_arg_dat(p_adt,1,pecell,1,"float",OP_READ),
                  op_arg_dat(p_res,0,pecell,4,"float",OP_INC),
                  op_arg_dat(p_res,1,pecell,4,"float",OP_INC));

      op_par_loop_bres_calc("bres_calc",bedges,
                  op_arg_dat(p_x,0,pbedge,2,"float",OP_READ),
                  op_arg_dat(p_x,1,pbedge,2,"float",OP_READ),
                  op_arg_dat(p_q,0,pbecell,4,"float",OP_READ),
                  op_arg_dat(p_adt,0,pbecell,1,"float",OP_READ),
                  op_arg_dat(p_res,0,pbecell,4,"float",OP_INC),
                  op_arg_dat(p_bound,-1,OP_ID,1,"int",OP_READ));

      // update flow field

      rms = 0.0;

      op_par_loop_update("update",cells,
                  op_arg_dat(p_qold,-1,OP_ID,4,"float",OP_READ),
                  op_arg_dat(p_q,-1,OP_ID,4,"float",OP_WRITE),
                  op_arg_dat(p_res,-1,OP_ID,4,"float",OP_RW),
                  op_arg_dat(p_adt,-1,OP_ID,1,"float",OP_READ),
                  op_arg_gbl(&rms,1,"float",OP_INC));
    }

    // print iteration history
    rms = sqrt(rms/(float) op_get_size(cells));
    if (iter%100 == 0)
      op_printf(" %d  %10.5e \n",iter,rms);
  }

  op_timers(&cpu_t2, &wall_t2);
  op_timing_output();
  op_printf("Max total runtime = \n%f\n",wall_t2-wall_t1);

  op_exit();

  free(cell);
  free(edge);
  free(ecell);
  free(bedge);
  free(becell);
  free(bound);
  free(x);
  free(q);
  free(qold);
  free(res);
  free(adt);
}
Example #10
0
int main(int argc, char **argv)
{
  // OP initialisation
  op_init(argc,argv,2);

  int    niter;
  double  rms;

  //timer
  double cpu_t1, cpu_t2, wall_t1, wall_t2;

  // set constants and initialise flow field and residual
  op_printf("initialising flow field \n");

  char file[] = "new_grid.h5";

  // declare sets, pointers, datasets and global constants

  op_set nodes  = op_decl_set_hdf5(file, "nodes");
  op_set edges  = op_decl_set_hdf5(file,  "edges");
  op_set bedges = op_decl_set_hdf5(file, "bedges");
  op_set cells  = op_decl_set_hdf5(file,  "cells");

  op_map pedge   = op_decl_map_hdf5(edges, nodes, 2, file, "pedge");
  op_map pecell  = op_decl_map_hdf5(edges, cells,2, file, "pecell");
  op_map pbedge  = op_decl_map_hdf5(bedges,nodes,2, file, "pbedge");
  op_map pbecell = op_decl_map_hdf5(bedges,cells,1, file, "pbecell");
  op_map pcell   = op_decl_map_hdf5(cells, nodes,4, file, "pcell");

  op_dat p_bound = op_decl_dat_hdf5(bedges,1,"int"  ,file,"p_bound");
  op_dat p_x     = op_decl_dat_hdf5(nodes ,2,"double",file,"p_x");
  op_dat p_q     = op_decl_dat_hdf5(cells ,4,"double",file,"p_q");
  op_dat p_qold  = op_decl_dat_hdf5(cells ,4,"double",file,"p_qold");
  op_dat p_adt   = op_decl_dat_hdf5(cells ,1,"double",file,"p_adt");
  op_dat p_res   = op_decl_dat_hdf5(cells ,4,"double",file,"p_res");

  op_get_const_hdf5("gam", 1, "double", (char *)&gam, "new_grid.h5");
  op_get_const_hdf5("gm1", 1, "double", (char *)&gm1, "new_grid.h5");
  op_get_const_hdf5("cfl", 1, "double", (char *)&cfl, "new_grid.h5");
  op_get_const_hdf5("eps", 1, "double", (char *)&eps, "new_grid.h5");
  op_get_const_hdf5("mach", 1, "double", (char *)&mach, "new_grid.h5");
  op_get_const_hdf5("alpha", 1, "double", (char *)&alpha, "new_grid.h5");
  op_get_const_hdf5("qinf", 4, "double", (char *)&qinf, "new_grid.h5");

  op_decl_const(1,"double",&gam  );
  op_decl_const(1,"double",&gm1  );
  op_decl_const(1,"double",&cfl  );
  op_decl_const(1,"double",&eps  );
  op_decl_const(1,"double",&mach );
  op_decl_const(1,"double",&alpha);
  op_decl_const(4,"double",qinf  );

  op_diagnostic_output();

  //write back original data just to compare you read the file correctly
  //do an h5diff between new_grid_out.h5 and new_grid.h5 to
  //compare two hdf5 files
  op_write_hdf5("new_grid_out.h5");

  op_write_const_hdf5("gam",1,"double",(char *)&gam,  "new_grid_out.h5");
  op_write_const_hdf5("gm1",1,"double",(char *)&gm1,  "new_grid_out.h5");
  op_write_const_hdf5("cfl",1,"double",(char *)&cfl,  "new_grid_out.h5");
  op_write_const_hdf5("eps",1,"double",(char *)&eps,  "new_grid_out.h5");
  op_write_const_hdf5("mach",1,"double",(char *)&mach,  "new_grid_out.h5");
  op_write_const_hdf5("alpha",1,"double",(char *)&alpha,  "new_grid_out.h5");
  op_write_const_hdf5("qinf",4,"double",(char *)qinf,  "new_grid_out.h5");

  //trigger partitioning and halo creation routines
  op_partition("PTSCOTCH", "KWAY", edges, pecell, p_x);

  int g_ncell = op_get_size(cells);


  //initialise timers for total execution wall time
  op_timers(&cpu_t1, &wall_t1);

  // main time-marching loop

  niter = 1000;

  for(int iter=1; iter<=niter; iter++) {

    //  save old flow solution

    op_par_loop(save_soln,"save_soln", cells,
        op_arg_dat(p_q,   -1,OP_ID, 4,"double",OP_READ ),
        op_arg_dat(p_qold,-1,OP_ID, 4,"double",OP_WRITE));

    //  predictor/corrector update loop

    for(int k=0; k<2; k++) {

      //    calculate area/timstep

      op_par_loop(adt_calc,"adt_calc",cells,
                  op_arg_dat(p_x,  -4,pcell, 2,"double",OP_READ ),
                  op_arg_dat(p_q,  -1,OP_ID, 4,"double",OP_READ ),
                  op_arg_dat(p_adt,-1,OP_ID, 1,"double",OP_WRITE));

      //    calculate flux residual

      op_par_loop(res_calc,"res_calc",edges,
                  op_arg_dat(p_x,   -2,pedge, 2,"double",OP_READ),
                  op_arg_dat(p_q,   -2,pecell,4,"double",OP_READ),
                  op_arg_dat(p_adt, -2,pecell,1,"double",OP_READ),
                  op_arg_dat(p_res, -2,pecell,4,"double",OP_INC ));

      op_par_loop(bres_calc,"bres_calc",bedges,
                  op_arg_dat(p_x,    -2,pbedge, 2,"double",OP_READ),
                  op_arg_dat(p_q,     0,pbecell,4,"double",OP_READ),
                  op_arg_dat(p_adt,   0,pbecell,1,"double",OP_READ),
                  op_arg_dat(p_res,   0,pbecell,4,"double",OP_INC ),
                  op_arg_dat(p_bound,-1,OP_ID  ,1,"int",  OP_READ));

      //    update flow field

      rms = 0.0;

      op_par_loop(update,"update",cells,
                  op_arg_dat(p_qold,-1,OP_ID, 4,"double",OP_READ ),
                  op_arg_dat(p_q,   -1,OP_ID, 4,"double",OP_WRITE),
                  op_arg_dat(p_res, -1,OP_ID, 4,"double",OP_RW   ),
                  op_arg_dat(p_adt, -1,OP_ID, 1,"double",OP_READ ),
                  op_arg_gbl(&rms,1,"double",OP_INC));
    }

    //  print iteration history

    rms = sqrt(rms/(double)g_ncell);

    if (iter%100 == 0)
      op_printf(" %d  %10.5e \n",iter,rms);
  }

  op_timers(&cpu_t2, &wall_t2);

  op_timing_output();
  op_printf("Max total runtime = \n%f\n",wall_t2-wall_t1);
  op_exit();
}
Example #11
0
int main(int argc, char **argv) {
  // OP initialisation
  op_init(argc, argv, 2);

  // MPI for user I/O
  int my_rank;
  int comm_size;
  MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
  MPI_Comm_size(MPI_COMM_WORLD, &comm_size);

  // timer
  double cpu_t1, cpu_t2, wall_t1, wall_t2;

  int *pp;
  float *A, *r, *u, *du;

  int nnode, nedge;

  /**------------------------BEGIN I/O and PARTITIONING ---------------------**/

  int g_nnode, g_nedge, g_n, g_e;

  g_nnode = (NN - 1) * (NN - 1);
  g_nedge = (NN - 1) * (NN - 1) + 4 * (NN - 1) * (NN - 2);

  int *g_pp = 0;
  float *g_A = 0, *g_r = 0, *g_u = 0, *g_du = 0;

  op_printf("Global number of nodes, edges = %d, %d\n", g_nnode, g_nedge);

  if (my_rank == MPI_ROOT) {
    g_pp = (int *)malloc(sizeof(int) * 2 * g_nedge);

    g_A = (float *)malloc(sizeof(float) * g_nedge);
    g_r = (float *)malloc(sizeof(float) * g_nnode);
    g_u = (float *)malloc(sizeof(float) * g_nnode);
    g_du = (float *)malloc(sizeof(float) * g_nnode);

    // create matrix and r.h.s., and set coordinates needed for renumbering /
    // partitioning

    g_e = 0;

    for (int i = 1; i < NN; i++) {
      for (int j = 1; j < NN; j++) {
        g_n = i - 1 + (j - 1) * (NN - 1);
        g_r[g_n] = 0.0f;
        g_u[g_n] = 0.0f;
        g_du[g_n] = 0.0f;

        g_pp[2 * g_e] = g_n;
        g_pp[2 * g_e + 1] = g_n;
        g_A[g_e] = -1.0f;
        g_e++;

        for (int pass = 0; pass < 4; pass++) {
          int i2 = i;
          int j2 = j;
          if (pass == 0)
            i2 += -1;
          if (pass == 1)
            i2 += 1;
          if (pass == 2)
            j2 += -1;
          if (pass == 3)
            j2 += 1;

          if ((i2 == 0) || (i2 == NN) || (j2 == 0) || (j2 == NN)) {
            g_r[g_n] += 0.25f;
          } else {
            g_pp[2 * g_e] = g_n;
            g_pp[2 * g_e + 1] = i2 - 1 + (j2 - 1) * (NN - 1);
            g_A[g_e] = 0.25f;
            g_e++;
          }
        }
      }
    }
  }

  /* Compute local sizes */
  nnode = compute_local_size(g_nnode, comm_size, my_rank);
  nedge = compute_local_size(g_nedge, comm_size, my_rank);
  op_printf("Number of nodes, edges on process %d = %d, %d\n", my_rank, nnode,
            nedge);

  /*Allocate memory to hold local sets, mapping tables and data*/
  pp = (int *)malloc(2 * sizeof(int) * nedge);

  A = (float *)malloc(nedge * sizeof(float));
  r = (float *)malloc(nnode * sizeof(float));
  u = (float *)malloc(nnode * sizeof(float));
  du = (float *)malloc(nnode * sizeof(float));

  /* scatter sets, mappings and data on sets*/
  scatter_int_array(g_pp, pp, comm_size, g_nedge, nedge, 2);
  scatter_float_array(g_A, A, comm_size, g_nedge, nedge, 1);
  scatter_float_array(g_r, r, comm_size, g_nnode, nnode, 1);
  scatter_float_array(g_u, u, comm_size, g_nnode, nnode, 1);
  scatter_float_array(g_du, du, comm_size, g_nnode, nnode, 1);

  /*Freeing memory allocated to gloabal arrays on rank 0
    after scattering to all processes*/
  if (my_rank == MPI_ROOT) {
    free(g_pp);
    free(g_A);
    free(g_r);
    free(g_u);
    free(g_du);
  }

  /**------------------------END I/O and PARTITIONING ---------------------**/

  // declare sets, pointers, and datasets

  op_set nodes = op_decl_set(nnode, "nodes");
  op_set edges = op_decl_set(nedge, "edges");

  op_map ppedge = op_decl_map(edges, nodes, 2, pp, "ppedge");

  op_dat p_A = op_decl_dat(edges, 1, "float", A, "p_A");
  op_dat p_r = op_decl_dat(nodes, 1, "float", r, "p_r");
  op_dat p_u = op_decl_dat(nodes, 1, "float", u, "p_u");
  op_dat p_du = op_decl_dat(nodes, 1, "float", du, "p_du");

  alpha = 1.0f;
  op_decl_const(1, "float", &alpha);

  op_diagnostic_output();

  // trigger partitioning and halo creation routines
  op_partition("PTSCOTCH", "KWAY", NULL, NULL, NULL);

  // initialise timers for total execution wall time
  op_timers(&cpu_t1, &wall_t1);

  // main iteration loop

  float u_sum, u_max, beta = 1.0f;

  for (int iter = 0; iter < NITER; iter++) {
    op_par_loop(res, "res", edges,
                op_arg_dat(p_A, -1, OP_ID, 1, "float", OP_READ),
                op_arg_dat(p_u, 1, ppedge, 1, "float", OP_READ),
                op_arg_dat(p_du, 0, ppedge, 1, "float", OP_INC),
                op_arg_gbl(&beta, 1, "float", OP_READ));

    u_sum = 0.0f;
    u_max = 0.0f;
    op_par_loop(update, "update", nodes,
                op_arg_dat(p_r, -1, OP_ID, 1, "float", OP_READ),
                op_arg_dat(p_du, -1, OP_ID, 1, "float", OP_RW),
                op_arg_dat(p_u, -1, OP_ID, 1, "float", OP_INC),
                op_arg_gbl(&u_sum, 1, "float", OP_INC),
                op_arg_gbl(&u_max, 1, "float", OP_MAX));

    op_printf("\n u max/rms = %f %f \n\n", u_max, sqrt(u_sum / g_nnode));
  }

  op_timers(&cpu_t2, &wall_t2);

  // get results data array
  op_fetch_data(p_u, u);

  // output the result dat array to files
  op_print_dat_to_txtfile(p_u, "out_grid_mpi.dat"); // ASCI
  op_print_dat_to_binfile(p_u, "out_grid_mpi.bin"); // Binary

  printf("solution on rank %d\n", my_rank);
  for (int i = 0; i < nnode; i++) {
    printf(" %7.4f", u[i]);
    fflush(stdout);
  }
  printf("\n");

  // print each mpi process's timing info for each kernel
  op_timing_output();

  // print total time for niter interations
  op_printf("Max total runtime = %f\n", wall_t2 - wall_t1);

  // gather results from all ranks and check
  float *ug = (float *)malloc(sizeof(float) * op_get_size(nodes));
  op_fetch_data_idx(p_u, ug, 0, op_get_size(nodes) - 1);
  int result = check_result<float>(ug, NN, TOLERANCE);
  free(ug);

  op_exit();

  free(u);
  free(pp);
  free(A);
  free(r);
  free(du);

  return result;
}
Example #12
0
int main(int argc, char **argv)
{
  // OP initialisation
  op_init(argc,argv,2);

  //MPI for user I/O
  int my_rank;
  int comm_size;
  MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
  MPI_Comm_size(MPI_COMM_WORLD, &comm_size);

  int    *becell, *ecell,  *bound, *bedge, *edge, *cell;
  float  *x, *q, *qold, *adt, *res;

  int    nnode,ncell,nedge,nbedge;

  /**------------------------BEGIN  I/O -------------------**/

  char file[] = "new_grid.dat";
  char file_out[] = "new_grid_out.h5";

  /* read in grid from disk on root processor */
  FILE *fp;

  if ( (fp = fopen(file,"r")) == NULL) {
    op_printf("can't open file %s\n",file); exit(-1);
  }

  int   g_nnode,g_ncell,g_nedge,g_nbedge;

  check_scan(fscanf(fp,"%d %d %d %d \n",&g_nnode, &g_ncell, &g_nedge, &g_nbedge), 4);

  int *g_becell = 0, *g_ecell = 0, *g_bound = 0, *g_bedge = 0, *g_edge = 0, *g_cell = 0;
  float *g_x = 0,*g_q = 0, *g_qold = 0, *g_adt = 0, *g_res = 0;

  // set constants

  op_printf("initialising flow field\n");
  gam = 1.4f;
  gm1 = gam - 1.0f;
  cfl = 0.9f;
  eps = 0.05f;

  float mach  = 0.4f;
  float alpha = 3.0f*atan(1.0f)/45.0f;
  float p     = 1.0f;
  float r     = 1.0f;
  float u     = sqrt(gam*p/r)*mach;
  float e     = p/(r*gm1) + 0.5f*u*u;

  qinf[0] = r;
  qinf[1] = r*u;
  qinf[2] = 0.0f;
  qinf[3] = r*e;

  op_printf("reading in grid \n");
  op_printf("Global number of nodes, cells, edges, bedges = %d, %d, %d, %d\n"
      ,g_nnode,g_ncell,g_nedge,g_nbedge);

  if(my_rank == MPI_ROOT) {
    g_cell   = (int *) malloc(4*g_ncell*sizeof(int));
    g_edge   = (int *) malloc(2*g_nedge*sizeof(int));
    g_ecell  = (int *) malloc(2*g_nedge*sizeof(int));
    g_bedge  = (int *) malloc(2*g_nbedge*sizeof(int));
    g_becell = (int *) malloc(  g_nbedge*sizeof(int));
    g_bound  = (int *) malloc(  g_nbedge*sizeof(int));

    g_x      = (float *) malloc(2*g_nnode*sizeof(float));
    g_q      = (float *) malloc(4*g_ncell*sizeof(float));
    g_qold   = (float *) malloc(4*g_ncell*sizeof(float));
    g_res    = (float *) malloc(4*g_ncell*sizeof(float));
    g_adt    = (float *) malloc(  g_ncell*sizeof(float));

    for (int n=0; n<g_nnode; n++){
      check_scan(fscanf(fp,"%f %f \n",&g_x[2*n], &g_x[2*n+1]), 2);
    }

    for (int n=0; n<g_ncell; n++) {
      check_scan(fscanf(fp,"%d %d %d %d \n",&g_cell[4*n  ], &g_cell[4*n+1],
            &g_cell[4*n+2], &g_cell[4*n+3]), 4);
    }

    for (int n=0; n<g_nedge; n++) {
      check_scan(fscanf(fp,"%d %d %d %d \n",&g_edge[2*n],&g_edge[2*n+1],
            &g_ecell[2*n],&g_ecell[2*n+1]), 4);
    }

    for (int n=0; n<g_nbedge; n++) {
      check_scan(fscanf(fp,"%d %d %d %d \n",&g_bedge[2*n],&g_bedge[2*n+1],
            &g_becell[n],&g_bound[n]), 4);
    }

    //initialise flow field and residual

    for (int n=0; n<g_ncell; n++) {
      for (int m=0; m<4; m++) {
        g_q[4*n+m] = qinf[m];
        g_res[4*n+m] = 0.0f;
      }
    }
  }

  fclose(fp);

  nnode = compute_local_size (g_nnode, comm_size, my_rank);
  ncell = compute_local_size (g_ncell, comm_size, my_rank);
  nedge = compute_local_size (g_nedge, comm_size, my_rank);
  nbedge = compute_local_size (g_nbedge, comm_size, my_rank);

  op_printf("Number of nodes, cells, edges, bedges on process %d = %d, %d, %d, %d\n"
      ,my_rank,nnode,ncell,nedge,nbedge);

  /*Allocate memory to hold local sets, mapping tables and data*/
  cell   = (int *) malloc(4*ncell*sizeof(int));
  edge   = (int *) malloc(2*nedge*sizeof(int));
  ecell  = (int *) malloc(2*nedge*sizeof(int));
  bedge  = (int *) malloc(2*nbedge*sizeof(int));
  becell = (int *) malloc(  nbedge*sizeof(int));
  bound  = (int *) malloc(  nbedge*sizeof(int));

  x      = (float *) malloc(2*nnode*sizeof(float));
  q      = (float *) malloc(4*ncell*sizeof(float));
  qold   = (float *) malloc(4*ncell*sizeof(float));
  res    = (float *) malloc(4*ncell*sizeof(float));
  adt    = (float *) malloc(  ncell*sizeof(float));

  /* scatter sets, mappings and data on sets*/
  scatter_int_array(g_cell, cell, comm_size, g_ncell,ncell, 4);
  scatter_int_array(g_edge, edge, comm_size, g_nedge,nedge, 2);
  scatter_int_array(g_ecell, ecell, comm_size, g_nedge,nedge, 2);
  scatter_int_array(g_bedge, bedge, comm_size, g_nbedge,nbedge, 2);
  scatter_int_array(g_becell, becell, comm_size, g_nbedge,nbedge, 1);
  scatter_int_array(g_bound, bound, comm_size, g_nbedge,nbedge, 1);

  scatter_float_array(g_x, x, comm_size, g_nnode,nnode, 2);
  scatter_float_array(g_q, q, comm_size, g_ncell,ncell, 4);
  scatter_float_array(g_qold, qold, comm_size, g_ncell,ncell, 4);
  scatter_float_array(g_res, res, comm_size, g_ncell,ncell, 4);
  scatter_float_array(g_adt, adt, comm_size, g_ncell,ncell, 1);

  /*Freeing memory allocated to gloabal arrays on rank 0
    after scattering to all processes*/
  if(my_rank == MPI_ROOT) {
    free(g_cell);
    free(g_edge);
    free(g_ecell);
    free(g_bedge);
    free(g_becell);
    free(g_bound);
    free(g_x );
    free(g_q);
    free(g_qold);
    free(g_adt);
    free(g_res);
  }

  /**------------------------END I/O  -----------------------**/

  /* FIXME: It's not clear to the compiler that sth. is going on behind the
     scenes here. Hence theses variables are reported as unused */

  op_set nodes  = op_decl_set(nnode,  "nodes");
  op_set edges  = op_decl_set(nedge,  "edges");
  op_set bedges = op_decl_set(nbedge, "bedges");
  op_set cells  = op_decl_set(ncell,  "cells");

  op_map pedge   = op_decl_map(edges, nodes,2,edge,  "pedge");
  op_map pecell  = op_decl_map(edges, cells,2,ecell, "pecell");
  op_map pbedge  = op_decl_map(bedges,nodes,2,bedge, "pbedge");
  op_map pbecell = op_decl_map(bedges,cells,1,becell,"pbecell");
  op_map pcell   = op_decl_map(cells, nodes,4,cell,  "pcell");

  op_dat p_bound = op_decl_dat(bedges,1,"int"  ,bound,"p_bound");
  op_dat p_x     = op_decl_dat(nodes ,2,"float",x    ,"p_x");
  op_dat p_q     = op_decl_dat(cells ,4,"float",q    ,"p_q");
  op_dat p_qold  = op_decl_dat(cells ,4,"float",qold ,"p_qold");
  op_dat p_adt   = op_decl_dat(cells ,1,"float",adt  ,"p_adt");
  op_dat p_res   = op_decl_dat(cells ,4,"float",res  ,"p_res");

  op_decl_const(1,"float",&gam  );
  op_decl_const(1,"float",&gm1  );
  op_decl_const(1,"float",&cfl  );
  op_decl_const(1,"float",&eps  );
  op_decl_const(1,"float",&mach );
  op_decl_const(1,"float",&alpha);
  op_decl_const(4,"float",qinf  );

  op_dump_to_hdf5(file_out);
  op_write_const_hdf5("gam",  1,"float",(char *)&gam,  "new_grid_out.h5");
  op_write_const_hdf5("gm1",  1,"float",(char *)&gm1,  "new_grid_out.h5");
  op_write_const_hdf5("cfl",  1,"float",(char *)&cfl,  "new_grid_out.h5");
  op_write_const_hdf5("eps",  1,"float",(char *)&eps,  "new_grid_out.h5");
  op_write_const_hdf5("mach", 1,"float",(char *)&mach, "new_grid_out.h5");
  op_write_const_hdf5("alpha",1,"float",(char *)&alpha,"new_grid_out.h5");
  op_write_const_hdf5("qinf", 4,"float",(char *)qinf,  "new_grid_out.h5");

  //create halos - for sanity check
  op_halo_create();

  op_exit();
}
Example #13
0
int main(int argc, char **argv) {
  // OP initialisation
  op_init(argc, argv, 2);

  int niter;
  float rms;

  // timer
  double cpu_t1, cpu_t2, wall_t1, wall_t2;

  // set constants and initialise flow field and residual
  op_printf("initialising flow field \n");

  char file[] = "new_grid.h5";

  // declare sets, pointers, datasets and global constants

  op_set nodes = op_decl_set_hdf5(file, "nodes");
  op_set edges = op_decl_set_hdf5(file, "edges");
  op_set bedges = op_decl_set_hdf5(file, "bedges");
  op_set cells = op_decl_set_hdf5(file, "cells");

  op_map pedge = op_decl_map_hdf5(edges, nodes, 2, file, "pedge");
  op_map pecell = op_decl_map_hdf5(edges, cells, 2, file, "pecell");
  op_map pbedge = op_decl_map_hdf5(bedges, nodes, 2, file, "pbedge");
  op_map pbecell = op_decl_map_hdf5(bedges, cells, 1, file, "pbecell");
  op_map pcell = op_decl_map_hdf5(cells, nodes, 4, file, "pcell");

  op_dat p_bound = op_decl_dat_hdf5(bedges, 1, "int", file, "p_bound");
  op_dat p_x = op_decl_dat_hdf5(nodes, 2, "float", file, "p_x");
  op_dat p_q = op_decl_dat_hdf5(cells, 4, "float", file, "p_q");
  op_dat p_qold = op_decl_dat_hdf5(cells, 4, "float", file, "p_qold");
  op_dat p_adt = op_decl_dat_hdf5(cells, 1, "float", file, "p_adt");
  op_dat p_res = op_decl_dat_hdf5(cells, 4, "float", file, "p_res");

  op_get_const_hdf5("gam", 1, "float", (char *)&gam, "new_grid.h5");
  op_get_const_hdf5("gm1", 1, "float", (char *)&gm1, "new_grid.h5");
  op_get_const_hdf5("cfl", 1, "float", (char *)&cfl, "new_grid.h5");
  op_get_const_hdf5("eps", 1, "float", (char *)&eps, "new_grid.h5");
  op_get_const_hdf5("mach", 1, "float", (char *)&mach, "new_grid.h5");
  op_get_const_hdf5("alpha", 1, "float", (char *)&alpha, "new_grid.h5");
  op_get_const_hdf5("qinf", 4, "float", (char *)&qinf, "new_grid.h5");

  op_decl_const2("gam", 1, "float", &gam);
  op_decl_const2("gm1", 1, "float", &gm1);
  op_decl_const2("cfl", 1, "float", &cfl);
  op_decl_const2("eps", 1, "float", &eps);
  op_decl_const2("mach", 1, "float", &mach);
  op_decl_const2("alpha", 1, "float", &alpha);
  op_decl_const2("qinf", 4, "float", qinf);

  if (op_is_root())
    op_diagnostic_output();

  // trigger partitioning and halo creation routines
  op_partition("PTSCOTCH", "KWAY", edges, pecell, p_x);
  // op_partition("PARMETIS", "KWAY", edges, pecell, p_x);

  int g_ncell = op_get_size(cells);

  // initialise timers for total execution wall time
  op_timers(&cpu_t1, &wall_t1);

  // main time-marching loop

  niter = 1000;

  for (int iter = 1; iter <= niter; iter++) {

    //  save old flow solution

    op_par_loop_save_soln("save_soln", cells,
                          op_arg_dat(p_q, -1, OP_ID, 4, "float", OP_READ),
                          op_arg_dat(p_qold, -1, OP_ID, 4, "float", OP_WRITE));

    //  predictor/corrector update loop

    for (int k = 0; k < 2; k++) {

      //    calculate area/timstep

      op_par_loop_adt_calc("adt_calc", cells,
                           op_arg_dat(p_x, 0, pcell, 2, "float", OP_READ),
                           op_arg_dat(p_x, 1, pcell, 2, "float", OP_READ),
                           op_arg_dat(p_x, 2, pcell, 2, "float", OP_READ),
                           op_arg_dat(p_x, 3, pcell, 2, "float", OP_READ),
                           op_arg_dat(p_q, -1, OP_ID, 4, "float", OP_READ),
                           op_arg_dat(p_adt, -1, OP_ID, 1, "float", OP_WRITE));

      //    calculate flux residual

      op_par_loop_res_calc("res_calc", edges,
                           op_arg_dat(p_x, 0, pedge, 2, "float", OP_READ),
                           op_arg_dat(p_x, 1, pedge, 2, "float", OP_READ),
                           op_arg_dat(p_q, 0, pecell, 4, "float", OP_READ),
                           op_arg_dat(p_q, 1, pecell, 4, "float", OP_READ),
                           op_arg_dat(p_adt, 0, pecell, 1, "float", OP_READ),
                           op_arg_dat(p_adt, 1, pecell, 1, "float", OP_READ),
                           op_arg_dat(p_res, 0, pecell, 4, "float", OP_INC),
                           op_arg_dat(p_res, 1, pecell, 4, "float", OP_INC));

      op_par_loop_bres_calc("bres_calc", bedges,
                            op_arg_dat(p_x, 0, pbedge, 2, "float", OP_READ),
                            op_arg_dat(p_x, 1, pbedge, 2, "float", OP_READ),
                            op_arg_dat(p_q, 0, pbecell, 4, "float", OP_READ),
                            op_arg_dat(p_adt, 0, pbecell, 1, "float", OP_READ),
                            op_arg_dat(p_res, 0, pbecell, 4, "float", OP_INC),
                            op_arg_dat(p_bound, -1, OP_ID, 1, "int", OP_READ));

      //    update flow field

      rms = 0.0;

      op_par_loop_update("update", cells,
                         op_arg_dat(p_qold, -1, OP_ID, 4, "float", OP_READ),
                         op_arg_dat(p_q, -1, OP_ID, 4, "float", OP_WRITE),
                         op_arg_dat(p_res, -1, OP_ID, 4, "float", OP_RW),
                         op_arg_dat(p_adt, -1, OP_ID, 1, "float", OP_READ),
                         op_arg_gbl(&rms, 1, "float", OP_INC));
    }

    //  print iteration history

    rms = sqrtf(rms / (float)g_ncell);

    if (iter % 100 == 0)
      op_printf(" %d  %10.5e \n", iter, rms);
    if (iter % 1000 == 0 &&
        g_ncell == 720000) { // defailt mesh -- for validation testing
      op_printf(" %d  %3.16f \n", iter, rms);
      float diff = fabsf((100.0 * (rms / 0.000105987)) - 100.0);
      op_printf("\n\nTest problem with %d cells is within %3.15E %% of the "
                "expected solution\n",
                720000, diff);
      if (diff < 0.1) {
        op_printf("This test is considered PASSED\n");
      } else {
        op_printf("This test is considered FAILED\n");
      }
    }
  }

  op_timers(&cpu_t2, &wall_t2);

  op_timing_output();
  op_printf("Max total runtime = %f\n", wall_t2 - wall_t1);
  op_exit();
}
Example #14
0
int main(int argc, char **argv) {
  // OP initialisation
  op_init(argc, argv, 5);

  // timer
  double cpu_t1, cpu_t2, wall_t1, wall_t2;

  int nnode, nedge, n, e;

  nnode = (NN - 1) * (NN - 1);
  nedge = (NN - 1) * (NN - 1) + 4 * (NN - 1) * (NN - 2);

  int *pp = (int *)malloc(sizeof(int) * 2 * nedge);

  double *A = (double *)malloc(sizeof(double) * nedge);
  double *r = (double *)malloc(sizeof(double) * nnode);
  double *u = (double *)malloc(sizeof(double) * nnode);
  double *du = (double *)malloc(sizeof(double) * nnode);

  // create matrix and r.h.s., and set coordinates needed for renumbering /
  // partitioning

  e = 0;

  for (int i = 1; i < NN; i++) {
    for (int j = 1; j < NN; j++) {
      n = i - 1 + (j - 1) * (NN - 1);
      r[n] = 0.0f;
      u[n] = 0.0f;
      du[n] = 0.0f;

      pp[2 * e] = n;
      pp[2 * e + 1] = n;
      A[e] = -1.0f;
      e++;

      for (int pass = 0; pass < 4; pass++) {
        int i2 = i;
        int j2 = j;
        if (pass == 0)
          i2 += -1;
        if (pass == 1)
          i2 += 1;
        if (pass == 2)
          j2 += -1;
        if (pass == 3)
          j2 += 1;

        if ((i2 == 0) || (i2 == NN) || (j2 == 0) || (j2 == NN)) {
          r[n] += 0.25f;
        } else {
          pp[2 * e] = n;
          pp[2 * e + 1] = i2 - 1 + (j2 - 1) * (NN - 1);
          A[e] = 0.25f;
          e++;
        }
      }
    }
  }

  // declare sets, pointers, and datasets

  op_set nodes = op_decl_set(nnode, "nodes");
  op_set edges = op_decl_set(nedge, "edges");

  op_map ppedge = op_decl_map(edges, nodes, 2, pp, "ppedge");

  op_dat p_A = op_decl_dat(edges, 1, "double", A, "p_A");
  op_dat p_r = op_decl_dat(nodes, 1, "double", r, "p_r");
  op_dat p_u = op_decl_dat(nodes, 1, "double", u, "p_u");
  op_dat p_du = op_decl_dat(nodes, 1, "double", du, "p_du");

  alpha = 1.0f;
  op_decl_const2("alpha", 1, "double", &alpha);

  op_diagnostic_output();

  // initialise timers for total execution wall time
  op_timers(&cpu_t1, &wall_t1);

  // main iteration loop

  double u_sum, u_max, beta = 1.0f;

  for (int iter = 0; iter < NITER; iter++) {
    op_par_loop_res("res", edges,
                    op_arg_dat(p_A, -1, OP_ID, 1, "double", OP_READ),
                    op_arg_dat(p_u, 1, ppedge, 1, "double", OP_READ),
                    op_arg_dat(p_du, 0, ppedge, 1, "double", OP_INC),
                    op_arg_gbl(&beta, 1, "double", OP_READ));

    u_sum = 0.0f;
    u_max = 0.0f;
    op_par_loop_update("update", nodes,
                       op_arg_dat(p_r, -1, OP_ID, 1, "double", OP_READ),
                       op_arg_dat(p_du, -1, OP_ID, 1, "double", OP_RW),
                       op_arg_dat(p_u, -1, OP_ID, 1, "double", OP_INC),
                       op_arg_gbl(&u_sum, 1, "double", OP_INC),
                       op_arg_gbl(&u_max, 1, "double", OP_MAX));
    op_printf("\n u max/rms = %f %f \n\n", u_max, sqrt(u_sum / nnode));
  }

  op_timers(&cpu_t2, &wall_t2);

  // print out results
  op_printf("\n  Results after %d iterations:\n\n", NITER);

  op_fetch_data(p_u, u);

  for (int pass = 0; pass < 1; pass++) {
    for (int j = NN - 1; j > 0; j--) {
      for (int i = 1; i < NN; i++) {
        if (pass == 0)
          op_printf(" %7.4f", u[i - 1 + (j - 1) * (NN - 1)]);
        else if (pass == 1)
          op_printf(" %7.4f", du[i - 1 + (j - 1) * (NN - 1)]);
        else if (pass == 2)
          op_printf(" %7.4f", r[i - 1 + (j - 1) * (NN - 1)]);
      }
      op_printf("\n");
    }
    op_printf("\n");
  }

  op_timing_output();

  // print total time for niter interations
  op_printf("Max total runtime = %f\n", wall_t2 - wall_t1);

  int result = check_result<double>(u, NN, TOLERANCE);
  op_exit();

  free(pp);
  free(A);
  free(u);
  free(du);
  free(r);

  return result;
}
Example #15
0
int main(int argc, char **argv)
{
  // OP initialisation
  op_init(argc,argv,2);

  int    niter;
  double  rms;

  //timer
  double cpu_t1, cpu_t2, wall_t1, wall_t2;

  // set constants and initialise flow field and residual
  op_printf("initialising flow field \n");

  gam = 1.4f;
  gm1 = gam - 1.0f;
  cfl = 0.9f;
  eps = 0.05f;

  double mach  = 0.4f;
  double alpha = 3.0f*atan(1.0f)/45.0f;
  double p     = 1.0f;
  double r     = 1.0f;
  double u     = sqrt(gam*p/r)*mach;
  double e     = p/(r*gm1) + 0.5f*u*u;

  qinf[0] = r;
  qinf[1] = r*u;
  qinf[2] = 0.0f;
  qinf[3] = r*e;

  char file[] = "new_grid.h5";//"new_grid-26mil.h5";

  // declare sets, pointers, datasets and global constants

  op_set nodes  = op_decl_set_hdf5(file, "nodes");
  op_set edges  = op_decl_set_hdf5(file,  "edges");
  op_set bedges = op_decl_set_hdf5(file, "bedges");
  op_set cells  = op_decl_set_hdf5(file,  "cells");

  op_map pedge   = op_decl_map_hdf5(edges, nodes, 2, file, "pedge");
  op_map pecell  = op_decl_map_hdf5(edges, cells,2, file, "pecell");
  op_map pbedge  = op_decl_map_hdf5(bedges,nodes,2, file, "pbedge");
  op_map pbecell = op_decl_map_hdf5(bedges,cells,1, file, "pbecell");
  op_map pcell   = op_decl_map_hdf5(cells, nodes,4, file, "pcell");

  op_dat p_bound = op_decl_dat_hdf5(bedges,1,"int"  ,file,"p_bound");
  op_dat p_x     = op_decl_dat_hdf5(nodes ,2,"double",file,"p_x");
  op_dat p_q     = op_decl_dat_hdf5(cells ,4,"double",file,"p_q");
  op_dat p_qold  = op_decl_dat_hdf5(cells ,4,"double",file,"p_qold");
  op_dat p_adt   = op_decl_dat_hdf5(cells ,1,"double",file,"p_adt");
  op_dat p_res   = op_decl_dat_hdf5(cells ,4,"double",file,"p_res");

  op_decl_const(1,"double",&gam  );
  op_decl_const(1,"double",&gm1  );
  op_decl_const(1,"double",&cfl  );
  op_decl_const(1,"double",&eps  );
  op_decl_const(1,"double",&mach );
  op_decl_const(1,"double",&alpha);
  op_decl_const(4,"double",qinf  );

  op_diagnostic_output();

  int g_ncell = op_get_size(cells);

  //initialise timers for total execution wall time
  op_timers(&cpu_t1, &wall_t1);

  // main time-marching loop

  niter = 1000;

  for(int iter=1; iter<=niter; iter++) {

    //  save old flow solution

    op_par_loop(save_soln,"save_soln", cells,
        op_arg_dat(p_q,   -1,OP_ID, 4,"double",OP_READ ),
        op_arg_dat(p_qold,-1,OP_ID, 4,"double",OP_WRITE));

    //  predictor/corrector update loop

    for(int k=0; k<2; k++) {

      //    calculate area/timstep

      op_par_loop(adt_calc,"adt_calc",cells,
          op_arg_dat(p_x,   0,pcell, 2,"double",OP_READ ),
          op_arg_dat(p_x,   1,pcell, 2,"double",OP_READ ),
          op_arg_dat(p_x,   2,pcell, 2,"double",OP_READ ),
          op_arg_dat(p_x,   3,pcell, 2,"double",OP_READ ),
          op_arg_dat(p_q,  -1,OP_ID, 4,"double",OP_READ ),
          op_arg_dat(p_adt,-1,OP_ID, 1,"double",OP_WRITE));

      //    calculate flux residual

      op_par_loop(res_calc,"res_calc",edges,
          op_arg_dat(p_x,    0,pedge, 2,"double",OP_READ),
          op_arg_dat(p_x,    1,pedge, 2,"double",OP_READ),
          op_arg_dat(p_q,    0,pecell,4,"double",OP_READ),
          op_arg_dat(p_q,    1,pecell,4,"double",OP_READ),
          op_arg_dat(p_adt,  0,pecell,1,"double",OP_READ),
          op_arg_dat(p_adt,  1,pecell,1,"double",OP_READ),
          op_arg_dat(p_res,  0,pecell,4,"double",OP_INC ),
          op_arg_dat(p_res,  1,pecell,4,"double",OP_INC ));

      op_par_loop(bres_calc,"bres_calc",bedges,
          op_arg_dat(p_x,     0,pbedge, 2,"double",OP_READ),
          op_arg_dat(p_x,     1,pbedge, 2,"double",OP_READ),
          op_arg_dat(p_q,     0,pbecell,4,"double",OP_READ),
          op_arg_dat(p_adt,   0,pbecell,1,"double",OP_READ),
          op_arg_dat(p_res,   0,pbecell,4,"double",OP_INC ),
          op_arg_dat(p_bound,-1,OP_ID  ,1,"int",  OP_READ));

      //    update flow field

      rms = 0.0;

      op_par_loop(update,"update",cells,
          op_arg_dat(p_qold,-1,OP_ID, 4,"double",OP_READ ),
          op_arg_dat(p_q,   -1,OP_ID, 4,"double",OP_WRITE),
          op_arg_dat(p_res, -1,OP_ID, 4,"double",OP_RW   ),
          op_arg_dat(p_adt, -1,OP_ID, 1,"double",OP_READ ),
          op_arg_gbl(&rms,1,"double",OP_INC));
    }

    //  print iteration history

    rms = sqrt(rms/(double)g_ncell);

    if (iter%100 == 0)
      op_printf(" %d  %10.5e \n",iter,rms);
  }

  op_timers(&cpu_t2, &wall_t2);
  op_timing_output();
  op_printf("Max total runtime = \n%f\n",wall_t2-wall_t1);
  op_exit();
}
Example #16
0
int main(int argc, char **argv)
{
  // OP initialisation
  op_init(argc,argv,2);

  int    *becell, *ecell,  *bound, *bedge, *edge, *cell;
  double  *x, *q, *qold, *adt, *res;

  int    nnode,ncell,nedge,nbedge;

  //timer
  double cpu_t1, cpu_t2, wall_t1, wall_t2;

  // read in airfoil grid

  op_printf("reading in data \n");

  FILE *fp;
  if ( (fp = fopen("./new_grid.dat","r")) == NULL) {
    op_printf("can't open file new_grid.dat\n"); exit(-1);
  }

  if (fscanf(fp,"%d %d %d %d \n",&nnode, &ncell, &nedge, &nbedge) != 4) {
    op_printf("error reading from new_grid.dat\n"); exit(-1);
  }

  cell   = (int *) malloc(4*ncell*sizeof(int));
  edge   = (int *) malloc(2*nedge*sizeof(int));
  ecell  = (int *) malloc(2*nedge*sizeof(int));
  bedge  = (int *) malloc(2*nbedge*sizeof(int));
  becell = (int *) malloc(  nbedge*sizeof(int));
  bound  = (int *) malloc(  nbedge*sizeof(int));

  x      = (double *) malloc(2*nnode*sizeof(double));
  q      = (double *) malloc(4*ncell*sizeof(double));
  qold   = (double *) malloc(4*ncell*sizeof(double));
  res    = (double *) malloc(4*ncell*sizeof(double));
  adt    = (double *) malloc(  ncell*sizeof(double));

  for (int n=0; n<nnode; n++) {
    if (fscanf(fp,"%lf %lf \n",&x[2*n], &x[2*n+1]) != 2) {
      op_printf("error reading from new_grid.dat\n"); exit(-1);
    }
  }

  for (int n=0; n<ncell; n++) {
    if (fscanf(fp,"%d %d %d %d \n",&cell[4*n  ], &cell[4*n+1],
        &cell[4*n+2], &cell[4*n+3]) != 4) {
      op_printf("error reading from new_grid.dat\n"); exit(-1);
    }
  }

  for (int n=0; n<nedge; n++) {
    if (fscanf(fp,"%d %d %d %d \n",&edge[2*n], &edge[2*n+1],
        &ecell[2*n],&ecell[2*n+1]) != 4) {
      op_printf("error reading from new_grid.dat\n"); exit(-1);
    }
  }

  for (int n=0; n<nbedge; n++) {
    if (fscanf(fp,"%d %d %d %d \n",&bedge[2*n],&bedge[2*n+1],
        &becell[n], &bound[n]) != 4) {
      op_printf("error reading from new_grid.dat\n"); exit(-1);
    }
  }

  fclose(fp);

  // declare sets, pointers, datasets

  op_set edges  = op_decl_set(nedge,  "edges");
  op_set cells  = op_decl_set(ncell,  "cells");

  op_map pecell  = op_decl_map(edges, cells,2,ecell, "pecell");
  op_dat p_res   = op_decl_dat(cells ,4,"double",res  ,"p_res");

  int count;

  op_diagnostic_output();

  //initialise timers for total execution wall time
  op_timers(&cpu_t1, &wall_t1);

  //indirect reduction
  count = 0;
  op_par_loop_res_calc("res_calc",edges,
              op_arg_dat(p_res,0,pecell,4,"double",OP_INC),
              op_arg_gbl(&count,1,"int",OP_INC));
  op_printf("number of edges:: %d should be: %d \n",count,nedge);
  if (count != nedge) op_printf("indirect reduction FAILED\n");
  else op_printf("indirect reduction PASSED\n");
  //direct reduction
  count = 0;
  op_par_loop_update("update",cells,
              op_arg_dat(p_res,-1,OP_ID,4,"double",OP_RW),
              op_arg_gbl(&count,1,"int",OP_INC));
  op_printf("number of cells: %d should be: %d \n",count,ncell);
  if (count != ncell) op_printf("direct reduction FAILED\n");
  else op_printf("direct reduction PASSED\n");

  op_timers(&cpu_t2, &wall_t2);
  op_timing_output();

  op_exit();

  free(cell);
  free(edge);
  free(ecell);
  free(bedge);
  free(becell);
  free(bound);
  free(x);
  free(q);
  free(qold);
  free(res);
  free(adt);
}