deconvolutional_layer parse_deconvolutional(list *options, size_params params) { int n = option_find_int(options, "filters",1); int size = option_find_int(options, "size",1); int stride = option_find_int(options, "stride",1); char *activation_s = option_find_str(options, "activation", "logistic"); ACTIVATION activation = get_activation(activation_s); int batch,h,w,c; h = params.h; w = params.w; c = params.c; batch=params.batch; if(!(h && w && c)) error("Layer before deconvolutional layer must output image."); deconvolutional_layer layer = make_deconvolutional_layer(batch,h,w,c,n,size,stride,activation); char *weights = option_find_str(options, "weights", 0); char *biases = option_find_str(options, "biases", 0); parse_data(weights, layer.filters, c*n*size*size); parse_data(biases, layer.biases, n); #ifdef GPU if(weights || biases) push_deconvolutional_layer(layer); #endif option_unused(options); return layer; }
softmax_layer parse_softmax(list *options, size_params params) { int groups = option_find_int(options, "groups",1); softmax_layer layer = make_softmax_layer(params.batch, params.inputs, groups); option_unused(options); return layer; }
dropout_layer parse_dropout(list *options, size_params params) { float probability = option_find_float(options, "probability", .5); dropout_layer layer = make_dropout_layer(params.batch, params.inputs, probability); option_unused(options); return layer; }
cost_layer parse_cost(list *options, size_params params) { char *type_s = option_find_str(options, "type", "sse"); COST_TYPE type = get_cost_type(type_s); cost_layer layer = make_cost_layer(params.batch, params.inputs, type); option_unused(options); return layer; }
detection_layer parse_detection(list *options, size_params params) { int coords = option_find_int(options, "coords", 1); int classes = option_find_int(options, "classes", 1); int rescore = option_find_int(options, "rescore", 0); int joint = option_find_int(options, "joint", 0); int objectness = option_find_int(options, "objectness", 0); int background = option_find_int(options, "background", 0); detection_layer layer = make_detection_layer(params.batch, params.inputs, classes, coords, joint, rescore, background, objectness); option_unused(options); return layer; }
maxpool_layer parse_maxpool(list *options, size_params params) { int stride = option_find_int(options, "stride",1); int size = option_find_int(options, "size",stride); int batch,h,w,c; h = params.h; w = params.w; c = params.c; batch=params.batch; if(!(h && w && c)) error("Layer before maxpool layer must output image."); maxpool_layer layer = make_maxpool_layer(batch,h,w,c,size,stride); option_unused(options); return layer; }
void parse_net_options(list *options, network *net) { net->batch = option_find_int(options, "batch",1); net->learning_rate = option_find_float(options, "learning_rate", .001); net->momentum = option_find_float(options, "momentum", .9); net->decay = option_find_float(options, "decay", .0001); net->seen = option_find_int(options, "seen",0); int subdivs = option_find_int(options, "subdivisions",1); net->batch /= subdivs; net->subdivisions = subdivs; net->h = option_find_int_quiet(options, "height",0); net->w = option_find_int_quiet(options, "width",0); net->c = option_find_int_quiet(options, "channels",0); net->inputs = option_find_int_quiet(options, "inputs", net->h * net->w * net->c); if(!net->inputs && !(net->h && net->w && net->c)) error("No input parameters supplied"); option_unused(options); }
connected_layer parse_connected(list *options, size_params params) { int output = option_find_int(options, "output",1); char *activation_s = option_find_str(options, "activation", "logistic"); ACTIVATION activation = get_activation(activation_s); connected_layer layer = make_connected_layer(params.batch, params.inputs, output, activation); char *weights = option_find_str(options, "weights", 0); char *biases = option_find_str(options, "biases", 0); parse_data(biases, layer.biases, output); parse_data(weights, layer.weights, params.inputs*output); #ifdef GPU if(weights || biases) push_connected_layer(layer); #endif option_unused(options); return layer; }
crop_layer parse_crop(list *options, size_params params) { int crop_height = option_find_int(options, "crop_height",1); int crop_width = option_find_int(options, "crop_width",1); int flip = option_find_int(options, "flip",0); float angle = option_find_float(options, "angle",0); float saturation = option_find_float(options, "saturation",1); float exposure = option_find_float(options, "exposure",1); int batch,h,w,c; h = params.h; w = params.w; c = params.c; batch=params.batch; if(!(h && w && c)) error("Layer before crop layer must output image."); crop_layer l = make_crop_layer(batch,h,w,c,crop_height,crop_width,flip, angle, saturation, exposure); option_unused(options); return l; }
route_layer parse_route(list *options, size_params params, network net) { char *l = option_find(options, "layers"); int len = strlen(l); if(!l) error("Route Layer must specify input layers"); int n = 1; int i; for(i = 0; i < len; ++i){ if (l[i] == ',') ++n; } int *layers = calloc(n, sizeof(int)); int *sizes = calloc(n, sizeof(int)); for(i = 0; i < n; ++i){ int index = atoi(l); l = strchr(l, ',')+1; layers[i] = index; sizes[i] = net.layers[index].outputs; } int batch = params.batch; route_layer layer = make_route_layer(batch, n, layers, sizes); convolutional_layer first = net.layers[layers[0]]; layer.out_w = first.out_w; layer.out_h = first.out_h; layer.out_c = first.out_c; for(i = 1; i < n; ++i){ int index = layers[i]; convolutional_layer next = net.layers[index]; if(next.out_w == first.out_w && next.out_h == first.out_h){ layer.out_c += next.out_c; }else{ layer.out_h = layer.out_w = layer.out_c = 0; } } option_unused(options); return layer; }
network parse_network_cfg(char *filename) { list *sections = read_cfg(filename); node *n = sections->front; if(!n) error("Config file has no sections"); network net = make_network(sections->size - 1); size_params params; section *s = (section *)n->val; list *options = s->options; if(!is_network(s)) error("First section must be [net] or [network]"); parse_net_options(options, &net); params.h = net.h; params.w = net.w; params.c = net.c; params.inputs = net.inputs; params.batch = net.batch; n = n->next; int count = 0; while(n){ fprintf(stderr, "%d: ", count); s = (section *)n->val; options = s->options; layer l = {0}; if(is_convolutional(s)){ l = parse_convolutional(options, params); }else if(is_deconvolutional(s)){ l = parse_deconvolutional(options, params); }else if(is_connected(s)){ l = parse_connected(options, params); }else if(is_crop(s)){ l = parse_crop(options, params); }else if(is_cost(s)){ l = parse_cost(options, params); }else if(is_detection(s)){ l = parse_detection(options, params); }else if(is_softmax(s)){ l = parse_softmax(options, params); }else if(is_normalization(s)){ l = parse_normalization(options, params); }else if(is_maxpool(s)){ l = parse_maxpool(options, params); }else if(is_avgpool(s)){ l = parse_avgpool(options, params); }else if(is_route(s)){ l = parse_route(options, params, net); }else if(is_dropout(s)){ l = parse_dropout(options, params); l.output = net.layers[count-1].output; l.delta = net.layers[count-1].delta; #ifdef GPU l.output_gpu = net.layers[count-1].output_gpu; l.delta_gpu = net.layers[count-1].delta_gpu; #endif }else{ fprintf(stderr, "Type not recognized: %s\n", s->type); } l.dontload = option_find_int_quiet(options, "dontload", 0); option_unused(options); net.layers[count] = l; free_section(s); n = n->next; if(n){ params.h = l.out_h; params.w = l.out_w; params.c = l.out_c; params.inputs = l.outputs; } ++count; } free_list(sections); net.outputs = get_network_output_size(net); net.output = get_network_output(net); return net; }
network parse_network_cfg(char *filename) { list *sections = read_cfg(filename); node *n = sections->front; if(!n) error("Config file has no sections"); network net = make_network(sections->size - 1); net.gpu_index = gpu_index; size_params params; section *s = (section *)n->val; list *options = s->options; if(!is_network(s)) error("First section must be [net] or [network]"); parse_net_options(options, &net); params.h = net.h; params.w = net.w; params.c = net.c; params.inputs = net.inputs; params.batch = net.batch; params.time_steps = net.time_steps; params.net = net; size_t workspace_size = 0; n = n->next; int count = 0; free_section(s); fprintf(stderr, "layer filters size input output\n"); while(n){ params.index = count; fprintf(stderr, "%5d ", count); s = (section *)n->val; options = s->options; layer l = {0}; LAYER_TYPE lt = string_to_layer_type(s->type); if(lt == CONVOLUTIONAL){ l = parse_convolutional(options, params); }else if(lt == LOCAL){ l = parse_local(options, params); }else if(lt == ACTIVE){ l = parse_activation(options, params); }else if(lt == RNN){ l = parse_rnn(options, params); }else if(lt == GRU){ l = parse_gru(options, params); }else if(lt == CRNN){ l = parse_crnn(options, params); }else if(lt == CONNECTED){ l = parse_connected(options, params); }else if(lt == CROP){ l = parse_crop(options, params); }else if(lt == COST){ l = parse_cost(options, params); }else if(lt == REGION){ l = parse_region(options, params); }else if(lt == DETECTION){ l = parse_detection(options, params); }else if(lt == SOFTMAX){ l = parse_softmax(options, params); net.hierarchy = l.softmax_tree; }else if(lt == NORMALIZATION){ l = parse_normalization(options, params); }else if(lt == BATCHNORM){ l = parse_batchnorm(options, params); }else if(lt == MAXPOOL){ l = parse_maxpool(options, params); }else if(lt == REORG){ l = parse_reorg(options, params); }else if(lt == AVGPOOL){ l = parse_avgpool(options, params); }else if(lt == ROUTE){ l = parse_route(options, params, net); }else if(lt == SHORTCUT){ l = parse_shortcut(options, params, net); }else if(lt == DROPOUT){ l = parse_dropout(options, params); l.output = net.layers[count-1].output; l.delta = net.layers[count-1].delta; #ifdef GPU l.output_gpu = net.layers[count-1].output_gpu; l.delta_gpu = net.layers[count-1].delta_gpu; #endif }else{ fprintf(stderr, "Type not recognized: %s\n", s->type); } l.dontload = option_find_int_quiet(options, "dontload", 0); l.dontloadscales = option_find_int_quiet(options, "dontloadscales", 0); option_unused(options); net.layers[count] = l; if (l.workspace_size > workspace_size) workspace_size = l.workspace_size; free_section(s); n = n->next; ++count; if(n){ params.h = l.out_h; params.w = l.out_w; params.c = l.out_c; params.inputs = l.outputs; } } free_list(sections); net.outputs = get_network_output_size(net); net.output = get_network_output(net); if(workspace_size){ //printf("%ld\n", workspace_size); #ifdef GPU if(gpu_index >= 0){ net.workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1); }else { net.workspace = calloc(1, workspace_size); } #else net.workspace = calloc(1, workspace_size); #endif } return net; }
network *parse_network_cfg(char *filename) { list *sections = read_cfg(filename); node *n = sections->front; if(!n) error("Config file has no sections"); network *net = make_network(sections->size - 1); net->gpu_index = gpu_index; size_params params; section *s = (section *)n->val; list *options = s->options; if(!is_network(s)) error("First section must be [net] or [network]"); parse_net_options(options, net); params.h = net->h; params.w = net->w; params.c = net->c; params.inputs = net->inputs; params.batch = net->batch; params.time_steps = net->time_steps; params.net = net; size_t workspace_size = 0; n = n->next; int count = 0; free_section(s); fprintf(stderr, "layer filters size input output\n"); while(n){ params.index = count; fprintf(stderr, "%5d ", count); s = (section *)n->val; options = s->options; layer l = {0}; LAYER_TYPE lt = string_to_layer_type(s->type); if(lt == CONVOLUTIONAL){ l = parse_convolutional(options, params); }else if(lt == DECONVOLUTIONAL){ l = parse_deconvolutional(options, params); }else if(lt == LOCAL){ l = parse_local(options, params); }else if(lt == ACTIVE){ l = parse_activation(options, params); }else if(lt == LOGXENT){ l = parse_logistic(options, params); }else if(lt == L2NORM){ l = parse_l2norm(options, params); }else if(lt == RNN){ l = parse_rnn(options, params); }else if(lt == GRU){ l = parse_gru(options, params); }else if (lt == LSTM) { l = parse_lstm(options, params); }else if(lt == CRNN){ l = parse_crnn(options, params); }else if(lt == CONNECTED){ l = parse_connected(options, params); }else if(lt == CROP){ l = parse_crop(options, params); }else if(lt == COST){ l = parse_cost(options, params); }else if(lt == REGION){ l = parse_region(options, params); }else if(lt == YOLO){ l = parse_yolo(options, params); }else if(lt == ISEG){ l = parse_iseg(options, params); }else if(lt == DETECTION){ l = parse_detection(options, params); }else if(lt == SOFTMAX){ l = parse_softmax(options, params); net->hierarchy = l.softmax_tree; }else if(lt == NORMALIZATION){ l = parse_normalization(options, params); }else if(lt == BATCHNORM){ l = parse_batchnorm(options, params); }else if(lt == MAXPOOL){ l = parse_maxpool(options, params); }else if(lt == REORG){ l = parse_reorg(options, params); }else if(lt == AVGPOOL){ l = parse_avgpool(options, params); }else if(lt == ROUTE){ l = parse_route(options, params, net); }else if(lt == UPSAMPLE){ l = parse_upsample(options, params, net); }else if(lt == SHORTCUT){ l = parse_shortcut(options, params, net); }else if(lt == DROPOUT){ l = parse_dropout(options, params); l.output = net->layers[count-1].output; l.delta = net->layers[count-1].delta; #ifdef GPU l.output_gpu = net->layers[count-1].output_gpu; l.delta_gpu = net->layers[count-1].delta_gpu; #endif }else{ fprintf(stderr, "Type not recognized: %s\n", s->type); } l.clip = net->clip; l.truth = option_find_int_quiet(options, "truth", 0); l.onlyforward = option_find_int_quiet(options, "onlyforward", 0); l.stopbackward = option_find_int_quiet(options, "stopbackward", 0); l.dontsave = option_find_int_quiet(options, "dontsave", 0); l.dontload = option_find_int_quiet(options, "dontload", 0); l.numload = option_find_int_quiet(options, "numload", 0); l.dontloadscales = option_find_int_quiet(options, "dontloadscales", 0); l.learning_rate_scale = option_find_float_quiet(options, "learning_rate", 1); l.smooth = option_find_float_quiet(options, "smooth", 0); option_unused(options); net->layers[count] = l; if (l.workspace_size > workspace_size) workspace_size = l.workspace_size; free_section(s); n = n->next; ++count; if(n){ params.h = l.out_h; params.w = l.out_w; params.c = l.out_c; params.inputs = l.outputs; } } free_list(sections); layer out = get_network_output_layer(net); net->outputs = out.outputs; net->truths = out.outputs; if(net->layers[net->n-1].truths) net->truths = net->layers[net->n-1].truths; net->output = out.output; net->input = calloc(net->inputs*net->batch, sizeof(float)); net->truth = calloc(net->truths*net->batch, sizeof(float)); #ifdef GPU net->output_gpu = out.output_gpu; net->input_gpu = cuda_make_array(net->input, net->inputs*net->batch); net->truth_gpu = cuda_make_array(net->truth, net->truths*net->batch); #endif if(workspace_size){ //printf("%ld\n", workspace_size); #ifdef GPU if(gpu_index >= 0){ net->workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1); }else { net->workspace = calloc(1, workspace_size); } #else net->workspace = calloc(1, workspace_size); #endif } return net; }
network parse_network_cfg(char *filename) { list *sections = read_cfg(filename); node *n = sections->front; if(!n) error("Config file has no sections"); network net = make_network(sections->size - 1); size_params params; section *s = (section *)n->val; list *options = s->options; if(!is_network(s)) error("First section must be [net] or [network]"); parse_net_options(options, &net); params.h = net.h; params.w = net.w; params.c = net.c; params.inputs = net.inputs; params.batch = net.batch; params.time_steps = net.time_steps; size_t workspace_size = 0; n = n->next; int count = 0; free_section(s); while(n){ params.index = count; fprintf(stderr, "%d: ", count); s = (section *)n->val; options = s->options; layer l = {0}; if(is_convolutional(s)){ l = parse_convolutional(options, params); }else if(is_local(s)){ l = parse_local(options, params); }else if(is_activation(s)){ l = parse_activation(options, params); }else if(is_deconvolutional(s)){ l = parse_deconvolutional(options, params); }else if(is_rnn(s)){ l = parse_rnn(options, params); }else if(is_gru(s)){ l = parse_gru(options, params); }else if(is_crnn(s)){ l = parse_crnn(options, params); }else if(is_connected(s)){ l = parse_connected(options, params); }else if(is_crop(s)){ l = parse_crop(options, params); }else if(is_cost(s)){ l = parse_cost(options, params); }else if(is_detection(s)){ l = parse_detection(options, params); }else if(is_softmax(s)){ l = parse_softmax(options, params); }else if(is_normalization(s)){ l = parse_normalization(options, params); }else if(is_batchnorm(s)){ l = parse_batchnorm(options, params); }else if(is_maxpool(s)){ l = parse_maxpool(options, params); }else if(is_avgpool(s)){ l = parse_avgpool(options, params); }else if(is_route(s)){ l = parse_route(options, params, net); }else if(is_shortcut(s)){ l = parse_shortcut(options, params, net); }else if(is_dropout(s)){ l = parse_dropout(options, params); l.output = net.layers[count-1].output; l.delta = net.layers[count-1].delta; #ifdef GPU l.output_gpu = net.layers[count-1].output_gpu; l.delta_gpu = net.layers[count-1].delta_gpu; #endif }else{ fprintf(stderr, "Type not recognized: %s\n", s->type); } l.dontload = option_find_int_quiet(options, "dontload", 0); l.dontloadscales = option_find_int_quiet(options, "dontloadscales", 0); option_unused(options); net.layers[count] = l; if (l.workspace_size > workspace_size) workspace_size = l.workspace_size; free_section(s); n = n->next; ++count; if(n){ params.h = l.out_h; params.w = l.out_w; params.c = l.out_c; params.inputs = l.outputs; } } free_list(sections); net.outputs = get_network_output_size(net); net.output = get_network_output(net); if(workspace_size){ //printf("%ld\n", workspace_size); #ifdef GPU net.workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1); #else net.workspace = calloc(1, workspace_size); #endif } return net; }