Example #1
0
deconvolutional_layer parse_deconvolutional(list *options, size_params params)
{
    int n = option_find_int(options, "filters",1);
    int size = option_find_int(options, "size",1);
    int stride = option_find_int(options, "stride",1);
    char *activation_s = option_find_str(options, "activation", "logistic");
    ACTIVATION activation = get_activation(activation_s);

    int batch,h,w,c;
    h = params.h;
    w = params.w;
    c = params.c;
    batch=params.batch;
    if(!(h && w && c)) error("Layer before deconvolutional layer must output image.");

    deconvolutional_layer layer = make_deconvolutional_layer(batch,h,w,c,n,size,stride,activation);

    char *weights = option_find_str(options, "weights", 0);
    char *biases = option_find_str(options, "biases", 0);
    parse_data(weights, layer.filters, c*n*size*size);
    parse_data(biases, layer.biases, n);
    #ifdef GPU
    if(weights || biases) push_deconvolutional_layer(layer);
    #endif
    option_unused(options);
    return layer;
}
Example #2
0
softmax_layer parse_softmax(list *options, size_params params)
{
    int groups = option_find_int(options, "groups",1);
    softmax_layer layer = make_softmax_layer(params.batch, params.inputs, groups);
    option_unused(options);
    return layer;
}
Example #3
0
dropout_layer parse_dropout(list *options, size_params params)
{
    float probability = option_find_float(options, "probability", .5);
    dropout_layer layer = make_dropout_layer(params.batch, params.inputs, probability);
    option_unused(options);
    return layer;
}
Example #4
0
cost_layer parse_cost(list *options, size_params params)
{
    char *type_s = option_find_str(options, "type", "sse");
    COST_TYPE type = get_cost_type(type_s);
    cost_layer layer = make_cost_layer(params.batch, params.inputs, type);
    option_unused(options);
    return layer;
}
Example #5
0
detection_layer parse_detection(list *options, size_params params)
{
    int coords = option_find_int(options, "coords", 1);
    int classes = option_find_int(options, "classes", 1);
    int rescore = option_find_int(options, "rescore", 0);
    int joint = option_find_int(options, "joint", 0);
    int objectness = option_find_int(options, "objectness", 0);
    int background = option_find_int(options, "background", 0);
    detection_layer layer = make_detection_layer(params.batch, params.inputs, classes, coords, joint, rescore, background, objectness);
    option_unused(options);
    return layer;
}
Example #6
0
maxpool_layer parse_maxpool(list *options, size_params params)
{
    int stride = option_find_int(options, "stride",1);
    int size = option_find_int(options, "size",stride);

    int batch,h,w,c;
    h = params.h;
    w = params.w;
    c = params.c;
    batch=params.batch;
    if(!(h && w && c)) error("Layer before maxpool layer must output image.");

    maxpool_layer layer = make_maxpool_layer(batch,h,w,c,size,stride);
    option_unused(options);
    return layer;
}
Example #7
0
void parse_net_options(list *options, network *net)
{
    net->batch = option_find_int(options, "batch",1);
    net->learning_rate = option_find_float(options, "learning_rate", .001);
    net->momentum = option_find_float(options, "momentum", .9);
    net->decay = option_find_float(options, "decay", .0001);
    net->seen = option_find_int(options, "seen",0);
    int subdivs = option_find_int(options, "subdivisions",1);
    net->batch /= subdivs;
    net->subdivisions = subdivs;

    net->h = option_find_int_quiet(options, "height",0);
    net->w = option_find_int_quiet(options, "width",0);
    net->c = option_find_int_quiet(options, "channels",0);
    net->inputs = option_find_int_quiet(options, "inputs", net->h * net->w * net->c);
    if(!net->inputs && !(net->h && net->w && net->c)) error("No input parameters supplied");
    option_unused(options);
}
Example #8
0
connected_layer parse_connected(list *options, size_params params)
{
    int output = option_find_int(options, "output",1);
    char *activation_s = option_find_str(options, "activation", "logistic");
    ACTIVATION activation = get_activation(activation_s);

    connected_layer layer = make_connected_layer(params.batch, params.inputs, output, activation);

    char *weights = option_find_str(options, "weights", 0);
    char *biases = option_find_str(options, "biases", 0);
    parse_data(biases, layer.biases, output);
    parse_data(weights, layer.weights, params.inputs*output);
    #ifdef GPU
    if(weights || biases) push_connected_layer(layer);
    #endif
    option_unused(options);
    return layer;
}
Example #9
0
crop_layer parse_crop(list *options, size_params params)
{
    int crop_height = option_find_int(options, "crop_height",1);
    int crop_width = option_find_int(options, "crop_width",1);
    int flip = option_find_int(options, "flip",0);
    float angle = option_find_float(options, "angle",0);
    float saturation = option_find_float(options, "saturation",1);
    float exposure = option_find_float(options, "exposure",1);

    int batch,h,w,c;
    h = params.h;
    w = params.w;
    c = params.c;
    batch=params.batch;
    if(!(h && w && c)) error("Layer before crop layer must output image.");

    crop_layer l = make_crop_layer(batch,h,w,c,crop_height,crop_width,flip, angle, saturation, exposure);
    option_unused(options);
    return l;
}
Example #10
0
route_layer parse_route(list *options, size_params params, network net)
{
    char *l = option_find(options, "layers");   
    int len = strlen(l);
    if(!l) error("Route Layer must specify input layers");
    int n = 1;
    int i;
    for(i = 0; i < len; ++i){
        if (l[i] == ',') ++n;
    }

    int *layers = calloc(n, sizeof(int));
    int *sizes = calloc(n, sizeof(int));
    for(i = 0; i < n; ++i){
        int index = atoi(l);
        l = strchr(l, ',')+1;
        layers[i] = index;
        sizes[i] = net.layers[index].outputs;
    }
    int batch = params.batch;

    route_layer layer = make_route_layer(batch, n, layers, sizes);
    
    convolutional_layer first = net.layers[layers[0]];
    layer.out_w = first.out_w;
    layer.out_h = first.out_h;
    layer.out_c = first.out_c;
    for(i = 1; i < n; ++i){
        int index = layers[i];
        convolutional_layer next = net.layers[index];
        if(next.out_w == first.out_w && next.out_h == first.out_h){
            layer.out_c += next.out_c;
        }else{
            layer.out_h = layer.out_w = layer.out_c = 0;
        }
    }

    option_unused(options);
    return layer;
}
Example #11
0
network parse_network_cfg(char *filename)
{
    list *sections = read_cfg(filename);
    node *n = sections->front;
    if(!n) error("Config file has no sections");
    network net = make_network(sections->size - 1);
    size_params params;

    section *s = (section *)n->val;
    list *options = s->options;
    if(!is_network(s)) error("First section must be [net] or [network]");
    parse_net_options(options, &net);

    params.h = net.h;
    params.w = net.w;
    params.c = net.c;
    params.inputs = net.inputs;
    params.batch = net.batch;

    n = n->next;
    int count = 0;
    while(n){
        fprintf(stderr, "%d: ", count);
        s = (section *)n->val;
        options = s->options;
        layer l = {0};
        if(is_convolutional(s)){
            l = parse_convolutional(options, params);
        }else if(is_deconvolutional(s)){
            l = parse_deconvolutional(options, params);
        }else if(is_connected(s)){
            l = parse_connected(options, params);
        }else if(is_crop(s)){
            l = parse_crop(options, params);
        }else if(is_cost(s)){
            l = parse_cost(options, params);
        }else if(is_detection(s)){
            l = parse_detection(options, params);
        }else if(is_softmax(s)){
            l = parse_softmax(options, params);
        }else if(is_normalization(s)){
            l = parse_normalization(options, params);
        }else if(is_maxpool(s)){
            l = parse_maxpool(options, params);
        }else if(is_avgpool(s)){
            l = parse_avgpool(options, params);
        }else if(is_route(s)){
            l = parse_route(options, params, net);
        }else if(is_dropout(s)){
            l = parse_dropout(options, params);
            l.output = net.layers[count-1].output;
            l.delta = net.layers[count-1].delta;
            #ifdef GPU
            l.output_gpu = net.layers[count-1].output_gpu;
            l.delta_gpu = net.layers[count-1].delta_gpu;
            #endif
        }else{
            fprintf(stderr, "Type not recognized: %s\n", s->type);
        }
        l.dontload = option_find_int_quiet(options, "dontload", 0);
        option_unused(options);
        net.layers[count] = l;
        free_section(s);
        n = n->next;
        if(n){
            params.h = l.out_h;
            params.w = l.out_w;
            params.c = l.out_c;
            params.inputs = l.outputs;
        }
        ++count;
    }   
    free_list(sections);
    net.outputs = get_network_output_size(net);
    net.output = get_network_output(net);
    return net;
}
Example #12
0
network parse_network_cfg(char *filename)
{
    list *sections = read_cfg(filename);
    node *n = sections->front;
    if(!n) error("Config file has no sections");
    network net = make_network(sections->size - 1);
    net.gpu_index = gpu_index;
    size_params params;

    section *s = (section *)n->val;
    list *options = s->options;
    if(!is_network(s)) error("First section must be [net] or [network]");
    parse_net_options(options, &net);

    params.h = net.h;
    params.w = net.w;
    params.c = net.c;
    params.inputs = net.inputs;
    params.batch = net.batch;
    params.time_steps = net.time_steps;
    params.net = net;

    size_t workspace_size = 0;
    n = n->next;
    int count = 0;
    free_section(s);
    fprintf(stderr, "layer     filters    size              input                output\n");
    while(n){
        params.index = count;
        fprintf(stderr, "%5d ", count);
        s = (section *)n->val;
        options = s->options;
        layer l = {0};
        LAYER_TYPE lt = string_to_layer_type(s->type);
        if(lt == CONVOLUTIONAL){
            l = parse_convolutional(options, params);
        }else if(lt == LOCAL){
            l = parse_local(options, params);
        }else if(lt == ACTIVE){
            l = parse_activation(options, params);
        }else if(lt == RNN){
            l = parse_rnn(options, params);
        }else if(lt == GRU){
            l = parse_gru(options, params);
        }else if(lt == CRNN){
            l = parse_crnn(options, params);
        }else if(lt == CONNECTED){
            l = parse_connected(options, params);
        }else if(lt == CROP){
            l = parse_crop(options, params);
        }else if(lt == COST){
            l = parse_cost(options, params);
        }else if(lt == REGION){
            l = parse_region(options, params);
        }else if(lt == DETECTION){
            l = parse_detection(options, params);
        }else if(lt == SOFTMAX){
            l = parse_softmax(options, params);
            net.hierarchy = l.softmax_tree;
        }else if(lt == NORMALIZATION){
            l = parse_normalization(options, params);
        }else if(lt == BATCHNORM){
            l = parse_batchnorm(options, params);
        }else if(lt == MAXPOOL){
            l = parse_maxpool(options, params);
        }else if(lt == REORG){
            l = parse_reorg(options, params);
        }else if(lt == AVGPOOL){
            l = parse_avgpool(options, params);
        }else if(lt == ROUTE){
            l = parse_route(options, params, net);
        }else if(lt == SHORTCUT){
            l = parse_shortcut(options, params, net);
        }else if(lt == DROPOUT){
            l = parse_dropout(options, params);
            l.output = net.layers[count-1].output;
            l.delta = net.layers[count-1].delta;
#ifdef GPU
            l.output_gpu = net.layers[count-1].output_gpu;
            l.delta_gpu = net.layers[count-1].delta_gpu;
#endif
        }else{
            fprintf(stderr, "Type not recognized: %s\n", s->type);
        }
        l.dontload = option_find_int_quiet(options, "dontload", 0);
        l.dontloadscales = option_find_int_quiet(options, "dontloadscales", 0);
        option_unused(options);
        net.layers[count] = l;
        if (l.workspace_size > workspace_size) workspace_size = l.workspace_size;
        free_section(s);
        n = n->next;
        ++count;
        if(n){
            params.h = l.out_h;
            params.w = l.out_w;
            params.c = l.out_c;
            params.inputs = l.outputs;
        }
    }   
    free_list(sections);
    net.outputs = get_network_output_size(net);
    net.output = get_network_output(net);
    if(workspace_size){
        //printf("%ld\n", workspace_size);
#ifdef GPU
        if(gpu_index >= 0){
            net.workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
        }else {
            net.workspace = calloc(1, workspace_size);
        }
#else
        net.workspace = calloc(1, workspace_size);
#endif
    }
    return net;
}
Example #13
0
network *parse_network_cfg(char *filename)
{
    list *sections = read_cfg(filename);
    node *n = sections->front;
    if(!n) error("Config file has no sections");
    network *net = make_network(sections->size - 1);
    net->gpu_index = gpu_index;
    size_params params;

    section *s = (section *)n->val;
    list *options = s->options;
    if(!is_network(s)) error("First section must be [net] or [network]");
    parse_net_options(options, net);

    params.h = net->h;
    params.w = net->w;
    params.c = net->c;
    params.inputs = net->inputs;
    params.batch = net->batch;
    params.time_steps = net->time_steps;
    params.net = net;

    size_t workspace_size = 0;
    n = n->next;
    int count = 0;
    free_section(s);
    fprintf(stderr, "layer     filters    size              input                output\n");
    while(n){
        params.index = count;
        fprintf(stderr, "%5d ", count);
        s = (section *)n->val;
        options = s->options;
        layer l = {0};
        LAYER_TYPE lt = string_to_layer_type(s->type);
        if(lt == CONVOLUTIONAL){
            l = parse_convolutional(options, params);
        }else if(lt == DECONVOLUTIONAL){
            l = parse_deconvolutional(options, params);
        }else if(lt == LOCAL){
            l = parse_local(options, params);
        }else if(lt == ACTIVE){
            l = parse_activation(options, params);
        }else if(lt == LOGXENT){
            l = parse_logistic(options, params);
        }else if(lt == L2NORM){
            l = parse_l2norm(options, params);
        }else if(lt == RNN){
            l = parse_rnn(options, params);
        }else if(lt == GRU){
            l = parse_gru(options, params);
        }else if (lt == LSTM) {
            l = parse_lstm(options, params);
        }else if(lt == CRNN){
            l = parse_crnn(options, params);
        }else if(lt == CONNECTED){
            l = parse_connected(options, params);
        }else if(lt == CROP){
            l = parse_crop(options, params);
        }else if(lt == COST){
            l = parse_cost(options, params);
        }else if(lt == REGION){
            l = parse_region(options, params);
        }else if(lt == YOLO){
            l = parse_yolo(options, params);
        }else if(lt == ISEG){
            l = parse_iseg(options, params);
        }else if(lt == DETECTION){
            l = parse_detection(options, params);
        }else if(lt == SOFTMAX){
            l = parse_softmax(options, params);
            net->hierarchy = l.softmax_tree;
        }else if(lt == NORMALIZATION){
            l = parse_normalization(options, params);
        }else if(lt == BATCHNORM){
            l = parse_batchnorm(options, params);
        }else if(lt == MAXPOOL){
            l = parse_maxpool(options, params);
        }else if(lt == REORG){
            l = parse_reorg(options, params);
        }else if(lt == AVGPOOL){
            l = parse_avgpool(options, params);
        }else if(lt == ROUTE){
            l = parse_route(options, params, net);
        }else if(lt == UPSAMPLE){
            l = parse_upsample(options, params, net);
        }else if(lt == SHORTCUT){
            l = parse_shortcut(options, params, net);
        }else if(lt == DROPOUT){
            l = parse_dropout(options, params);
            l.output = net->layers[count-1].output;
            l.delta = net->layers[count-1].delta;
#ifdef GPU
            l.output_gpu = net->layers[count-1].output_gpu;
            l.delta_gpu = net->layers[count-1].delta_gpu;
#endif
        }else{
            fprintf(stderr, "Type not recognized: %s\n", s->type);
        }
        l.clip = net->clip;
        l.truth = option_find_int_quiet(options, "truth", 0);
        l.onlyforward = option_find_int_quiet(options, "onlyforward", 0);
        l.stopbackward = option_find_int_quiet(options, "stopbackward", 0);
        l.dontsave = option_find_int_quiet(options, "dontsave", 0);
        l.dontload = option_find_int_quiet(options, "dontload", 0);
        l.numload = option_find_int_quiet(options, "numload", 0);
        l.dontloadscales = option_find_int_quiet(options, "dontloadscales", 0);
        l.learning_rate_scale = option_find_float_quiet(options, "learning_rate", 1);
        l.smooth = option_find_float_quiet(options, "smooth", 0);
        option_unused(options);
        net->layers[count] = l;
        if (l.workspace_size > workspace_size) workspace_size = l.workspace_size;
        free_section(s);
        n = n->next;
        ++count;
        if(n){
            params.h = l.out_h;
            params.w = l.out_w;
            params.c = l.out_c;
            params.inputs = l.outputs;
        }
    }
    free_list(sections);
    layer out = get_network_output_layer(net);
    net->outputs = out.outputs;
    net->truths = out.outputs;
    if(net->layers[net->n-1].truths) net->truths = net->layers[net->n-1].truths;
    net->output = out.output;
    net->input = calloc(net->inputs*net->batch, sizeof(float));
    net->truth = calloc(net->truths*net->batch, sizeof(float));
#ifdef GPU
    net->output_gpu = out.output_gpu;
    net->input_gpu = cuda_make_array(net->input, net->inputs*net->batch);
    net->truth_gpu = cuda_make_array(net->truth, net->truths*net->batch);
#endif
    if(workspace_size){
        //printf("%ld\n", workspace_size);
#ifdef GPU
        if(gpu_index >= 0){
            net->workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
        }else {
            net->workspace = calloc(1, workspace_size);
        }
#else
        net->workspace = calloc(1, workspace_size);
#endif
    }
    return net;
}
Example #14
0
network parse_network_cfg(char *filename)
{
    list *sections = read_cfg(filename);
    node *n = sections->front;
    if(!n) error("Config file has no sections");
    network net = make_network(sections->size - 1);
    size_params params;

    section *s = (section *)n->val;
    list *options = s->options;
    if(!is_network(s)) error("First section must be [net] or [network]");
    parse_net_options(options, &net);

    params.h = net.h;
    params.w = net.w;
    params.c = net.c;
    params.inputs = net.inputs;
    params.batch = net.batch;
    params.time_steps = net.time_steps;

    size_t workspace_size = 0;
    n = n->next;
    int count = 0;
    free_section(s);
    while(n){
        params.index = count;
        fprintf(stderr, "%d: ", count);
        s = (section *)n->val;
        options = s->options;
        layer l = {0};
        if(is_convolutional(s)){
            l = parse_convolutional(options, params);
        }else if(is_local(s)){
            l = parse_local(options, params);
        }else if(is_activation(s)){
            l = parse_activation(options, params);
        }else if(is_deconvolutional(s)){
            l = parse_deconvolutional(options, params);
        }else if(is_rnn(s)){
            l = parse_rnn(options, params);
        }else if(is_gru(s)){
            l = parse_gru(options, params);
        }else if(is_crnn(s)){
            l = parse_crnn(options, params);
        }else if(is_connected(s)){
            l = parse_connected(options, params);
        }else if(is_crop(s)){
            l = parse_crop(options, params);
        }else if(is_cost(s)){
            l = parse_cost(options, params);
        }else if(is_detection(s)){
            l = parse_detection(options, params);
        }else if(is_softmax(s)){
            l = parse_softmax(options, params);
        }else if(is_normalization(s)){
            l = parse_normalization(options, params);
        }else if(is_batchnorm(s)){
            l = parse_batchnorm(options, params);
        }else if(is_maxpool(s)){
            l = parse_maxpool(options, params);
        }else if(is_avgpool(s)){
            l = parse_avgpool(options, params);
        }else if(is_route(s)){
            l = parse_route(options, params, net);
        }else if(is_shortcut(s)){
            l = parse_shortcut(options, params, net);
        }else if(is_dropout(s)){
            l = parse_dropout(options, params);
            l.output = net.layers[count-1].output;
            l.delta = net.layers[count-1].delta;
#ifdef GPU
            l.output_gpu = net.layers[count-1].output_gpu;
            l.delta_gpu = net.layers[count-1].delta_gpu;
#endif
        }else{
            fprintf(stderr, "Type not recognized: %s\n", s->type);
        }
        l.dontload = option_find_int_quiet(options, "dontload", 0);
        l.dontloadscales = option_find_int_quiet(options, "dontloadscales", 0);
        option_unused(options);
        net.layers[count] = l;
        if (l.workspace_size > workspace_size) workspace_size = l.workspace_size;
        free_section(s);
        n = n->next;
        ++count;
        if(n){
            params.h = l.out_h;
            params.w = l.out_w;
            params.c = l.out_c;
            params.inputs = l.outputs;
        }
    }   
    free_list(sections);
    net.outputs = get_network_output_size(net);
    net.output = get_network_output(net);
    if(workspace_size){
    //printf("%ld\n", workspace_size);
#ifdef GPU
        net.workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
#else
        net.workspace = calloc(1, workspace_size);
#endif
    }
    return net;
}