Example #1
0
int benchmark(int num_stations, int num_sources, int type,
        int jones_type, int loc, int use_extended, int use_time_ave, int niter,
        std::vector<double>& times)
{
    int status = 0;

    oskar_Timer* timer;
    timer = oskar_timer_create(loc == OSKAR_GPU ?
            OSKAR_TIMER_CUDA : OSKAR_TIMER_OMP);

    // Set up a test sky model, telescope model and Jones matrices.
    oskar_Telescope* tel = oskar_telescope_create(type, loc,
            num_stations, &status);
    oskar_Sky* sky = oskar_sky_create(type, loc, num_sources, &status);
    oskar_Jones* J = oskar_jones_create(jones_type, loc, num_stations,
            num_sources, &status);

    oskar_telescope_set_channel_bandwidth(tel, 1e6);
    oskar_telescope_set_time_average(tel, (double) use_time_ave);
    oskar_sky_set_use_extended(sky, use_extended);

    // Memory for visibility coordinates and output visibility slice.
    oskar_Mem *vis, *u, *v, *w;
    vis = oskar_mem_create(jones_type, loc, oskar_telescope_num_baselines(tel),
            &status);
    u = oskar_mem_create(type, loc, num_stations, &status);
    v = oskar_mem_create(type, loc, num_stations, &status);
    w = oskar_mem_create(type, loc, num_stations, &status);

    // Run benchmark.
    times.resize(niter);
    for (int i = 0; i < niter; ++i)
    {
        oskar_timer_start(timer);
        oskar_cross_correlate(vis, oskar_sky_num_sources(sky), J, sky, tel, u, v, w,
                0.0, 100e6, &status);
        times[i] = oskar_timer_elapsed(timer);
    }

    // Free memory.
    oskar_mem_free(u, &status);
    oskar_mem_free(v, &status);
    oskar_mem_free(w, &status);
    oskar_mem_free(vis, &status);
    oskar_jones_free(J, &status);
    oskar_telescope_free(tel, &status);
    oskar_sky_free(sky, &status);
    oskar_timer_free(timer);
    return status;
}
Example #2
0
static void sim_baselines(oskar_Simulator* h, DeviceData* d, oskar_Sky* sky,
        int channel_index_block, int time_index_block,
        int time_index_simulation, int* status)
{
    int num_baselines, num_stations, num_src, num_times_block, num_channels;
    double dt_dump_days, t_start, t_dump, gast, frequency, ra0, dec0;
    const oskar_Mem *x, *y, *z;
    oskar_Mem* alias = 0;

    /* Get dimensions. */
    num_baselines   = oskar_telescope_num_baselines(d->tel);
    num_stations    = oskar_telescope_num_stations(d->tel);
    num_src         = oskar_sky_num_sources(sky);
    num_times_block = oskar_vis_block_num_times(d->vis_block);
    num_channels    = oskar_vis_block_num_channels(d->vis_block);

    /* Return if there are no sources in the chunk,
     * or if block time index requested is outside the valid range. */
    if (num_src == 0 || time_index_block >= num_times_block) return;

    /* Get the time and frequency of the visibility slice being simulated. */
    dt_dump_days = h->time_inc_sec / 86400.0;
    t_start = h->time_start_mjd_utc;
    t_dump = t_start + dt_dump_days * (time_index_simulation + 0.5);
    gast = oskar_convert_mjd_to_gast_fast(t_dump);
    frequency = h->freq_start_hz + channel_index_block * h->freq_inc_hz;

    /* Scale source fluxes with spectral index and rotation measure. */
    oskar_sky_scale_flux_with_frequency(sky, frequency, status);

    /* Evaluate station u,v,w coordinates. */
    ra0 = oskar_telescope_phase_centre_ra_rad(d->tel);
    dec0 = oskar_telescope_phase_centre_dec_rad(d->tel);
    x = oskar_telescope_station_true_x_offset_ecef_metres_const(d->tel);
    y = oskar_telescope_station_true_y_offset_ecef_metres_const(d->tel);
    z = oskar_telescope_station_true_z_offset_ecef_metres_const(d->tel);
    oskar_convert_ecef_to_station_uvw(num_stations, x, y, z, ra0, dec0, gast,
            d->u, d->v, d->w, status);

    /* Set dimensions of Jones matrices. */
    if (d->R)
        oskar_jones_set_size(d->R, num_stations, num_src, status);
    if (d->Z)
        oskar_jones_set_size(d->Z, num_stations, num_src, status);
    oskar_jones_set_size(d->J, num_stations, num_src, status);
    oskar_jones_set_size(d->E, num_stations, num_src, status);
    oskar_jones_set_size(d->K, num_stations, num_src, status);

    /* Evaluate station beam (Jones E: may be matrix). */
    oskar_timer_resume(d->tmr_E);
    oskar_evaluate_jones_E(d->E, num_src, OSKAR_RELATIVE_DIRECTIONS,
            oskar_sky_l(sky), oskar_sky_m(sky), oskar_sky_n(sky), d->tel,
            gast, frequency, d->station_work, time_index_simulation, status);
    oskar_timer_pause(d->tmr_E);

#if 0
    /* Evaluate ionospheric phase (Jones Z: scalar) and join with Jones E.
     * NOTE this is currently only a CPU implementation. */
    if (d->Z)
    {
        oskar_evaluate_jones_Z(d->Z, num_src, sky, d->tel,
                &settings->ionosphere, gast, frequency, &(d->workJonesZ),
                status);
        oskar_timer_resume(d->tmr_join);
        oskar_jones_join(d->E, d->Z, d->E, status);
        oskar_timer_pause(d->tmr_join);
    }
#endif

    /* Evaluate parallactic angle (Jones R: matrix), and join with Jones Z*E.
     * TODO Move this into station beam evaluation instead. */
    if (d->R)
    {
        oskar_timer_resume(d->tmr_E);
        oskar_evaluate_jones_R(d->R, num_src, oskar_sky_ra_rad_const(sky),
                oskar_sky_dec_rad_const(sky), d->tel, gast, status);
        oskar_timer_pause(d->tmr_E);
        oskar_timer_resume(d->tmr_join);
        oskar_jones_join(d->R, d->E, d->R, status);
        oskar_timer_pause(d->tmr_join);
    }

    /* Evaluate interferometer phase (Jones K: scalar). */
    oskar_timer_resume(d->tmr_K);
    oskar_evaluate_jones_K(d->K, num_src, oskar_sky_l_const(sky),
            oskar_sky_m_const(sky), oskar_sky_n_const(sky), d->u, d->v, d->w,
            frequency, oskar_sky_I_const(sky),
            h->source_min_jy, h->source_max_jy, status);
    oskar_timer_pause(d->tmr_K);

    /* Join Jones K with Jones Z*E. */
    oskar_timer_resume(d->tmr_join);
    oskar_jones_join(d->J, d->K, d->R ? d->R : d->E, status);
    oskar_timer_pause(d->tmr_join);

    /* Create alias for auto/cross-correlations. */
    oskar_timer_resume(d->tmr_correlate);
    alias = oskar_mem_create_alias(0, 0, 0, status);

    /* Auto-correlate for this time and channel. */
    if (oskar_vis_block_has_auto_correlations(d->vis_block))
    {
        oskar_mem_set_alias(alias,
                oskar_vis_block_auto_correlations(d->vis_block),
                num_stations *
                (num_channels * time_index_block + channel_index_block),
                num_stations, status);
        oskar_auto_correlate(alias, num_src, d->J, sky, status);
    }

    /* Cross-correlate for this time and channel. */
    if (oskar_vis_block_has_cross_correlations(d->vis_block))
    {
        oskar_mem_set_alias(alias,
                oskar_vis_block_cross_correlations(d->vis_block),
                num_baselines *
                (num_channels * time_index_block + channel_index_block),
                num_baselines, status);
        oskar_cross_correlate(alias, num_src, d->J, sky, d->tel,
                d->u, d->v, d->w, gast, frequency, status);
    }

    /* Free alias for auto/cross-correlations. */
    oskar_mem_free(alias, status);
    oskar_timer_pause(d->tmr_correlate);
}
Example #3
0
    void runTest(int prec1, int prec2, int loc1, int loc2, int matrix,
            int extended, double time_average)
    {
        int num_baselines, status = 0, type;
        oskar_Mem *vis1, *vis2;
        oskar_Timer *timer1, *timer2;
        double time1, time2, frequency = 100e6;

        // Create the timers.
        timer1 = oskar_timer_create(loc1 == OSKAR_GPU ?
                OSKAR_TIMER_CUDA : OSKAR_TIMER_NATIVE);
        timer2 = oskar_timer_create(loc2 == OSKAR_GPU ?
                OSKAR_TIMER_CUDA : OSKAR_TIMER_NATIVE);

        // Run first part.
        createTestData(prec1, loc1, matrix);
        num_baselines = oskar_telescope_num_baselines(tel);
        type = prec1 | OSKAR_COMPLEX;
        if (matrix) type |= OSKAR_MATRIX;
        vis1 = oskar_mem_create(type, loc1, num_baselines, &status);
        oskar_mem_clear_contents(vis1, &status);
        ASSERT_EQ(0, status) << oskar_get_error_string(status);
        oskar_sky_set_use_extended(sky, extended);
        oskar_telescope_set_channel_bandwidth(tel, bandwidth);
        oskar_telescope_set_time_average(tel, time_average);
        oskar_timer_start(timer1);
        oskar_cross_correlate(vis1, oskar_sky_num_sources(sky), jones, sky,
                tel, u_, v_, w_, 1.0, frequency, &status);
        time1 = oskar_timer_elapsed(timer1);
        destroyTestData();
        ASSERT_EQ(0, status) << oskar_get_error_string(status);

        // Run second part.
        createTestData(prec2, loc2, matrix);
        num_baselines = oskar_telescope_num_baselines(tel);
        type = prec2 | OSKAR_COMPLEX;
        if (matrix) type |= OSKAR_MATRIX;
        vis2 = oskar_mem_create(type, loc2, num_baselines, &status);
        oskar_mem_clear_contents(vis2, &status);
        ASSERT_EQ(0, status) << oskar_get_error_string(status);
        oskar_sky_set_use_extended(sky, extended);
        oskar_telescope_set_channel_bandwidth(tel, bandwidth);
        oskar_telescope_set_time_average(tel, time_average);
        oskar_timer_start(timer2);
        oskar_cross_correlate(vis2, oskar_sky_num_sources(sky), jones, sky,
                tel, u_, v_, w_, 1.0, frequency, &status);
        time2 = oskar_timer_elapsed(timer2);
        destroyTestData();
        ASSERT_EQ(0, status) << oskar_get_error_string(status);

        // Destroy the timers.
        oskar_timer_free(timer1);
        oskar_timer_free(timer2);

        // Compare results.
        check_values(vis1, vis2);

        // Free memory.
        oskar_mem_free(vis1, &status);
        oskar_mem_free(vis2, &status);
        ASSERT_EQ(0, status) << oskar_get_error_string(status);

        // Record properties for test.
        RecordProperty("SourceType", extended ? "Gaussian" : "Point");
        RecordProperty("JonesType", matrix ? "Matrix" : "Scalar");
        RecordProperty("TimeSmearing", time_average == 0.0 ? "off" : "on");
        RecordProperty("Prec1", prec1 == OSKAR_SINGLE ? "Single" : "Double");
        RecordProperty("Loc1", loc1 == OSKAR_CPU ? "CPU" : "GPU");
        RecordProperty("Time1_ms", int(time1 * 1000));
        RecordProperty("Prec2", prec2 == OSKAR_SINGLE ? "Single" : "Double");
        RecordProperty("Loc2", loc2 == OSKAR_CPU ? "CPU" : "GPU");
        RecordProperty("Time2_ms", int(time2 * 1000));

#ifdef ALLOW_PRINTING
        // Print times.
        printf("  > %s. %s sources. Time smearing %s.\n",
                matrix ? "Matrix" : "Scalar",
                extended ? "Gaussian" : "Point",
                time_average == 0.0 ? "off" : "on");
        printf("    %s precision %s: %.2f ms, %s precision %s: %.2f ms\n",
                prec1 == OSKAR_SINGLE ? "Single" : "Double",
                loc1 == OSKAR_CPU ? "CPU" : "GPU",
                time1 * 1000.0,
                prec2 == OSKAR_SINGLE ? "Single" : "Double",
                loc2 == OSKAR_CPU ? "CPU" : "GPU",
                time2 * 1000.0);
#endif
    }