Example #1
0
// KFACE heuristic: bonus (or penalty) for King facing toward the other King
ev_score_t kface(position_t *p, rnk_t r, fil_t f, full_board_t* board) {
  piece_t x = get_piece(p, r, f, board);
  color_t c = color_of(x);
  square_t opp_sq = board->pieces[opp_color(c)][0];
  int delta_fil = fil_of(opp_sq) - f;
  int delta_rnk = rnk_of(opp_sq) - r;
  int bonus;

  switch (ori_of(x)) {
    case NN:
      bonus = delta_rnk;
      break;

    case EE:
      bonus = delta_fil;
      break;

    case SS:
      bonus = -delta_rnk;
      break;

    case WW:
      bonus = -delta_fil;
      break;

    default:
      bonus = 0;
      tbassert(false, "Illegal King orientation.\n");
  }

  return (bonus * KFACE) / (abs(delta_rnk) + abs(delta_fil));
}
Example #2
0
// KAGGRESSIVE heuristic: bonus for King with more space to back
ev_score_t kaggressive(position_t *p, rnk_t r, fil_t f, full_board_t* board) {
  piece_t x = get_piece(p, r, f, board);
  color_t c = color_of(x);
  tbassert(ptype_of(x) == KING, "ptype_of(x) = %d\n", ptype_of(x));

  square_t opp_sq = board->pieces[opp_color(c)][0];
  fil_t of = fil_of(opp_sq);
  rnk_t _or = (rnk_t) rnk_of(opp_sq);

  int delta_fil = of - f;
  int delta_rnk = _or - r;

  int bonus = 0;

  if (delta_fil >= 0 && delta_rnk >= 0) {
    bonus = (f + 1) * (r + 1);
  } else if (delta_fil <= 0 && delta_rnk >= 0) {
    bonus = (BOARD_WIDTH - f) * (r + 1);
  } else if (delta_fil <= 0 && delta_rnk <= 0) {
    bonus = (BOARD_WIDTH - f) * (BOARD_WIDTH - r);
  } else if (delta_fil >= 0 && delta_rnk <= 0) {
    bonus = (f + 1) * (BOARD_WIDTH - r);
  }

  return (KAGGRESSIVE * bonus) / (BOARD_WIDTH * BOARD_WIDTH);
}
// KFACE heuristic: bonus (or penalty) for King facing toward the other King
ev_score_t kface(position_t *p, fil_t f, rnk_t r) {
  square_t sq = square_of(f, r);
  piece_t x = p->board[sq];
  color_t c = color_of(x);
  square_t opp_sq = p->kloc[opp_color(c)];
  int delta_fil = fil_of(opp_sq) - f;
  int delta_rnk = rnk_of(opp_sq) - r;
  int bonus;

  switch (ori_of(x)) {
    case NN:
      bonus = delta_rnk;
      break;

    case EE:
      bonus = delta_fil;
      break;

    case SS:
      bonus = -delta_rnk;
      break;

    case WW:
      bonus = -delta_fil;
      break;

    default:
      bonus = 0;
      tbassert(false, "Illegal King orientation.\n");
  }

  return (bonus * KFACE) / (abs(delta_rnk) + abs(delta_fil));
}
// KAGGRESSIVE heuristic: bonus for King with more space to back
ev_score_t kaggressive_old(position_t *p, fil_t f, rnk_t r) {
  square_t sq = square_of(f, r);
  piece_t x = p->board[sq];
  color_t c = color_of(x);
  tbassert(ptype_of(x) == KING, "ptype_of(x) = %d\n", ptype_of(x));

  square_t opp_sq = p->kloc[opp_color(c)];
  fil_t of = fil_of(opp_sq);
  rnk_t _or = (rnk_t) rnk_of(opp_sq);

  int delta_fil = of - f;
  int delta_rnk = _or - r;

  int bonus = 0;

  if (delta_fil >= 0 && delta_rnk >= 0) {
    bonus = (f + 1) * (r + 1);
  } else if (delta_fil <= 0 && delta_rnk >= 0) {
    bonus = (BOARD_WIDTH - f) * (r + 1);
  } else if (delta_fil <= 0 && delta_rnk <= 0) {
    bonus = (BOARD_WIDTH - f) * (BOARD_WIDTH - r);
  } else if (delta_fil >= 0 && delta_rnk <= 0) {
    bonus = (f + 1) * (BOARD_WIDTH - r);
  }

  return (KAGGRESSIVE * bonus) / (BOARD_WIDTH * BOARD_WIDTH);
}
// Marks the path of the laser until it hits a piece or goes off the board. 
// Returns the number of unpinned pawns.
//
// p : current board state
// laser_map : end result will be stored here. Every square on the
//             path of the laser is marked with mark_mask
// c : color of king shooting laser
// mark_mask: what each square is marked with
int mark_laser_path(position_t *p, char *laser_map, color_t c,
                     char mark_mask) {
  int pinned_pawns = 0;
  uint8_t total_pawns;
  color_t color = opp_color(c);
  square_t o_king_sq = p->kloc[color];

  if (c == WHITE) { // opposing king pins our pawns 
    total_pawns = p->pawn_count[BLACK];
  } else {
    total_pawns = p->pawn_count[WHITE];
  }

  // Fire laser, recording in laser_map
  square_t sq = p->kloc[c];
  int bdir = ori_of(p->board[sq]);
  int beam = beam_of(bdir);

  tbassert(ptype_of(p->board[sq]) == KING,
           "ptype: %d\n", ptype_of(p->board[sq]));
  laser_map[sq] |= mark_mask;

  // we update h_attackable here
  h_attackable = h_dist(sq, o_king_sq);

  while (true) {
    sq += beam;
    laser_map[sq] |= mark_mask;
    tbassert(sq < ARR_SIZE && sq >= 0, "sq: %d\n", sq);

    switch (ptype_of(p->board[sq])) {
      case EMPTY:  // empty square
        h_attackable += h_dist(sq, o_king_sq);
        break;
      case PAWN:  // Pawn
        h_attackable += h_dist(sq, o_king_sq);
        if (color_of(p->board[sq]) == color) {
          pinned_pawns += 1;
        }
        bdir = reflect_of(bdir, ori_of(p->board[sq]));
        if (bdir < 0) {  // Hit back of Pawn
          return total_pawns - pinned_pawns;
        }
        beam = beam_of(bdir);
        break;
      case KING:  // King
        h_attackable += h_dist(sq, o_king_sq);
          return total_pawns - pinned_pawns;
        break;
      case INVALID:  // Ran off edge of board
        return total_pawns - pinned_pawns;
        break;
      default:  // Shouldna happen, man!
        tbassert(false, "Not cool, man.  Not cool.\n");
        break;
    }
  }
}
Example #6
0
// H_SQUARES_ATTACKABLE heuristic: for shooting the enemy king
float h_squares_attackable(position_t *p, color_t c,
      square_t* laser_list, int laser_list_length, full_board_t* board) {
  square_t o_king_sq = board->pieces[opp_color(c)][0];
  rnk_t k_rnk = rnk_of(o_king_sq);
  fil_t k_fil = fil_of(o_king_sq);
  float h_attackable = 0;

  for (int i = 0; i < laser_list_length - 1; i++) {
    h_attackable += fast_h_dist(laser_list[i], laser_list[i+1], k_rnk, k_fil);
  }
  if (in_bounds(laser_list[laser_list_length - 1])) {
    h_attackable += fast_h_dist(laser_list[laser_list_length - 1], laser_list[laser_list_length - 1] + 1, k_rnk, k_fil);
  }

  return h_attackable;
}
// H_SQUARES_ATTACKABLE heuristic: for shooting the enemy king
int h_squares_attackable(position_t *p, color_t c) {
  char* laser_map;
  if (c == WHITE) {
    laser_map = laser_map_white;
  } else {
    laser_map = laser_map_black;
  }
  square_t o_king_sq = p->kloc[opp_color(c)];
  tbassert(ptype_of(p->board[o_king_sq]) == KING,
           "ptype: %d\n", ptype_of(p->board[o_king_sq]));
  tbassert(color_of(p->board[o_king_sq]) != c,
           "color: %d\n", color_of(p->board[o_king_sq]));

  float h_attackable_temp = 0;
  for (fil_t f = 0; f < BOARD_WIDTH; f++) {
    for (rnk_t r = 0; r < BOARD_WIDTH; r++) {
      square_t sq = square_of(f, r);
      if (laser_map[sq] != 0) {
        h_attackable_temp += h_dist(sq, o_king_sq);
      }
    }
  }
  return h_attackable_temp;
}
// Static evaluation.  Returns score
score_t eval(position_t *p, bool verbose) {
  // seed rand_r with a value of 1, as per
  // http://linux.die.net/man/3/rand_r
  static __thread unsigned int seed = 1;
  // verbose = true: print out components of score
  ev_score_t score[2] = { 0, 0 };
  //  int corner[2][2] = { {INF, INF}, {INF, INF} };
  ev_score_t bonus;

  //char buf[MAX_CHARS_IN_MOVE];
  color_t c;
  for (fil_t f = 0; f < BOARD_WIDTH; f++) {
    for (rnk_t r = 0; r < BOARD_WIDTH; r++) {
      square_t sq = square_of(f, r);
      piece_t x = p->board[sq];

      //if (verbose) {
      //  square_to_str(sq, buf, MAX_CHARS_IN_MOVE);
      //}

      switch (ptype_of(x)) {
        case EMPTY:
          break;
        case PAWN:
          c = color_of(x);

          // MATERIAL heuristic: Bonus for each Pawn
          bonus = PAWN_EV_VALUE;
          // if (verbose) {
          //  printf("MATERIAL bonus %d for %s Pawn on %s\n", bonus, color_to_str(c), buf);
          // }
          score[c] += bonus;

          // PBETWEEN heuristic
          bonus = pbetween(p, f, r);
          // if (verbose) {
          //   printf("PBETWEEN bonus %d for %s Pawn on %s\n", bonus, color_to_str(c), buf);
          // }
          score[c] += bonus;

          // PCENTRAL heuristic
          bonus = pcentral(f, r);
          // if (verbose) {
          //   printf("PCENTRAL bonus %d for %s Pawn on %s\n", bonus, color_to_str(c), buf);
         //  }
          score[c] += bonus;
          break;

        case KING:
          c = color_of(x);

          // KFACE heuristic
          bonus = kface(p, f, r);
          // if (verbose) {
          //   printf("KFACE bonus %d for %s King on %s\n", bonus,
          //          color_to_str(c), buf);
          // }
          score[c] += bonus;

          // KAGGRESSIVE heuristic
          color_t othercolor = opp_color(c);
          square_t otherking = p->kloc[othercolor];
          fil_t otherf = fil_of(otherking);
          rnk_t otherr = rnk_of(otherking);
          bonus = kaggressive(f, r, otherf, otherr);
          assert(bonus == kaggressive_old(p, f, r));

          // if (verbose) {
          //   printf("KAGGRESSIVE bonus %d for %s King on %s\n", bonus, color_to_str(c), buf);
         //  }
          score[c] += bonus;
          break;
        case INVALID:
          break;
        default:
          tbassert(false, "Jose says: no way!\n");   // No way, Jose!
      }
      laser_map_black[sq] = 0;
      laser_map_white[sq] = 0;
    }
  }
   
  int black_pawns_unpinned = mark_laser_path(p, laser_map_white, WHITE, 1);  // 1 = path of laser with no moves
  
  ev_score_t w_hattackable = HATTACK * (int) h_attackable;
  score[WHITE] += w_hattackable;
  // if (verbose) {
  //   printf("HATTACK bonus %d for White\n", w_hattackable);
  // }

  // PAWNPIN Heuristic --- is a pawn immobilized by the enemy laser.
  int b_pawnpin = PAWNPIN * black_pawns_unpinned;
  score[BLACK] += b_pawnpin;

  int b_mobility = MOBILITY * mobility(p, BLACK);
  score[BLACK] += b_mobility;
  // if (verbose) {
  //   printf("MOBILITY bonus %d for Black\n", b_mobility);
  // }

  int white_pawns_unpinned = mark_laser_path(p, laser_map_black, BLACK, 1);  // 1 = path of laser with no moves
  
  ev_score_t b_hattackable = HATTACK * (int) h_attackable;
  score[BLACK] += b_hattackable;
  // if (verbose) {
  //   printf("HATTACK bonus %d for Black\n", b_hattackable);
  // }

  int w_mobility = MOBILITY * mobility(p, WHITE);
  score[WHITE] += w_mobility;
  // if (verbose) {
  //   printf("MOBILITY bonus %d for White\n", w_mobility);
  // }
  int w_pawnpin = PAWNPIN * white_pawns_unpinned;
  score[WHITE] += w_pawnpin;


  // score from WHITE point of view
  ev_score_t tot = score[WHITE] - score[BLACK];

  if (RANDOMIZE) {
    ev_score_t  z = rand_r(&seed) % (RANDOMIZE*2+1);
    tot = tot + z - RANDOMIZE;
  }

  if (color_to_move_of(p) == BLACK) {
    tot = -tot;
  }

  return tot / EV_SCORE_RATIO;
}